In this paper we extend some well known properties of monotone and maximal monotone operators to the wider class of e-monotone and maximal e-monotone operators. The main results concern local boundedness of maximal e-monotone operators, maximal 2e-monotonicity of the Clarke–Rockafellar subdifferential ∂CRf for an e-convex function f, and the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick function outside the graph of T.
Alizadeh, M., Bianchi, M., Pini, R. (2024). On e-monotonicity and maximality of operators in Banach spaces. JOURNAL OF GLOBAL OPTIMIZATION [10.1007/s10898-024-01435-8].
On e-monotonicity and maximality of operators in Banach spaces
Pini R.
2024
Abstract
In this paper we extend some well known properties of monotone and maximal monotone operators to the wider class of e-monotone and maximal e-monotone operators. The main results concern local boundedness of maximal e-monotone operators, maximal 2e-monotonicity of the Clarke–Rockafellar subdifferential ∂CRf for an e-convex function f, and the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick function outside the graph of T.File | Dimensione | Formato | |
---|---|---|---|
Alizadeh-2024-J Global Optim-VoR.pdf
accesso aperto
Descrizione: CC BY 4.0 This article is licensed under a Creative Commons Attribution 4.0 International To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.License
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
319.39 kB
Formato
Adobe PDF
|
319.39 kB | Adobe PDF | Visualizza/Apri |
Alizadeh-2024-J Global Optim-AAM.pdf
embargo fino al 05/10/2025
Descrizione: Accepted manuscript terms of use - https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Licenza:
Altro
Dimensione
391.55 kB
Formato
Adobe PDF
|
391.55 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.