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Abstract
In this paper we extend some well known properties of monotone and maximal mono-
tone operators to the wider class of e-monotone and maximal e-monotone operators. The
main results concern local boundedness of maximal e-monotone operators, maximal 2e-
monotonicity of theClarke–Rockafellar subdifferential ∂CR f for an e-convex function f , and
the characterization of e-monotonicity of an operator T via the behaviour of its e-Fitzpatrick
function outside the graph of T .
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Mathematics Subject Classification 47H05 · 49J53 · 47H04

1 Introduction and preliminaries

In this paper X is a real Banach space, with topological dual space X∗, and 〈·, ·〉 denotes the
duality pair.

Given an operator T : X → 2X
∗
, its domain is D (T ) = {x ∈ X : T (x) �= ∅}, and its

graph gr(T ) = {(x, x∗) ∈ X × X∗ : x∗ ∈ T (x)}.
The operator T is said to be monotone if for every x, y ∈ D (T ) , x∗ ∈ T (x) and

y∗ ∈ T (y),

〈x∗ − y∗, x − y〉 ≥ 0 ∀(x, x∗), (y, y∗) ∈ gr(T ), (1)

and T is said to be maximal monotone if its graph is not properly included in the graph of
any other monotone operator.
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In literature monotone and maximal monotone operators have been intensively studied
due to their important properties and applications (see, for instance, [16] and the reference
therein).

Subsequently, many authors introduced generalized monotone operators with the aim to
extend to a larger class of operators some of the properties of the monotone ones. In the
sequel we will focus on the class of e-monotone operators for which the inequality in (1) is
weaker, requiring only that

〈x∗ − y∗, x − y〉 ≥ −e(x, y),

where the error bifunction e : X × X → R is nonnegative and symmetric, i.e. e(x, y) =
e(y, x).

The primary aim of this work is essentially theoretical and seeks to address a broader
class of generalized monotone operators by examining the minimal properties required of
the function and to rediscover known properties of monotone operators.

Examples of error bifunctions are a nonnegative constant, e(x, y) = ‖x − y‖, e(x, y) =
‖x − y‖2, e(x, y) = min{σ(x), σ (y)}‖x − y‖, where σ : X → R is a nonnegative function,
to name a few. With any of these particular choices, many different classes of generalized
monotone operators studied in the literature can be recovered.

In particular, recently some authors investigated one of these classes, namely the premono-
tone operators which corresponds to the particular choice e(x, y) = min{σ(x), σ (y)}‖x− y‖
(see, for instance, [2, 12]).

Some of the results of this paper have a counterpart for the premonotone case; when the
proofs differ only slightly, we skip them giving more details in case specific properties of the
error bifunction e are involved.

The paper is organized as follows: in Sect. 2 we give the notion of e-monotonicity and
maximal e-monotonicity of an operator T , together with some of the properties enjoyed. In
Sect. 3 the notion of (maximal) e-monotonicity is extended to bifunctions, and a relationship
between the monotonicity properties of T and the associated bifunction GT is established.
Furthermore, we extend to maximal e-monotone operators the classical result of local bound-
edness of maximal monotone operators. In Sect. 4 the connection between e-convexity of a
function f and 2e-monotonicity of its Clarke-Rockafellar subdifferential is explored. The
main result of this section is Theorem 18 where it is proved that, under suitable assumptions
on the error bifunction e, ∂e f = ∂CR f , and ∂CR f is maximal 2e-monotone. The last section
is devoted to an extension of the Fitzpatrick function for e-monotone operators; in particular,
the maximal e-monotonicity of an e-monotone operator T is characterized via the behaviour
of its e-Fitzpatrick function outside the graph of T .

2 e-Monotone operators andmaximality

The definition of e-monotone operator generalizes in a standard way the notion of monotone
operator which is recovered assuming e = 0:

Definition 1 Given an operator T : X → 2X
∗
and an error bifunction e : X × X → R+, we

say that T is e-monotone if for every x, y ∈ D(T ), x∗ ∈ T (x) and y∗ ∈ T (y),

〈x∗ − y∗, y − x〉 ≤ e (x, y) . (2)

Note that if T is an e-monotone operator and e′ is an error bifunction such that e′(x, y) ≥
e(x, y) for all x, y ∈ X , then T is also e′-monotone.
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Given an e-monotone operator T , one may wonder which is the smallest error bifunction
eT with respect to which the operator T is eT -monotone. To answer this question let us
consider for any operator T the bifunction eT : X × X → R ∪ {+∞} defined as follows:

eT (x, y) = inf{a ∈ R+ : 〈x∗ − y∗, y − x〉 ≤ a, ∀x∗ ∈ T (x), ∀y∗ ∈ T (y)}
if (x, y) ∈ D(T ) × D(T ), and eT (x, y) = 0 otherwise or, equivalently:

eT (x, y) = (
sup{〈x∗ − y∗, y − x〉 : x, y ∈ X , x∗ ∈ T (x), y∗ ∈ T (y)})+ (3)

where, for a function f , we set ( f )+ = max{ f , 0}.
It is easy to verify by the definition that

eT (x, y) ≤ e(x, y) on D(T ) × D(T ) (4)

if T is e-monotone, and that T is eT -monotone, too. We remark that T is e-monotone for
some e if and only if eT is real-valued.

To introduce the notion ofmaximality for e-monotone operators, we draw inspiration by an
approach used in the monotone and in other generalized monotone cases (see, for instance,
[14]) by introducing the reflexive and symmetric binary relation ẽ on X × X∗ defined as
follows:

(x, x∗)̃e(y, y∗) ⇐⇒ 〈x∗ − y∗, y − x〉 ≤ e (x, y) . (5)

In case (5) holds, we say that (x, x∗) and (y, y∗) are e-monotonically related.
Then we define the e-monotone polar T ẽ : X → 2X

∗
by setting, for every x ∈ X ,

T ẽ(x) = {x∗ ∈ X∗ : (x, x∗)ẽ(y, y∗), ∀(y, y∗) ∈ gr(T )}.
It is evident that if T is e-monotone, then T (x) ⊆ T ẽ(x) for every x ∈ D(T ). In addition,
if u∗ ∈ T ẽ(u)\T (u), the operator T ′ : X → 2X

∗
such that gr(T ′) = gr(T ) ∪ (u, u∗) is

e-monotone. This remark leads to the following definition of e-maximality:

Definition 2 Given an e-monotone operator T : X → 2X
∗
, we say that T is maximal

e-monotone if gr(T ) = gr(T ẽ).

The previous definition means that, for a maximal e-monotone operator T , an e-monotone
operator T ′ such that gr(T ) ⊂ gr(T ′) does not exist. Therefore, following the line of the
proof of Theorem 20.21 in [7], we can apply Zorn’s Lemma to the set

M = {T ′ : X → 2X
∗ : T ′ is e − monotone, gr(T ) ⊆ gr(T ′)}

to show that every e-monotone operator T admits a maximal e-monotone extension.

Remark 3 In order to prove that an e-monotone operator is maximal, it is enough to prove
that every pair (x, x∗) e-monotonically related to every (y, y∗) ∈ gr(T ) belongs to gr(T ) or,
equivalently, for every x ∈ X and x∗ /∈ T (x), there exists z ∈ D(T ) and z∗ ∈ T (z) such that
(x, x∗) is not e-monotonically related to (z, z∗).

Proposition 4 Let T : X → 2X
∗
be an e-monotone operator. If T is maximal e-monotone,

then T is maximal eT -monotone.

Proof We know that T is eT -monotone. Since T is maximal e-monotone for every x ∈ X
and x∗ /∈ T (x), there exists z ∈ D(T ) and z∗ ∈ T (z) such that

〈x∗ − z∗, z − x〉 > e(x, z) ≥ eT (x, z),

i.e. T is maximal eT -monotone. ��
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Note that the converse is false:

Example 5 Consider T : R → 2R defined as follows:

T (x) =
⎧
⎨

⎩

x x ∈ (−1, 1)
(−∞,−1] x = −1
[1,+∞) x = 1

The operator T is not only monotone, but also maximal monotone; in particular, it is e-
monotone, for every error bifunction e, and eT = 0. Take the error bifunction e defined as
follows:

e(x, y) =
{
4 − (x − y)2 (x, y) ∈ [−1, 1]2
0 elsewhere

We will show that (0, 2)ẽ(x, x∗) for every (x, x∗) ∈ gr(T ). In fact, if x ∈ (−1, 1), we have
that

〈x − 0, 2 − x〉 = 2x − x2 ≤ e(0, x) = 4 − x2.

Let x = −1 : for every α ∈ (−∞,−1],
〈−1 − 0, 2 − α〉 = −2 + α ≤ −3 ≤ e(−1, 0) = 3;

if x = 1, then for every α ∈ [1,+∞) :
〈1 − 0, 2 − α〉 = 2 − α ≤ 1 ≤ e(1, 0) = 3.

Since (0, 2) /∈ gr(T ), we conclude that T is not maximal e-monotone.

The following result is similar to Proposition 2.7 in [2] and can be proved with the same
techniques. Let us recall that given x0 ∈ X , T is called sequentially norm× weak∗-closed
at x0 if for every sequence (xn, x∗

n ) ∈ gr(T ) such that xn → x0 and x∗
n

w∗→ x∗
0 one has

x∗
0 ∈ T (x0).

Proposition 6 Every maximal e-monotone operator T is convex-valued and weak∗-closed
valued. Moreover, if x0 ∈ D(T ), and e(·, y) is upper semicontinuous at x0, then T is
sequentially norm× weak∗-closed at x0.

These last results hold in a Hilbert space setting (see [4]).

Proposition 7 Let H be a Hilbert space, and T : H → 2H be e-monotone. Suppose that
I + T is surjective. If (y, y∗) ∈ H×H is e-monotonically related to gr(T ), then there exists
(x, x∗) ∈ gr(T ) such that

||x∗ − y∗|| = ||x − y|| ≤ √
e (x, y). (6)

Proof By assumption R (I + T ) = H. This implies that there exists an element x ∈ H such
that y+ y∗ ∈ (I + T ) (x). This implies that y+ y∗ = x + x∗ for a suitable x∗ ∈ T (x). From
this equality, we obtain that

y − x = x∗ − y∗. (7)

Besides, (y, y∗) ∈ H × H is e-monotonically related to gr(T ). Thus

〈x∗ − y∗, y − x〉 ≤ e (x, y) . (8)
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From (7) and (8) we infer that

〈y − x, y − x〉 ≤ e (x, y) .

Therefore ||x − y|| ≤ √
e (x, y). ��

From the result above one can easily get the following (see Theorem 21.1 in [7]).

Corollary 8 Assume that T : H → 2H is monotone. If R (I + T ) = H, then T is maximal
monotone.

3 e-Monotone bifunctions and properties of e-monotone operators

As for the case of monotonicity, the notion of e-monotonicity is somehow extended also to
bifunction.

Definition 9 Let C be a nonempty subset of X and e : X × X → R+ be an error bifunction.
A bifunction F : C × C → R is called e-monotone if

F (x, y) + F (y, x) ≤ e (x, y) , ∀x, y ∈ C . (9)

Note that, taking into account the symmetry of e, the definition is equivalent to saying
that F − e

2 is a monotone bifunction.
Given any F : C × C → R, the operator AF : X → 2X

∗
is defined by

AF (x) =
{ {x∗ ∈ X∗ : F (x, y) ≥ 〈x∗, y − x〉, ∀y ∈ C} if x ∈ C,

∅ if x /∈ C .

It is easy to show that for an e-monotone bifunction F , AF is an e-monotone operator.
Moreover, following [10], an e-monotone bifunction F is said to be maximal e-monotone if
AF is maximal e-monotone.

An important bifunction intrinsically linked to an operator T : X → 2X
∗
, is given by

GT : D(T ) × D (T ) → R ∪ {+∞} defined as (see, for instance, [4, 10])
GT (x, y) = sup

x∗∈T (x)
〈x∗, y − x〉.

For each x ∈ D (T ), GT (x, ·) is lower semicontinuous and convex, and GT (x, x) = 0.
The following result shows that GT is actually real-valued whenever T is e-monotone, and
establishes some relations between e-monotonicity of GT and T as in Proposition 3.3. in [2].

Proposition 10 Let T be an operator and e : X × X → R be an error bifunction. Then the
following statements are true:

(i) T is e-monotone if and only if GT is e-monotone; in particular, if T is an e-monotone
operator, then GT is real-valued on D(T ) × D(T ).

(ii) If T is maximal e-monotone, then AGT = T and GT is a maximal e-monotone
bifunction.

(iii) Suppose that T is an e-monotone operator withw∗-closed convex values and D (T ) =
X. If GT is maximal e-monotone, then T is maximal e-monotone.

Proof (i) Let T : X → 2X
∗
be e-monotone. For any x, y ∈ D (T ) we have

〈y∗, x − y〉 + 〈x∗, y − x〉 ≤ e (x, y) , ∀x∗ ∈ T (x), y∗ ∈ T (y),
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i.e.

sup
y∗∈T (y)

〈y∗, x − y〉 + sup
x∗∈T (x)

〈x∗, y − x〉 ≤ e (x, y) ,

or, equivalently,

GT (x, y) + GT (y, x) ≤ e (x, y) . (10)

This means thatGT is real valued and e-monotone. The converse holds trivially starting from
(10).

(ii) For every x, y ∈ D (T ) we have

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉 ∀z∗ ∈ T (x).

This means that T (x) ⊆ AGT (x). Since T is maximal e-monotone, and AGT is e-monotone,
we conclude that T = AGT .

(iii) Since GT is maximal e-monotone, according to the definition, AGT is maximal
e-monotone. Let x ∈ X and z∗ ∈ AGT (x). Then

GT (x, y) = sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 〈z∗, y − x〉.

Now, according to the separation theorem, it follows that z∗ ∈ T (x). Consequently,
T = AGT and T is maximal e-monotone. ��

In the following result, we extend the well-known fact that every set-valued monotone
operator T from X to X∗ is locally bounded within the interior of its domain. We will denote
by B(x, r) the open ball with centre x ∈ X and radius r .

We first recall the following definition from [2]:

Definition 11 A bifunction F : C × C → R is said to be locally bounded at x0 ∈ C if there
exist R > 0 and M ∈ R such that F(x, y) ≤ M for all x, y ∈ C ∩ B(x0, R). We call F
locally bounded on a set C if it is locally bounded at every x ∈ C .

Proposition 12 Let X be a Banach space, and T : X → 2X
∗
be an e-monotone operator,

where the error bifunction e is locally bounded at every point within int D(T ). Then T is
locally bounded at every point of int D (T ).

Proof First, let us establish that the function GT is locally bounded on the interior of D(T ).

Take any point x0 ∈ int D(T ), and let ε > 0 be such that B(x0, ε) ⊂ int D(T ) and e is
bounded on B(x0, ε) × B(x0, ε) by a constant Mx0 . Define the function g : B(x0, ε) →
R ∪ {+∞} as follows:

g(y) = sup{GT (x, y), x ∈ B(x0, ε)}.
Note that g is real-valued; indeed, since GT is e-monotone by Proposition 10 (i), we have
that

GT (x, y) ≤ e(x, y) − GT (y, x) ≤ Mx0 + ‖y∗
0‖(ε + ‖y − x0‖),

for some y∗
0 ∈ T (y), and for every (x, y) ∈ B(x0, ε) × B(x0, ε). Therefore, g(y) is real-

valued on B(x0, ε). Since g is convex and lower semicontinuous, and x0 ∈ int dom(g), there
exists 0 < δ < ε and M > 0 such that g(y) ≤ M, for every y ∈ B(x0, δ) (see, for instance,
Theorem 2.2.8 in [13]). This implies that GT (x, y) ≤ M for every x, y ∈ B(x0, δ), i.e. GT

is locally bounded at x0. By Remark 6 (b) in [3], T is locally bounded at x0. ��
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Under the assumption of T being maximal e-monotone, the aforementioned result has a
converse that generalizes a property of maximal monotone operators established by Vesely
(see [16]).

Let us denote by co(D(T )) the convex hull of D(T ). Recall that in case D(T ) is a convex
set, then int D(T ) = int D(T ). In addition, the normal cone to D(T ) at a point x0 ∈ D(T )

is given by

ND(T )(x0) = {x∗ ∈ X∗ : 〈x∗, y − x0〉 ≤ 0, ∀y ∈ D(T )}.

We now prove the following lemma:

Lemma 13 Let X be a Banach space, and T : X → 2X
∗
be a maximal e-monotone operator.

If int co(D(T )) �= ∅, then T (x0) is unbounded, for every point x0 ∈ D(T )\int co(D(T )).

Proof Let x0 ∈ D (T ) \ int co(D (T )); this implies that x0 belongs to the boundary of the
closed and convex set co(D (T )). Since, by assumption, we have that int co(D (T )) �= ∅,
there exists a supporting hyperplane to co(D (T )) at x0; this means that there exists 0 �= w∗ ∈
X∗ such that 〈w∗, x0〉 ≥ 〈w∗, x〉 for all x ∈ D (T ). This implies that w∗ ∈ ND(T ) (x0).

Take any x∗ ∈ T (x0) and w∗ ∈ ND(T ) (x0). For each (y, y∗) ∈ gr (T ) and every λ ≥ 0
we would have

〈x∗ + λw∗ − y∗, y − x0〉 = 〈x∗ − y∗, y − x0〉 + λ〈w∗, y − x0〉 ≤ e (y, x0) ,

which implies that (x0, x∗ + λw∗) is e-monotonically related with all (y, y∗) ∈ gr (T ). By
maximal e-monotonicity of T we obtain

x∗ + λw∗ ∈ T (x0) , ∀λ ≥ 0. (11)

From (11) we infer that the set T (x0) is not bounded and so T is not locally bounded at x0.
��

Theorem 14 Suppose that T is maximal e-monotone with a convex domain D(T ),

int D(T ) �= ∅, and e (·, y) is upper semicontinuous for each y ∈ D(T ). If x0 ∈ D(T )

and T is locally bounded at x0, then x0 ∈ int D(T ).

Proof The first part of the proof follows the line of Theorem 2.14 in [16].
By assumption T is locally bounded at x0, so there is an open neighborhood U of x0 so

that T (U ) is a bounded set. Let {xn} ⊂ D (T )∩U be a sequence so that xn → x0 and choose(
xn, x∗

n

) ∈ gr (T ). According to Alaoglou’s theorem there exist a subnet
(
xα, x∗

α

)
of

(
xn, x∗

n

)

and x∗
0 ∈ X∗ such that x∗

α

w∗→ x∗
0 . Since the net

{
x∗
α

}
is in the bounded set T (U ), we infer

that 〈x∗
α, xα〉 → 〈x∗

0 , x0〉. Consequently, for all (y, y∗) ∈ gr (T )

〈x∗
0 − y∗, y − x0〉 = lim

α
〈x∗

α − y∗, y − xα〉
≤ lim sup

α
e (xα, y) ≤ e (x0, y) .

Hence
(
x0, x∗

0

)
is e-monotonically related to all (y, y∗) ∈ gr (T ). By the assumptions, we

get x0 ∈ D (T ). Now by applying Lemma 13, we conclude that x0 ∈ int D (T ). ��
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4 Some results on generalized subdifferential andmaximality

In this section we will focus both on the Clarke-Rockafellar subdifferentials and the e-
subdifferentials. The main result shows the maximal 2e-monotonicity of these operators. Let
us first recall some definitions from [1].

Definition 15 Let a function f : X → R ∪ {+∞} and an error bifunction e be given. Then
f is called e-convex if

f (t x + (1 − t) y) ≤ t f (x) + (1 − t) f (y) + t (1 − t) e (x, y) (12)

for all x, y ∈ X , and t ∈]0, 1[.
Note that the domain of an e-convex function is necessarily convex.
Suppose that f : X → R ∪ {+∞} is a proper function. The e-subdifferential of f is the

multivalued operator ∂e f : X → 2X
∗
defined as

∂e f (x) = {
x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ f (y) − f (x) + e(x, y), ∀y ∈ X

}

if x ∈ dom( f ); otherwise it is empty. It is easy to show that the e-subdifferential of any
function is a 2e-monotone operator.

Moreover, we recall that the Clarke-Rockafellar subdifferential of a proper, lower
semicontinuous function f at the point x ∈ dom( f ) is the set

∂CR f (x) = {p ∈ X∗ : f 0(x; v) ≥ 〈p, v〉, ∀v ∈ X},
where

f 0(x; v) = lim
ε↓0 lim sup

y→ f x, t↓0
inf

w∈v+εB

f (y + tw) − f (y)

t
,

B = B(0, 1), and y → f x means that (y, f (y)) tends to (x, f (x)) in X×R. If x /∈ dom( f ),
then ∂CR f (x) = ∅.

The next results generalize properties well known for generalized monotone functions. In
Example 22.3 in [7] the authors provide similar results in case of other classes of generalized
monotone functions. Note that, unlike the monotone case which corresponds to e = 0,
we have no equivalence between e-convexity of the function and e-monotonicity of the
subdifferential.

Proposition 16 Let f : X → R ∪ {+∞} be a proper, lower semicontinuous function, and
e : X × X → R be an error bifunction such that e(·, y) is upper semicontinuous on dom( f ),
for every y ∈ dom( f ). Consider the following statements:

(i) f is e-convex;
(ii) f (y) − f (x) + e(x, y) ≥ 〈x∗, y − x〉, for every x ∈ dom( f ), y ∈ X , x∗ ∈ ∂CR f (x);
(iii) ∂CR f is 2e-monotone.

We have that (i) �⇒ (ii) �⇒ (iii).

Proof (i) implies (ii): Under the assumptions, from Theorem 3.5 in [1] the inclusion
∂CR f (x) ⊆ ∂e f (x) holds for every x ∈ dom( f ). Thus, (ii) follows.

(ii) implies (iii): it trivially follows by adding the l.h.s. and r.h.s. of the inequalities (ii),
where we exchange the role of x and y, and from the symmetry of the error bifunction e. ��
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Proposition 17 Let f be a proper, lower semicontinuous function with convex domain, and
e : X × X → R be an error bifunction such that e(x, x) = 0 for all x ∈ dom( f ), e(·, y) is
upper semicontinuous and convex on dom( f ), for every y ∈ dom( f ). In addition, suppose
that D(∂CR f ) = dom( f ). Consider the following statements:

(i) f is 2e-convex;
(ii) f (y)− f (x)+e(x, y) ≥ 〈x∗, y−x〉, for every x ∈ dom( f ), y ∈ X , and x∗ ∈ ∂CR f (x);
(iii) ∂CR f is e-monotone.

We have that (iii) �⇒ (ii) �⇒ (i).

Proof (iii) implies (ii): Let x ∈ dom( f ) and x∗ ∈ ∂CR f (x); by Zagrodny Mean Value
Theorem (see, for instance, [17]), for every y ∈ dom( f ) there exists c ∈ [y, x) and sequences
xn → c and x∗

n ∈ ∂CR f (xn) such that

a.
‖x − y‖
‖x − c‖ lim inf

n→+∞〈x∗
n , x − xn〉 ≥ f (x) − f (y);

b. lim infn→+∞〈x∗
n , x − y〉 ≥ f (x) − f (y).

From (iii), 〈x∗
n − x∗, xn − x〉 ≥ −e(xn, x), thus, from a.,

f (x) − f (y) ≤ ‖x − y‖
‖x − c‖ lim inf

n→+∞(〈x∗
n − x∗, x − xn〉 + 〈x∗, x − xn〉)

≤ ‖x − y‖
‖x − c‖ (lim inf

n→+∞ e(x, xn) + 〈x∗, x − c〉)

≤ ‖x − y‖
‖x − c‖ (lim sup

n→+∞
e(x, xn) + 〈x∗, x − c〉)

≤ ‖x − y‖
‖x − c‖ (e(x, c) + 〈x∗, x − c〉).

From the assumption of convexity of e(·, y), simple computations give

f (y) − f (x) ≥ 〈x∗, y − x〉 − e(x, y),

thereby proving (ii) for y ∈ dom( f ). If y /∈ dom( f ), then the inequality in (ii) trivially
holds.
(ii) implies (i): Take any x, y ∈ dom( f ), t ∈ (0, 1), and set xt = (1 − t)x + t y. For every
x∗
t ∈ ∂CR f (xt ) we have that

f (x) − f (xt ) ≥ 〈x∗
t , x − xt 〉 − e(x, xt )

f (y) − f (xt ) ≥ 〈x∗
t , y − xt 〉 − e(y, xt ).

Multiplying the first inequality by (1− t), the second one by t, adding up l.h.s. and r.h.s. and
taking into account the convexity of e(·, y) we get the assertion. ��

The next result shows that, under suitable conditions, ∂CR f = ∂e f , and the operator ∂e f
is maximal 2e-monotone. The proof is partially inspired by Lemma 4.2 and Theorem 4.3
[11]. With the notation ∂h we will denote the classical subdifferential of convex analysis.

Theorem 18 Let f : X → R ∪ {+∞} be a proper, lower semicontinuous and e-convex
function. Suppose that, for every x ∈ dom( f ), e(x, x) = 0, e(x, ·) is Fréchet differentiable
at x with derivative 0, e(x, ·) is convex, and it is Lipschitz on X with a same constant for
every x ∈ X (i.e. there exists α > 0 such that |e(x, z) − e(x, y)| ≤ α‖y − z‖ for every
y, z ∈ X). Then ∂CR f = ∂e f , and it is maximal 2e-monotone.
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Proof First of all, let us show that, under the assumptions, ∂e f = ∂CR f . From Theorem
3.5 in [1] we have that ∂CR f (x) ⊆ ∂e f (x). Let us prove the opposite inclusion. Take any
x∗ ∈ ∂e f (x), i.e.,

f (x + v) − f (x) ≥ 〈x∗, v〉 − e(x, x + v), ∀v ∈ X .

We will show that x∗ ∈ ∂CR f (x). Let v ∈ X\{0}. For all x ∈ dom( f ) we have that

f 0(x; v) = lim
ε↓0 lim sup

y→ f x, t↓0
inf

w∈v+εB

f (y + tw) − f (y)

t

≥ lim
ε↓0 lim sup

t↓0
inf

w∈v+εB

f (x + tw) − f (x)

t

≥ lim
ε↓0 lim sup

t↓0
inf

w∈v+εB

(
〈x∗, w〉 − e(x, x + tw)

t

)

= lim
ε↓0 lim sup

t↓0
inf

w′∈B

(
〈x∗, v〉 + ε〈x∗, w′〉 − e(x, x + t(v + εw′))

t

)
.

Taking into account that e(x, x) = 0 and De(x, ·)|x = 0 for every x ∈ dom( f ), if t‖v +
εw′‖ → 0 we have that

e(x, x + t(v + εw′)) = e(x, x) + 〈De(x, ·)|x , t(v + εw′)〉 + o(t‖v + εw′‖)
= o(t‖v + εw′‖).

Let us assume, without loss of generality, that ε < ‖v‖. In particular for every η > 0 there
exists δ > 0 such that

0 ≤ e(x, x + t(v + εw′))
t‖v + εw′‖ < η

if 0 < t‖v + εw′‖ < δ. This implies that if 0 < t < δ
‖v‖+ε

we have that

0 ≤ e(x, x + t(v + εw′))
t

< η‖v + εw′‖ ≤ η(‖v‖ + ε).

Thus,

lim
ε↓0 lim sup

t↓0
inf

w′∈B

(
〈x∗, v〉 + ε〈x∗, w′〉 − e(x, x + t(v + εw′))

t

)

≥ lim
ε↓0 (〈x∗, v〉 − ε‖x∗‖ − η(‖v‖ + ε))

= 〈x∗, v〉 − η‖v‖.
Thereby from the arbitrariness of η we get that x∗ ∈ ∂CR f (x).

Since Proposition 16 entails that ∂CR f is 2e-monotone, to prove maximality we need to
show that for every y ∈ X and y∗ /∈ ∂CR f (y), there exists z ∈ dom( f ), z∗ ∈ ∂CR f (z) such
that

〈y∗ − z∗, y − z〉 < −2e(y, z).

Let g(x) = f (x) − 〈y∗, x〉 and φy(x) = g(x) + 2e(x, y). Since y∗ /∈ ∂CR f (y), it is easy
to verify that the function φy does not attain its minimum at y. Indeed, otherwise, we would
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have that 0 ∈ ∂CRφy(y), i.e., 0 ∈ ∂CR f (y) − y∗, a contradiction. Therefore there exist
r ∈ R and x1 ∈ dom( f ) such that

inf
x∈X φy(x) ≤ φy(x1) < r < φy(y) = g(y).

Set K = supx∈X ,x �=y
r − φy(x)

‖y − x‖ ; we will show that 0 < K < +∞.

The left inequality is true since φy(x1) < r . To show the right inequality it is sufficient to
consider the points x ∈ Ly = {x ∈ dom( f ) : φy(x) ≤ r}. Note that Ly is non-empty and
closed, and y /∈ Ly . Therefore, 0 < dist (y, Ly) ≤ ‖y − x‖ for all x ∈ Ly .

Since the function g is, in particular, also 2e-convex, then by Theorem 3.5 in [1], for every
x ∈ dom( f ), we have ∂CRg(x) ⊆ ∂2eg(x).

Since the domain of ∂CR f is dense in dom( f ) from Corollary 3.2 in [6] we can find
u ∈ dom( f ) and u∗ ∈ ∂2eg(u). Then for every x ∈ X we have

g(x) ≥ g(u) + 〈u∗, x − u〉 − 2e(x, u)

≥ g(u) + 〈u∗, y − u〉 − ‖u∗‖‖x − y‖ − 2e(x, u)

Thus, for every x ∈ Ly ,

r − g(x) − 2e(x, y)

‖y − x‖ ≤ (r − g(u) − 〈u∗, y − u〉 + 2e(x, u) − 2e(x, y))+

dist (y, Ly)
+ ‖u∗‖.

From the inequality above, taking into account the Lipschitz property of e(x, ·), we get
K < +∞.

Let now Hy : X → R∪{+∞} given by Hy(x) = K‖y− x‖+φy(x). The function Hy is
lower semicontinuous and Hy(x) ≥ r for every x ∈ X . Given 0 < ε < K , by the definition
of K there exists x0 such that Hy(x0) < r + ε‖y − x0‖ ≤ inf X Hy(x)ε‖y − x0‖. Therefore,
by applying the Ekeland variational principle (see, for instance Theorem 4.2.5 in [13]), there
exists a point z ∈ X satisfying the following conditions:

(i) ‖z − x0‖ ≤ ‖y − x0‖
(ii) Hy(z) ≤ Hy(x0) − ε‖z − x0‖
(iii) Hy(z) < Hy(x) + ε‖z − x‖ for all x �= z.

From (iii) the point z is a global minimum of Hy(·) + ε‖z − ·‖, therefore 0 ∈ ∂CR(Hy +
ε‖z−·‖)(z). Since ∂CR is an absubdifferential (see Definition 2.7 in [11]), and the functions
e(·, y), ‖y − ·‖, ‖z − ·‖ are convex with domain X , then from Theorem 3.4.2 in [13] we get
that

0 ∈ ∂K‖y − ·‖(z) + ∂CRg(z) + ∂(2e)(·, y)(z) + ∂ε‖z − ·‖(z).
We can then find q∗ ∈ ∂K‖y − ·‖(z), u∗ ∈ ∂CRg(z), and p∗ ∈ ∂(2e)(·, y)(z) such that
‖w∗‖ = ‖q∗ + p∗ + u∗‖ ≤ ε. Then,

〈u∗, y − z〉 = 〈p∗, z − y〉 + 〈q∗, z − y〉 + 〈w∗, y − z〉
≥ 2e(z, y) + K‖y − z‖ − ‖w∗‖‖y − z‖
≥ 2e(z, y) + (K − ‖w∗‖)‖y − z‖
> 2e(z, y).

To conclude the proof, it is enough to note that u∗ = z∗ − y∗, where z∗ ∈ ∂CR f (z). ��
In the following example we exhibit an error bifunction satisfying all the assumptions of

the theorem above and an e-convex function for which ∂e f is maximal 2e-monotone.
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Example 19 Let f : R → R ∪ {+∞} given by

f (x) =
{

−x2 if x ∈ [−1, 1]
+ ∞ otherwise

and set e(x, y) = g(y − x) where

g(t) =

⎧
⎪⎨

⎪⎩

−4t − 4 if t ≤ −2

t2 if − 2 < t < 2

4t − 4 if t ≥ 2

The error bifunction e satisfies all the assumptions in Theorem 18. Taking into account
Example 3 in [5], we can verify that f is e-convex. Moreover, easy computations show that

∂e f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2x if x ∈ (−1, 1)

[−2,+∞) if x = 1

(−∞, 2] if x = −1

∅ otherwise

We now verify that ∂e f is maximal 2e-monotone.

Note that (u, u∗) ∈ gr
(
(∂e f )2̃e

)
if and only if, for every (x, x∗) ∈ gr(∂e f ),

(u∗ − x∗)(u − x) ≥ −2e(x, u).

In the case where u > 1, this inequality is false for x = 1, while for u < −1, it is false for
x = −1.

For −1 ≤ u ≤ 1, the inequality for x ∈ (−1, 1) yields (u∗ + 2x)(u − x) ≥ 0. It
is easy to check that the only possible choice for u∗ is to have u∗ ∈ ∂e f (u). Therefore,
∂e f (u) = (∂e f )2̃e(u).

5 The Fitzpatrick function of an e-monotone operator

The Fitzpatrick function of a monotone operator was introduced by Fitzpatrick in [9] and it
makes a bridge between convex functions andmaximalmonotone operators (see, for instance,
[7, 8, 15] and the references therein).

For a monotone operator T , let us recall that its Fitzpatrick function FT : X × X∗ →
R ∪ {+∞} is given by

FT
(
x, x∗) = sup

(y,y∗)∈gr(T )

(〈x∗, y〉 + 〈y∗, x − y〉), (13)

or, equivalently,

FT
(
x, x∗) = 〈x∗, x〉 − inf

(y,y∗)∈gr(T )
〈y∗ − x∗, y − x〉 (14)

Since 〈y∗ − x∗, y − x〉 ≥ 0 on gr(T ), on this set FT (x, x∗) = 〈x∗, x〉, and thus it is
proper. In addition, FT is a lower semicontinuous and convex function.

In case of an e-monotone operator, we slightly change the definition of the Fitzpatrick
function involving also the error bifunction e.

123



Journal of Global Optimization (2025) 91:155–170 167

Definition 20 Given an e-monotone operator T , we define the e-Fitzpatrick function Fe
T :

X × X∗ → R ∪ {+∞} as follows:
Fe
T

(
x, x∗) = sup

(y,y∗)∈gr(T )

(〈x∗, y〉 + 〈y∗, x − y〉 − e (x, y)
)
.

Equivalently,

Fe
T

(
x, x∗) = 〈x∗, x〉 − inf

(y,y∗)∈gr(T )

(〈y∗ − x∗, y − x〉 + e(x, y)
)
. (15)

Note that, by e-monotonicity of T , if e(x, x) = 0 for every x ∈ D(T ), and (x, x∗) ∈
gr(T ), we have again that

Fe
T

(
x, x∗) = 〈x∗, x〉. (16)

ThereforeFe
T is proper as well. However, in general, it does not possess the property of being

lower semicontinuous and convex.

Remark 21 The (classical) Fitzpatrick function defined in (13) applied to e-monotone oper-
ators can give rise to a non proper function. Take, for instance, the operator T : R → 2R

defined by T (x) = [0, 1] for every x ∈ R. Then T is maximal e-monotone with e =
∣
∣∣∣x − y

∣
∣∣∣

and FT ≡ +∞, but Fe
T (x, 0∗) = 0 and so Fe

T is proper.

In the next proposition we give some elementary properties of Fe
T ; for similar results see

Proposition 20.47 in [7].

Proposition 22 Suppose that T : X → 2X
∗
is an e-monotone operator for some error

bifunction e, with e(x, x) = 0 for all x ∈ D(T ). Then
(i) Fe

T (x, x∗) ≤ 〈x∗, x〉 if and only if gr (T ) ∪ {(x, x∗)} is e-monotone;
(ii)

(Fe
T (·, ·))∗

(x∗, x) ≥ FT (x, x∗) ≥ Fe
T (x, x∗) for every (x, x∗) ∈ gr(T );

(iii) for any α > 0, if T is instead e/α-monotone, then Fe
(αT ) (x, x∗) = αF

e
α

T

(
x, x∗

α

)
.

Proof The proof of (i) follows from the following equivalent statements:

〈x∗, x〉 ≥ Fe
T

(
x, x∗) = 〈x∗, x〉 − inf

(y,y∗)∈gr(T )

(〈y∗ − x∗, y − x〉 + e (x, y)
)

⇐⇒ inf
(y,y∗)∈gr(T )

(〈y∗ − x∗, y − x〉 + e (x, y)
) ≥ 0

⇐⇒ 〈y∗ − x∗, y − x〉 + e (x, y) ≥ 0 ∀ (
y, y∗) ∈ gr (T )

⇐⇒ gr (T ) ∪ {(
x, x∗)} is e-monotone.

To prove (ii): let (x, x∗) ∈ X × X∗. Simple computations show that
(Fe

T (·, ·))∗
(x, x∗) = sup

(y,y∗)∈X×X∗

(〈(y, y∗) ,
(
x∗, x

)〉 − Fe
T

(
y, y∗))

= sup
(y,y∗)∈X×X∗

(〈x∗, y〉 + 〈y∗, x〉 − Fe
T

(
y, y∗))

≥ sup
(y,y∗)∈gr T

(〈x∗, y〉 + 〈y∗, x〉 − Fe
T

(
y, y∗))

= sup
(y,y∗)∈gr T

(〈x∗, y〉 + 〈y∗, x〉 − 〈y∗, y〉)

= FT
(
x, x∗) ≥ Fe

T

(
x, x∗) ,
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where we use the fact that Fe
T (x, x∗) = 〈x∗, x〉 on the graph of T .

For the the proof of (iii), note that for α ∈ R\{0}, (x, x∗) ∈ gr(T ) if and only if (x, αx∗) ∈
gr(αT ). Then the assertion follows from the following equalities:

αF
e
α

T

(
x,

x∗

α

)
= α sup

(y,y∗)∈gr(T )

(
〈 x

∗

α
, y〉 + 〈y∗, x − y〉 − e (x, y)

α

)

= sup
(y,y∗)∈gr(T )

(〈x∗, y〉 + 〈αy∗, x − y〉 − e (x, y)
)

= sup
(y,αy∗)∈gr(αT )

(〈x∗, y〉 + 〈αy∗, x − y〉 − e (x, y)
) = Fe

(αT )

(
x, x∗) .

��

Thenext result characterizesmaximal e-monotone operators by generalizing awell-known
result for monotone operators (see [9], Theorem 3.8):

Theorem 23 Suppose that T : X → 2X
∗
is an e-monotone operator for some error bifunction

e, with e(x, x) = 0 for all x ∈ D(T ). Then, T is maximal e-monotone if and only if

Fe
T (x, x∗) > 〈x∗, x〉 (17)

whenever (x, x∗) /∈ gr(T ).

Proof For the necessary condition, note that if Fe
T (x, x∗) ≤ 〈x∗, x〉, by (i) in Proposition 22

we have that gr (T ) ∪ {(x, x∗)} is e-monotone, which contradicts maximality.
Conversely, if T is not maximal e-monotone, there exists (z, z∗) ∈ X × X∗, (z, z∗) /∈

gr(T ), such that 〈y∗ − z∗, y − z〉 + e(z, y) ≥ 0, for every (y, y∗) ∈ gr(T ). Thus,

〈z∗, z〉 ≥ 〈z∗, y〉 + 〈y∗, z − y〉 − e(z, y) ∀(y, y∗) ∈ gr(T ),

and therefore Fe
T (z, z∗) ≤ 〈z∗, z〉. ��

By the previous result, we easily get the following

Corollary 24 Let T be maximal e-monotone for some error bifunction e, with e(x, x) = 0
for all x ∈ D(T ). Then Fe

T (x, x∗) ≥ 〈x∗, x〉 for every (x, x∗) ∈ X × X∗, and Fe
T (x, x∗) =

〈x∗, x〉 if and only if (x, x∗) ∈ gr(T ).

In this last part, we focus on the 2e-Fitzpatrick function of an e-subdifferential. Let us
first recall the following definition (see [5]):

Definition 25 Suppose that f : X → R ∪ {+∞} is a proper and e-convex function, and
y ∈ X is fixed. Then the function f ∗

e,y : X∗ → R ∪ {+∞} defined by
f ∗
e,y

(
x∗) := sup

x∈X
{〈x∗, x〉 − f (x) − e (x, y)

}
, ∀x∗ ∈ X∗

is called the (e, y)-conjugate of f . Also, the function f ∗∗
e,y : X → R ∪ {±∞} defined by

f ∗∗
e,y (x) := sup

x∗∈X∗

{
〈x∗, x〉 − f ∗

e,y

(
x∗)} , ∀x ∈ X

is called the (e, y)-biconjugate of f .
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Proposition 26 Let f : X → R∪{+∞} be an e-convex function, and denote by ∂e f : X →
2X

∗
its e-subdifferential. Then

F2e
∂e f (x, x

∗) ≤ f (x) + f ∗
e,x (x

∗), ∀(x, x∗) ∈ X × X∗.

In addition, if e(x, x) = 0 for every x ∈ dom( f ), the equality holds if x∗ ∈ ∂e f (x).

Proof Taking into account that, from the definition of ∂e f (y), 〈y∗, x − y〉 ≤ f (x)− f (y)+
e(x, y) for every y∗ ∈ ∂e f (y), simple computations show that

F2e
∂e f (x, x

∗) = sup
y∈D(∂e f )

(〈x∗, y〉 − 2e(x, y) + sup
y∗∈∂e f (y)

〈y∗, x − y〉)

≤ sup
y∈D(∂e f )

(〈x∗, y〉 + f (x) − f (y) − e(x, y))

≤ f (x) + sup
y∈X

(〈x∗, y〉 − f (y) − e(x, y))

= f (x) + f ∗
e,x (x

∗).

Take now x∗ ∈ ∂e f (x); by (16) and Proposition 11 in [5] we can easily get

〈x∗, x〉 = F2e
∂e f (x, x

∗) ≤ f (x) + f ∗
e,x (x

∗) = 〈x∗, x〉. (18)

��

Remark 27 Let f : X → R ∪ {+∞} be an e-convex function, such that ∂e f is maximal
2e-monotone, and e(x, x) = 0 for every x ∈ dom( f ). Then, by combining Corollary 24 and
Proposition 26, we obtain that, for every (x, x∗) ∈ X × X∗,

〈x∗, x〉 ≤ F2e
∂e f (x, x

∗) ≤ f (x) + f ∗
e,x (x

∗) ≤ 〈x∗x〉 + ιgr(∂e f )
(
x, x∗) , (19)

where ιA denotes the indicator function of A. Note that (19) provides a kind of refinement
of the Fenchel–Young inequality.

Moreover, the second inequality implies that for each x ∈ X , we have dom( f ) ×
dom( f ∗

e,x ) ⊂ dom(F2e
∂e f ).
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