The parameter identification problem considered herewith consists of identifying the measurable, bounded and strictly positive position - dependent conductivity from interior potential measurements in one spatial dimension. At least one solution is assumed to exist. Since conductivity satisfies a first order ordinary differential equation (ODE), uniqueness follows from stating either a regular or a singular initial value problem. Regular problems arise when a Cauchy datum is available at a point where the coefficient of ax does not vanish. Singular problems are met when the potential is stationary, according to the conditions originally given by Kitamura and Nakagiri [SIAM J. Control and Optimiz., 15, (1977), pp 785 - 802] or when the potential; source term pair satisfies a non - local property known as self-identifiability. Potentials shall be piecewise differentiable in all cases. When stability is examined, potentials are chosen in a subset of W22,1; the starting point is an ODE for the conductivity difference, the defect equation. Two distinct integration procedures are applied to the latter, according to whether uniqueness is due to a regular or a singular problem. Standard stability theory applies to the former and leads to L∞-estimates, provided Gronwall - Bellman's inequality is extended to measurable functions. Singular problems yield at most L1- stability estimates. Some examples and counterexamples are provided. The results help in interpreting the performance of some known distributed parameter identification methods.

Crosta, G. (1992). Identification of a distributed parameter (conductivity) in a system governed by a parabolic equation: uniqueness and stability results. In D.E. Seborg, B.R. Barmish, M. Abate, R. Tempo, R. Rhinehart, M. Zohdy (a cura di), Proceedings of the American Control Conference (pp. 2455-2462). Green Valley, AZ, United States : Publ by American Automatic Control Council [10.23919/ACC.1992.4792580].

Identification of a distributed parameter (conductivity) in a system governed by a parabolic equation: uniqueness and stability results

CROSTA, GIOVANNI FRANCO FILIPPO
1992

Abstract

The parameter identification problem considered herewith consists of identifying the measurable, bounded and strictly positive position - dependent conductivity from interior potential measurements in one spatial dimension. At least one solution is assumed to exist. Since conductivity satisfies a first order ordinary differential equation (ODE), uniqueness follows from stating either a regular or a singular initial value problem. Regular problems arise when a Cauchy datum is available at a point where the coefficient of ax does not vanish. Singular problems are met when the potential is stationary, according to the conditions originally given by Kitamura and Nakagiri [SIAM J. Control and Optimiz., 15, (1977), pp 785 - 802] or when the potential; source term pair satisfies a non - local property known as self-identifiability. Potentials shall be piecewise differentiable in all cases. When stability is examined, potentials are chosen in a subset of W22,1; the starting point is an ODE for the conductivity difference, the defect equation. Two distinct integration procedures are applied to the latter, according to whether uniqueness is due to a regular or a singular problem. Standard stability theory applies to the former and leads to L∞-estimates, provided Gronwall - Bellman's inequality is extended to measurable functions. Singular problems yield at most L1- stability estimates. Some examples and counterexamples are provided. The results help in interpreting the performance of some known distributed parameter identification methods.
Capitolo o saggio
inverse problems; stability; parameter estimation; interior measurments; thermal conductivity; defect equation; regular Cauchy problem; singular Cauchy problem; self-identifiability; Gronwall-Bellmann inequality; distributions.
English
Proceedings of the American Control Conference
Seborg, DE; Barmish, BR; Abate, M; Tempo, R; Rhinehart, R; Zohdy, M
24-giu-1992
1992
0780302109
3
Publ by American Automatic Control Council
2455
2462
ACC ID 639
Crosta, G. (1992). Identification of a distributed parameter (conductivity) in a system governed by a parabolic equation: uniqueness and stability results. In D.E. Seborg, B.R. Barmish, M. Abate, R. Tempo, R. Rhinehart, M. Zohdy (a cura di), Proceedings of the American Control Conference (pp. 2455-2462). Green Valley, AZ, United States : Publ by American Automatic Control Council [10.23919/ACC.1992.4792580].
open
File in questo prodotto:
File Dimensione Formato  
1991-0901_ACC_Submit.pdf

accesso aperto

Descrizione: Annuncio del congresso; sunto inviato il 1991-0901
Tipologia di allegato: Other attachments
Licenza: Tutti i diritti riservati
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri
1992-0103_BarmishBR_Accept.pdf

accesso aperto

Descrizione: Lettera d'accettazione del 1992-0103.
Tipologia di allegato: Other attachments
Licenza: Tutti i diritti riservati
Dimensione 761.4 kB
Formato Adobe PDF
761.4 kB Adobe PDF Visualizza/Apri
1992-0207_ACC_Permit.pdf

accesso aperto

Descrizione: Richiesta d'autorizzazione al Prof. Sergio Rinaldi del 1992-0207
Tipologia di allegato: Other attachments
Licenza: Tutti i diritti riservati
Dimensione 709.1 kB
Formato Adobe PDF
709.1 kB Adobe PDF Visualizza/Apri
1992-0625_ACC_Gespræch.pdf

accesso aperto

Descrizione: Manoscritto del discorso del 1992-0625
Tipologia di allegato: Other attachments
Licenza: Tutti i diritti riservati
Dimensione 5.24 MB
Formato Adobe PDF
5.24 MB Adobe PDF Visualizza/Apri
1992-0625_ACC_Vorstel01.pdf

accesso aperto

Descrizione: Presentazione del 1992-0625. Parte I
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri
1992-0625_ACC_Vorstel02.pdf

accesso aperto

Descrizione: Presentazione del 1992-0625. Parte II
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri
1992-0625_ACC_Vorstel03.pdf

accesso aperto

Descrizione: Presentazione del 1992-0625. Parte III
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri
1993-0731_ACC_CCA.pdf

accesso aperto

Descrizione: Citazione su Computer and Control Abstracts (1993) n. 7. Sunto n. 37173.
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/93514
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
Social impact