The parameter identification problem considered herewith consists of identifying the measurable, bounded and strictly positive position - dependent conductivity from interior potential measurements in one spatial dimension. At least one solution is assumed to exist. Since conductivity satisfies a first order ordinary differential equation (ODE), uniqueness follows from stating either a regular or a singular initial value problem. Regular problems arise when a Cauchy datum is available at a point where the coefficient of ax does not vanish. Singular problems are met when the potential is stationary, according to the conditions originally given by Kitamura and Nakagiri [SIAM J. Control and Optimiz., 15, (1977), pp 785 - 802] or when the potential; source term pair satisfies a non - local property known as self-identifiability. Potentials shall be piecewise differentiable in all cases. When stability is examined, potentials are chosen in a subset of W22,1; the starting point is an ODE for the conductivity difference, the defect equation. Two distinct integration procedures are applied to the latter, according to whether uniqueness is due to a regular or a singular problem. Standard stability theory applies to the former and leads to L∞-estimates, provided Gronwall - Bellman's inequality is extended to measurable functions. Singular problems yield at most L1- stability estimates. Some examples and counterexamples are provided. The results help in interpreting the performance of some known distributed parameter identification methods.
Crosta, G. (1992). Identification of a distributed parameter (conductivity) in a system governed by a parabolic equation: uniqueness and stability results. In D.E. Seborg, B.R. Barmish, M. Abate, R. Tempo, R. Rhinehart, M. Zohdy (a cura di), Proceedings of the American Control Conference (pp. 2455-2462). Green Valley, AZ, United States : Publ by American Automatic Control Council [10.23919/ACC.1992.4792580].
Identification of a distributed parameter (conductivity) in a system governed by a parabolic equation: uniqueness and stability results
CROSTA, GIOVANNI FRANCO FILIPPO
1992
Abstract
The parameter identification problem considered herewith consists of identifying the measurable, bounded and strictly positive position - dependent conductivity from interior potential measurements in one spatial dimension. At least one solution is assumed to exist. Since conductivity satisfies a first order ordinary differential equation (ODE), uniqueness follows from stating either a regular or a singular initial value problem. Regular problems arise when a Cauchy datum is available at a point where the coefficient of ax does not vanish. Singular problems are met when the potential is stationary, according to the conditions originally given by Kitamura and Nakagiri [SIAM J. Control and Optimiz., 15, (1977), pp 785 - 802] or when the potential; source term pair satisfies a non - local property known as self-identifiability. Potentials shall be piecewise differentiable in all cases. When stability is examined, potentials are chosen in a subset of W22,1; the starting point is an ODE for the conductivity difference, the defect equation. Two distinct integration procedures are applied to the latter, according to whether uniqueness is due to a regular or a singular problem. Standard stability theory applies to the former and leads to L∞-estimates, provided Gronwall - Bellman's inequality is extended to measurable functions. Singular problems yield at most L1- stability estimates. Some examples and counterexamples are provided. The results help in interpreting the performance of some known distributed parameter identification methods.File | Dimensione | Formato | |
---|---|---|---|
1991-0901_ACC_Submit.pdf
accesso aperto
Descrizione: Annuncio del congresso; sunto inviato il 1991-0901
Tipologia di allegato:
Other attachments
Licenza:
Tutti i diritti riservati
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
1992-0103_BarmishBR_Accept.pdf
accesso aperto
Descrizione: Lettera d'accettazione del 1992-0103.
Tipologia di allegato:
Other attachments
Licenza:
Tutti i diritti riservati
Dimensione
761.4 kB
Formato
Adobe PDF
|
761.4 kB | Adobe PDF | Visualizza/Apri |
1992-0207_ACC_Permit.pdf
accesso aperto
Descrizione: Richiesta d'autorizzazione al Prof. Sergio Rinaldi del 1992-0207
Tipologia di allegato:
Other attachments
Licenza:
Tutti i diritti riservati
Dimensione
709.1 kB
Formato
Adobe PDF
|
709.1 kB | Adobe PDF | Visualizza/Apri |
1992-0625_ACC_Gespræch.pdf
accesso aperto
Descrizione: Manoscritto del discorso del 1992-0625
Tipologia di allegato:
Other attachments
Licenza:
Tutti i diritti riservati
Dimensione
5.24 MB
Formato
Adobe PDF
|
5.24 MB | Adobe PDF | Visualizza/Apri |
1992-0625_ACC_Vorstel01.pdf
accesso aperto
Descrizione: Presentazione del 1992-0625. Parte I
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
2.04 MB
Formato
Adobe PDF
|
2.04 MB | Adobe PDF | Visualizza/Apri |
1992-0625_ACC_Vorstel02.pdf
accesso aperto
Descrizione: Presentazione del 1992-0625. Parte II
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
2.3 MB
Formato
Adobe PDF
|
2.3 MB | Adobe PDF | Visualizza/Apri |
1992-0625_ACC_Vorstel03.pdf
accesso aperto
Descrizione: Presentazione del 1992-0625. Parte III
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri |
1993-0731_ACC_CCA.pdf
accesso aperto
Descrizione: Citazione su Computer and Control Abstracts (1993) n. 7. Sunto n. 37173.
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.