In this paper we extend some well known properties of monotone and maximal monotone operators to the wider class of e-monotone and maximal e-monotone operators. The main results concern local boundedness of maximal e-monotone operators, maximal 2e-monotonicity of the Clarke–Rockafellar subdifferential ∂CRf for an e-convex function f, and the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick function outside the graph of T.

Alizadeh, M., Bianchi, M., Pini, R. (2025). On e-monotonicity and maximality of operators in Banach spaces. JOURNAL OF GLOBAL OPTIMIZATION, 91(1), 155-170 [10.1007/s10898-024-01435-8].

On e-monotonicity and maximality of operators in Banach spaces

Pini R.
2025

Abstract

In this paper we extend some well known properties of monotone and maximal monotone operators to the wider class of e-monotone and maximal e-monotone operators. The main results concern local boundedness of maximal e-monotone operators, maximal 2e-monotonicity of the Clarke–Rockafellar subdifferential ∂CRf for an e-convex function f, and the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick function outside the graph of T.
Articolo in rivista - Articolo scientifico
47H04; 47H05; 49J53; e-Monotonicity; Fitzpatrick function; Generalized subdifferential; Maximality;
English
5-ott-2024
2025
91
1
155
170
open
Alizadeh, M., Bianchi, M., Pini, R. (2025). On e-monotonicity and maximality of operators in Banach spaces. JOURNAL OF GLOBAL OPTIMIZATION, 91(1), 155-170 [10.1007/s10898-024-01435-8].
File in questo prodotto:
File Dimensione Formato  
Alizadeh-2025-J Global Optim-VoR.pdf

accesso aperto

Descrizione: articolo pubblicato su rivista
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 308.15 kB
Formato Adobe PDF
308.15 kB Adobe PDF Visualizza/Apri
Alizadeh-2024-J Global Optim-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 391.55 kB
Formato Adobe PDF
391.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/520099
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact