We investigate a class of parametric network games which encompasses both the cases of strategic complements and strategic substitutes. In the case of a bounded strategy space, we derive a representation formula for the unique Nash equilibrium. We also prove a comparison result between the Nash equilibrium and the social optimum and then compute the price of anarchy for some simple test problems

Passacantando, M., Raciti, F. (2024). Some properties of a class of Network Games with strategic complements or substitutes. In T.M. Rassias, P.M. Pardalos (a cura di), Mathematical Analysis, Differential Equations and Applications (pp. 689-709). Singapore : World Scientific Publishing Company [10.1142/9789811267048_0023].

Some properties of a class of Network Games with strategic complements or substitutes

Passacantando, M;
2024

Abstract

We investigate a class of parametric network games which encompasses both the cases of strategic complements and strategic substitutes. In the case of a bounded strategy space, we derive a representation formula for the unique Nash equilibrium. We also prove a comparison result between the Nash equilibrium and the social optimum and then compute the price of anarchy for some simple test problems
Capitolo o saggio
network game; Nash equilibrium; price of anarchy
English
Mathematical Analysis, Differential Equations and Applications
Rassias, TM; Pardalos, PM
2024
9789811267031
World Scientific Publishing Company
689
709
Passacantando, M., Raciti, F. (2024). Some properties of a class of Network Games with strategic complements or substitutes. In T.M. Rassias, P.M. Pardalos (a cura di), Mathematical Analysis, Differential Equations and Applications (pp. 689-709). Singapore : World Scientific Publishing Company [10.1142/9789811267048_0023].
open
File in questo prodotto:
File Dimensione Formato  
Passacantando-2024-Math Analysis Diff Equations Appl-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 379.27 kB
Formato Adobe PDF
379.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/466847
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact