In this paper we extend some well known properties of monotone and maximal monotone operators to the wider class of e-monotone and maximal e-monotone operators. The main results concern local boundedness of maximal e-monotone operators, maximal 2e-monotonicity of the Clarke–Rockafellar subdifferential ∂CRf for an e-convex function f, and the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick function outside the graph of T.

Alizadeh, M., Bianchi, M., Pini, R. (2024). On e-monotonicity and maximality of operators in Banach spaces. JOURNAL OF GLOBAL OPTIMIZATION [10.1007/s10898-024-01435-8].

On e-monotonicity and maximality of operators in Banach spaces

Pini R.
2024

Abstract

In this paper we extend some well known properties of monotone and maximal monotone operators to the wider class of e-monotone and maximal e-monotone operators. The main results concern local boundedness of maximal e-monotone operators, maximal 2e-monotonicity of the Clarke–Rockafellar subdifferential ∂CRf for an e-convex function f, and the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick function outside the graph of T.
Articolo in rivista - Articolo scientifico
47H04; 47H05; 49J53; e-Monotonicity; Fitzpatrick function; Generalized subdifferential; Maximality;
English
5-ott-2024
2024
partially_open
Alizadeh, M., Bianchi, M., Pini, R. (2024). On e-monotonicity and maximality of operators in Banach spaces. JOURNAL OF GLOBAL OPTIMIZATION [10.1007/s10898-024-01435-8].
File in questo prodotto:
File Dimensione Formato  
Alizadeh-2024-J Global Optim-VoR.pdf

accesso aperto

Descrizione: CC BY 4.0 This article is licensed under a Creative Commons Attribution 4.0 International To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.License
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 319.39 kB
Formato Adobe PDF
319.39 kB Adobe PDF Visualizza/Apri
Alizadeh-2024-J Global Optim-AAM.pdf

embargo fino al 05/10/2025

Descrizione: Accepted manuscript terms of use - https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 391.55 kB
Formato Adobe PDF
391.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/520099
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact