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Abstract. We investigate a class of parametric network games which encompasses both the
cases of strategic complements and strategic substitutes. In the case of a bounded strategy
space, we derive a representation formula for the unique Nash equilibrium. We also prove a
comparison result between the Nash equilibrium and the social optimum, and then compute
the price of anarchy for some simple test problems.

1 Introduction

This chapter investigates some aspects of a class of Network Games, within the framework
developed in the seminal paper [3], in a socio-economic context. For an excellent review
on this topic the interested reader can refer to [10]. Here, we recall that the peculiarity of
this approach is that each player is identified with the node of a graph and players that can
interact directly are connected through links of the graph. The so called peers of a given
player can influence her action, according to their proximity in the network of relationships.
The influence of peers on a given neighbour player can be of two different types. Roughly
speaking, for a given player, if an increase of the action of her peers causes an increase of
the player’s action we say that the peers act as strategic complements, if an increase of the
action of her peers causes a decrease of her action we say that the peers act as strategic
substitutes. In order to keep the analysis at a reasonable level of complexity, authors have
mainly focused on games with strategic complements or with strategic substitutes, where the
type of interaction is the same for all players. The graph structure has thus a prominent role
in modelling the interactions among the various players who can represent different kinds of
socio-economic agents, depending on the specific application.

As is common in social and economic game-theoretical models, two important concepts
are the Nash equilibrium and the social optimum (or welfare) of the game which, in the above
mentioned papers, were connected to graph-algebraic quantities. In particular, in the case
of interior solution a very interesting representation formula has been derived in the seminal
paper by Ballester et al. [3], which involves the so called Katz-Bonacich centrality measure [6].
As a matter of fact, a large number of papers devoted to this topic have focused on the
case of interior solution and unbounded strategy space, utilizing classical game-theoretical

∗This paper has been accepted for publication in the volume “Mathematical Analysis, Differential Equations
and Applications” T.M. Rassias and P.M. Pardalos (eds.), doi: 10.1142/9789811267048 0023.

†Department of Business and Law, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126
Milan, Italy, mauro.passacantando@unimib.it

‡Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125 Catania,
Italy, fabio.raciti@unict.it

1



methods, i.e., the best response approach. Only very recently some authors have framed
the topic of Network Games in the theory of variational inequalities, although the variational
inequality approach to Nash equilibrium problems was initiated by Gabay and Moulin [9] more
than forty years ago. In this respect, we refer the reader to the interesting paper by Parise
and Ozdaglar [15], which although comprehensive in many respects, such as uniqueness and
sensitivity of equilibrium, does not focus on the Katz-Bonacich representation of the solution
or on the comparison with the social optimum. On the other hand, in [16] the authors started
to generalize some classical results to the case where some components of the solution lay on
the boundary, while in [17] the case of a generalized Nash equilibrium has been treated for
the first time, within the Network Games framework. The variational inequality approach
has also been applied to a game with global complementarities and global congestion in [19].

In this work, we extend the results in [16] where we considered the standard quadratic
reference model with strategic complements. Specifically, the paper is structured as follows.
In the subsequent Section 2 we provide some basic material on graph theory and define the
class of network games with strategic complements and substitutes. Moreover, we recall the
definition of Nash equilibrium of a game and its relationship with variational inequalities.
Section 3 is devoted to the investigation of a class of parametric quadratic utility functions
considered in [1] which encompasses both the classes of strategic complements and substitutes.
For both classes we derive a Katz-Bonacich-like representation formula in the case where the
solution has some boundary components. Moreover, in the case of strategic complements, by
exploiting the sequential best-response dynamics, we compare the components of the unique
Nash equilibrium of the game and the unique social optimum, proving that the Nash equilib-
rium is component-wise less than or equal to the social optimal solution. Section 4 is devoted
to illustrate our findings by means of some numerical experiments, and we also analyse the so
called price of anarchy. We touch upon possible future developments in the small concluding
section.

2 Basics on Network Games and variational inequalities

In Network Games players are represented by the nodes of a graph (V,E), where V is the sets
of nodes and E is the set of arcs formed by ordered pairs of nodes (v, w). In the case where,
for all arcs in the network, (v, w) and (w, v) are the same, and there are neither multiple
arcs connecting the same pair of nodes, nor loops, the graph is called undirected and simple.
In our model we allow for asymmetric relationships between pairs of players, hence we will
consider directed graphs.

Two nodes v and w are said to be adjacent if they are connected by an arc, i.e., if
(v, w) or (w, v) is an arc. The information about the adjacency of nodes can be stored in
the adjacency matrix G whose elements gij are equal to 1 if (vi, vj) is an arc, 0 otherwise.
We will also consider the more general case where each arc is given a non-negative weight
wij . In this case, G is called the weighted adjacency matrix of the graph. G is thus an
asymmetric and zero-diagonal matrix. Given a node v, the nodes connected to v with an
arc are called the neighbours of v. A walk in the graph g is a finite sequence of the form
vi0 , ej1 , vi1 , ej2 , . . . , ejk , vjk , which consists of alternating nodes and arc of the graph, such
that vit−1 and vit are end nodes of ejt . In the case of an unweighted graph, the length of a
walk is simply the number of its arcs. Let us remark that, in a walk, it is allowed to visit a
node or go through an arc more than once. The indirect connections between any two nodes
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in the graph are described by means of the powers of the adjacency matrix G. Indeed, for an

unweighted graph, without loops and multiple arcs, it can be proved that the element g
[k]
ij of

Gk gives the number of walks of length k between vi and vj .
In the sequel, the set of players will be denoted by {1, 2, . . . , n} instead of {v1, v2, . . . , vn}.

We denote with Ai ⊂ R the action space of player i, while A = A1 × · · · × An. A vec-
tor x = (x1, . . . , xn) ∈ A is called a profile. We also use the common notations x−i =
(x1, . . . , xi−1, xi+1, . . . , xn) and x = (xi, x−i) when we wish to distinguish the action of player
i from the action of all the other players. Each player i is endowed with a payoff function
ui : A → R that she wishes to maximize. The notation ui(x,G) is often utilized when one
wants to emphasize that the utility of player i also depends on the actions taken by her
neighbours in the graph.

We now recall the definition of a Nash equilibrium, which is one of the most common
solution concept in Game Theory.

Definition 1. An action profile x∗ ∈ A is a Nash equilibrium iff for each i ∈ {1, . . . , n}:

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i), ∀ xi ∈ Ai. (1)

Another quantity of interest, in particular in socio-economic application, is the Welfare
associated to each action profile:

W (x) :=

n∑
i=1

ui(x). (2)

In the case where the function W has a unique maximizer xso over A (called social optimum),
and the game has a unique Nash equilibrium x∗, it is interesting to compute the ratio:

γ =
W (x∗)

W (xso)
, (3)

which, in similar models, is known as the price of anarchy (see, e.g., [20]).
As mentioned in the introduction, it is convenient, for tractability reasons, to consider

games where the neighbours of a player influence the player’s behaviour in the same direction
for all players. We make this concept precise with the help of the marginal utility function.

Definition 2. The network game has the property of strategic complements if:

∂2ui
∂xj∂xi

(x) > 0, ∀ (i, j) : gij ̸= 0, ∀ x ∈ A.

Definition 3. The network game has the property of strategic substitutes if:

∂2ui
∂xj∂xi

(x) < 0, ∀ (i, j) : gij ̸= 0, ∀ x ∈ A.

The variational inequality approach to Nash equilibrium problems is recalled in the fol-
lowing theorem. For an account of variational inequalities the interested reader can refer
to [12, 14].
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Theorem 1. For each i ∈ {1, . . . , n}, let ui be a continuously differentiable function on A
and ui(·, x−i) be concave with respect to its own action xi, for each x−i ∈ A−i. Moreover, let
A be closed and convex. Then, x∗ is a Nash equilibrium if and only if it solves the variational
inequality V I(T,A): find x∗ ∈ A such that

T (x∗)⊤(x− x∗) ≥ 0, ∀ x ∈ A, (4)

where the operator

[T (x)]⊤ := −
(
∂u1
∂x1

(x), . . . ,
∂un
∂xn

(x)

)
(5)

is also called the pseudo-gradient of the game.

We recall here some useful monotonicity properties.

Definition 4. An operator T : Rn → Rn is said to be monotone on A iff:

[T (x)− T (y)]⊤(x− y) ≥ 0, ∀ x, y ∈ A.

If the equality holds only when x = y, T is said to be strictly monotone on A.
T is said to be τ -strongly monotone on A iff there exists τ > 0 such that

[T (x)− T (y)]⊤(x− y) ≥ τ∥x− y∥2, ∀ x, y ∈ A.

Remark 1. For linear operators on Rn the two concepts of strict and strong monotonicity
coincide and are equivalent to the positive definiteness of the corresponding matrix.

Conditions that ensure the unique solvability of a variational inequality problem are given
by the following theorem (see, e.g. [14]).

Theorem 2. If K ⊂ Rn is a compact convex set and T : Rn → Rn is continuous on K,
then the variational inequality problem V I(T,K) admits at least one solution. In the case
that K is unbounded, existence of a solution may be established under the following coercivity
condition:

lim
∥x∥→+∞

[T (x)− T (x0)]
⊤(x− x0)

∥x− x0∥
= +∞,

for x ∈ K and some x0 ∈ K.
Furthermore, the solution is unique if T is strictly monotone on K.

3 The parametric quadratic model

Let Ai = [0, Li] for any i ∈ {1, . . . , n}, hence A = [0, L1]× . . .× [0, Ln]. The payoff of player
i is given by:

ui(x) = −β

2
x2i + αixi +

n∑
j=1
j ̸=i

fij(α)xixj , α, β > 0. (6)

The last term describes the interaction between player i and her neighbours. The coefficient αi

describes the type of agent, and in some economic applications (see e.g. [7]) can be interpreted
as the household’s parental capital. If, for all j ̸= i and a fixed value of α = (α1, . . . , αn),
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fij(α) ≥ 0 holds, then the associated game falls in the class of games with strategic com-
plements; if, for all j ̸= i and a fixed value of α, fij(α) ≤ 0 holds, it falls in the class of
games with strategic substitutes. The pseudo-gradient’s components of this game are easily
computed as:

Ti(x) = βxi − αi −
n∑

j=1
j ̸=i

fij(α)xj , i ∈ {1, . . . , n},

which can be written in compact form as

T (x) = [βI −F(α)]x− α, (7)

where F(α) is a zero-diagonal matrix whose off-diagonal entries are equal to fij(α), and is
called the interaction matrix.

Throughout the paper we posit the symmetry assumption on the interaction matrix:

fij(α) = fji(α), ∀ α, ∀ i, j ∈ {1, . . . , n}, i ̸= j. (S)

Remark 2. Under the symmetry assumption (S), the game under consideration also falls
in the class of potential games according to the definition introduced by Monderer and Shap-
ley [13]. Indeed, a potential function is given by:

P (x) =
n∑

i=1

ui(x)−
1

2

n∑
i=1

n∑
j=1
j ̸=i

fij(α)xixj .

Applying a result of Monderer and Shapley to our case, we obtain in general, that the solutions
of the problem maxx∈A P (x) form a subset of the solution set of the Nash game. Therefore,
if both problems have a unique solution it follows that they are equivalent.

We will seek Nash equilibrium points by solving the variational inequality:

T (x∗)⊤(x− x∗) ≥ 0, ∀ x ∈ A. (8)

The following lemma characterizes the monotonicity of F given in (7).

Lemma 1. (a) Fix α > 0 and let fij(α) ≥ 0 for any i, j. The matrix βI − F(α) is positive
definite iff

β > λmax(F(α)) = ρ(F(α)) (9)

where λmax(F(α))is the maximum eigenvalue of F(α), and ρ(F(α)) its spectral radius.

(b) Let fij(α) ≤ 0 for any i, j. The matrix βI −F(α) is positive definite iff

β > λmax(F(α)) (10)

or, equivalently, λmin(−F(α)) > −β.

Moreover, the condition β > ρ(F(α)) is, in general, stronger than the two equivalent
conditions above.

Proof.
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(a) Letfij(α) ≥ 0 and recall that if M is a non-negative symmetric matrix, a consequence of
the Perron-Frobenius Theorem is that ρ(M) = λmax(M). Furthermore,

λmax(M) = max
x ̸=0

x⊤Mx

x⊤x
.

The matrix βI −F(α) is positive definite iff x⊤[βI −F(α)]x > 0 for any x ̸= 0, that is

β >
x⊤F(α)x

x⊤x
, ∀ x ̸= 0,

which is equivalent to β > λmax(F(α)), and, as a consequence of the Perron-Frobenius
theorem, we finally get that βI−F(α) is positive definite iff β > λmax(F(α)) = ρ(F(α)).
We notice that this condition also ensures that the matrix I − 1

βF(α) is non singular and
its inverse matrix can be expanded in a power series according to Lemma 2 below.

(b) Following the same reasoning as in the non-negative case, we get that the matrix βI−F(α)

is positive definite if and only if β > maxx ̸=0
x⊤F(α)x

x⊤x
= λmax(F(α)) = −λmin(−F(α)).

However, the condition β > ρ(F(α)) is stronger because

ρ(F(α)) ≥ |λmax(F(α))| ≥ λmax(F(α)).

In the next lemma we recall a well known result about series of matrices.

Lemma 2 (see, e.g., [2]). Let M be a square matrix and consider the series
∑∞

p=0M
p. The

series converges provided that limp→∞Mp = 0, which is equivalent to ρ(M) < 1. In such
case the matrix I −M is non singular and we have the power series expansion (I −M)−1 =∑∞

p=0M
p.

We now introduce a centrality measure of networks, known as the Katz-Bonacich vector,
(see, e.g., [6]), which allows for an interesting interpretation of the Nash equilibrium of network
games. Although we confine our analysis to the symmetric case, we give here the definition
for the general case of a general matrix G, with entries gij . Such a matrix can be thought
of as the adjacency matrix of a weighted directed graph. The case of an undirected network
without self loops is characterized by gij = gji, j ̸= i, gii = 0, and if G is a 0− 1 matrix, the
graph in unweighted.

Definition 5. Let w be a non negative vector. The weighted vector of Katz-Bonacich, of
parameter ϕ, in the graph is given by:

bw(G,ϕ) = [I − ϕG]−1w =

∞∑
p=0

ϕpGpw. (11)

The inverse exists and can be expressed by the series above if the condition ϕρ(G) < 1
is satisfied. We also recall that, if G ≥ 0, a theorem on non-negative matrices ensures that
[I − ϕG]−1 is non-negative too. In the simplest case of a 0− 1 adjacency matrix, Indeed, the

(i, j) entry, g
[p]
ij , of the matrix Gp gives the number of walks of length p between nodes i and
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j, and if w = (1, . . . , 1), bw,i(G,ϕ) counts the total number of walks in the graph, which start
at node i, exponentially damped by ϕ. In the general case, the weight of the links are taken
into account, and paths reaching an arbitrary node j are pondered by wj .

The importance of the Katz-Bonacich vector stems from the fact that, when the strategy
space is Rn

+, it is related in a simple manner to the unique Nash equilibrium of the game.
Indeed, the relation given in [3] can be extended in a straightforward fashion to the case of
the utility functions (6) as follows.

Theorem 3. Let A = Rn
+ and consider the utility functions defined in (6), with fij ≥ 0 for

any i, j. Moreover, let β > ρ(F(α)). Then, the unique Nash equilibrium x∗ is interior and
given by:

x∗ =
1

β

[
I − 1

β
F(α)

]−1

α =

∞∑
p=0

1

βp+1
[F(α)]pα =

1

β
bw

(
F(α),

1

β

)
. (12)

We now recall a Proposition due to [1] which, under some additional assumptions, provides
a sufficient condition for β > ρ(F(α)) to be true. This condition involves a smallness condition
on the variance of α, and roughly speaking, means that a low variability of the types of players,
given by α, entails a unique Nash equilibrium.

Proposition 1. For a given type profile α, consider the game defined in (6) with interaction
terms given by fij(α) = hi(α)f(αi−αj) or fij(α) = hi(α)f(|αi−αj |), where f : R → R is non-
expansive and there is δ0 ∈ R such that f(δ0) = 0. Then, this is a game with complementarities
that admits a unique equilibrium if the standard deviation of types σα satisfies the following
inequality:

β > nh(k) (
√
2σα + |δ0|),

where h(k) = max
i=1,...,n

|hi(α)|.

Proof. The proof can be found in [1] but we warn the reader that the formula therein differs
from ours for the missing coefficient n multiplying δ0 (probably due to a misprint).

We now assume that the strategies of each player have an upper bound and derive a
Katz-Bonacich type representation of the solution, in the case where exactly k components
take on their maximum value.

Theorem 4. Let ui be defined as in (6), β > ρ(F(α)), xi ∈ [0, Li] for any i ∈ {1, . . . , n} and
x∗ be the unique Nash equilibrium of the game.

(a) Assume that fij(α) ≥ 0 for any i, j ∈ {1, . . . , n}. We then have that x∗i > 0 for any
i ∈ {1, . . . , n}. Moreover, assume that exactly k components of x∗ take on their maximum
value: x∗i1 = Li1 , . . . , x

∗
ik

= Lik , and denote with x̃∗ = (x̃∗ik+1
, . . . , x̃∗in) the subvector of the

non-boundary components of x∗. We then get:

x̃∗ = [βIn−k −F1(α)]
−1w = bw

(
F1(α)),

1

β

)
, (13)

where F1(α) is the submatrix obtained from F(α) choosing the rows ik+1, . . . , in and
the columns ik+1, . . . , in; F2(α) is the submatrix obtained from F(α) choosing the rows
ik+1, . . . , in and the columns i1, . . . , ik; w = αn−k + F2(α)L and L = (Li1 , . . . , Lik),
αn−k = (αik+1

, . . . , αin) .
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(b) Assume now that fij(α) ≤ 0 for any i, j ∈ {1, . . . , n}, and there are no zero components
of the solution x∗, while exactly k components of x∗ take on their maximum value. Then,
formula (13) also applies to this case. Moreover, x̃∗ can alternatively be expressed as:

x̃∗ =
1

β

[
In−k +

1

β
F1(α)

]
bw

(
F2
1 (α),

1

β2

)
. (14)

Proof. (a) The Nash equilibrium x∗of the game solves the variational inequality

n∑
i=1

Ti(x
∗)⊤(xi − x∗i ) ≥ 0, ∀ x ∈ A, (15)

where A = [0, L1]× . . .× [0, Ln]. Let us assume that there exists l such that x∗l = 0, and
choose in (15) x = (x∗1, . . . , x

∗
l−1, Ll, x

∗
l+1, . . . , x

∗
n) ∈ A. With this choice, (15) reads:

0 ≤ Tl(x
∗)xl =

−
n∑
j ̸=l

flj(α)x
∗
j − αi

Ll < 0

which yields a contradiction. Thus, x∗i > 0 for any i = 1, . . . , n.

Let Ã denote the face ofA obtained intersectingA with the hyperplanes: xi1 = Li1 , . . . , xik =
Lik . Moreover, let x̃ = (xik+1

, . . . , xin), x̃
∗ = (x̃∗ik+1

, . . . , x̃∗in) and T̃ : Rn−k → Rn−k such

that T̃il(x̃) is obtained by fixing xi1 = Li1 , . . . , xik = Lik in Til(a). We consider now the
restriction of (15) to Ã, which reads:

n∑
l=k+1

T̃il(x̃
∗)(x̃il − x̃∗il) ≥ 0, ∀ x̃ ∈ Ã.

Since we are assuming that exactly k components of the solution x∗ reach their upper
bounds, it follows that x̃∗ lies in the interior of Ã, hence

T̃ (x̃∗) = 0,

which can be written explicitly as:

βx∗il −
n∑

m=k+1

filim(α)x
∗
im = αil +

k∑
m=1

filim(α)Lim , l = k + 1, . . . , n,

which yields:
[βIn−k −F1(α)]x̃

∗ = αn−k + F2(α)L. (16)

Because the matrix [βIn−k −F1(α)] is non singular, the thesis is proved.

(b) To prove (14), divide both sides of (16) by β and multiply by the matrix [In−k +
1
βF1(α)]

to get: [
In−k −

1

β2
F2
1 (α)

]
=

1

β

[
In−k +

1

β
F1(α)

]
(αn−k + F2(α)L),
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whence

x̃∗ =
1

β

[
In−k −

1

β2
F2
1 (α)

]−1 [
In−k +

1

β
F1(α)

]
(αn−k + F2(α)L)

=

[
In−k +

1

β
F1(α)

] [
In−k −

1

β2
F2
1 (α)

]−1

(αn−k + F2(α)L)

=
1

β

[
In−k +

1

β
F1(α)

]
bw

(
F2
1 (α),

1

β2

)
.

Formula (14) admits the following interpretation, which is better illustrated in case of
interior solution, where it reads:

x∗ =
1

β

[
I +

1

β
F(α)

]
bw

(
F2(α),

1

β2

)
.

Indeed, it is evident in this case that our solution is obtained by transforming, through
the matrix [I + 1

βF(α)], the solution of an auxiliary game with strategic complements

associated to the interaction matrix F2(α).

The following result shows a relationship between the social optimum and the Nash equi-
librium of the game, in the case of strategic complements.

Theorem 5. Assume that ui are defined as in (6), fij(α) ≥ 0 for any i, j ∈ {1, . . . , n},
β > 2ρ(F(α)), and xi ∈ [0, Li] for any i ∈ {1, . . . , n}. Then,

x∗i ≤ xsoi ∀ i ∈ {1, . . . , n}, (17)

where x∗ is the Nash equilibrium and xso is the social optimum of the game.

Proof. Since β > 2ρ(F(α)) and the welfare function reads

W (x) = −1

2
x⊤ [βI − 2F(α)]x+ α⊤x,

Lemma 1 guarantees that there exists a unique Nash equilibrium x∗ and a unique social
optimum xso. Moreover, xso satisfies the following Karush-Kuhn-Tucker system for some
multiplier vectors λ, µ ∈ Rn

+:

βxsoi − 2

n∑
j=1
j ̸=i

fij(α)x
so
j − αi − λi + µi = 0 i = 1, . . . , n,

xsoi ≥ 0, λi ≥ 0, λix
so
i = 0 i = 1, . . . , n,

xsoi ≤ Li, µi ≥ 0, µi(x
so
i − Li) = 0 i = 1, . . . , n.
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It is easy to check that the above system is equivalent to the following system:

xsoi = max

0, min

Li,
1

β

αi + 2

n∑
j=1
j ̸=i

fij(α)x
so
j





= min

Li,
1

β

αi + 2
n∑

j=1
j ̸=i

fij(α)x
so
j


 i = 1, . . . , n,

where the last equality holds since α, β > 0 and fij(α), x
so ≥ 0.

Given any strategy profile x = (xi, x−i), the best response of player i to rivals’ strategies
x−i is given by

Bi(x−i) = arg max
xi∈[0,Li]

ui(·, x−i) = min

Li,
1

β

αi +

n∑
j=1
j ̸=i

fij(α)xj


 .

We now consider the sequential best response dynamics starting from the social optimum xso,
that is the sequence {xk} defined as follows:
x0 = xso,
x1 =

(
B1(x

0
−1), x02, x03, . . . , x0n

)
,

x2 =
(
B1(x

0
−1), B2(x

1
−2), x03, . . . , x0n

)
,

. . .
xn =

(
B1(x

0
−1), B2(x

1
−2), B3(x

2
−3), . . . , Bn(x

n−1
n )

)
,

xn+1 =
(
B1(x

n
−1), B2(x

1
−2), . . . , Bn(x

n−1
n )

)
,

xn+2 =
(
B1(x

n
−1), B2(x

n+1
−2 ), B3(x

2
−3), . . . , Bn(x

n−1
n )

)
, . . . .

We note that

x11 = B1

(
x0−1

)
= min

L1,
1

β

α1 +

n∑
j=1
j ̸=1

f1j(α)x
0
j




≤ min

L1,
1

β

α1 + 2
n∑

j=1
j ̸=1

f1j(α)x
0
j


 = x01,
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hence x1 ≤ x0. Moreover, we have

x22 = B2

(
x1−2

)
= min

L2,
1

β

α2 +

n∑
j=1
j ̸=2

f2j(α)x
1
j




≤ min

L2,
1

β

α2 +
n∑

j=1
j ̸=2

f2j(α)x
0
j




≤ min

L2,
1

β

α2 + 2
n∑

j=1
j ̸=2

f2j(α)x
0
j


 = x02 = x12,

hence x2 ≤ x1. Similarly, we can prove that xn ≤ xn−1 ≤ · · · ≤ x1 ≤ x0. Furthermore, we get

xn+1
1 = B1(x

n
−1) = min

L1,
1

β

α1 +
n∑

j=1
j ̸=1

f1j(α)x
n
j




≤ min

L1,
1

β

α1 +
n∑

j=1
j ̸=1

f1j(α)x
0
j




= B1

(
x0−1

)
= xn1 ,

hence xn+1 ≤ xn, and

xn+2
2 = B2(x

n+1
−2 ) = min

L2,
1

β

α2 +
n∑

j=1
j ̸=2

f2j(α)x
n+1
j




≤ min

L2,
1

β

α2 +

n∑
j=1
j ̸=2

f2j(α)x
1
j




= B2

(
x1−2

)
= xn+1

2 ,

thus xn+2 ≤ xn+1. Following the same argument as before, we can prove that xk+1 ≤ xk for
any k ∈ N and hence, in particular, xk ≤ xso holds for any k. Since the potential function
P is strongly concave, the sequence {xk} converges to the unique Nash equilibrium x∗ (see,
e.g., [5, Proposition 3.9]), and hence x∗ ≤ xso.

We remark that inequality (17) does not hold in general in the case of strategic substitutes,
as the example in the next section shows.
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4 Numerical experiments

In this section, we show a numerical example for the parametric quadratic game described in
Section 3.
Example 1. We consider a game with n = 5 players, where Li = L = 1 for any i ∈ {1, . . . , n},
α = (1, 2, 1, 2, 1), β = 2.5 and the interaction matrix is given by

fij(α) = B|αi − αj | ∀ i, j = 1, . . . , n.

We consider two cases: B = 0.5 (strategic complements) and B = −0.5 (strategic substitutes).
In both cases the spectral radius of the matrix F(α) results to be ρ(F(α)) ≃ 1.2247. Since
β > 2ρ(F(α)), there exists a unique Nash equilibrium and a unique social optimum. Table 1
shows the unconstrained Nash equilibrium (assuming L = +∞, given by formula (12)), the
constrained Nash equilibrium (assuming L = 1) and the social optimum in the case B = 0.5.

Table 1: Case B = 0.5: unconstrained Nash equilibrium, constrained Nash equilibrium (as-
suming L = 1) and social optimum for Example 1.

Player Unconstrained NE Constrained NE Social Optimum

1 0.9474 0.8000 1.0000
2 1.3684 1.0000 1.0000
3 0.9474 0.8000 1.0000
4 1.3684 1.0000 1.0000
5 0.9474 0.8000 1.0000

Figure 1 shows the price of anarchy of the Nash equilibrium for different values of L and β,
in the case B = 0.5. The results suggest that the price of anarchy is a non-increasing function

0 0.5 1 1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 1: Case B = 0.5: Price of Anarchy for different values of L and β.

of L; it is constant when either L is small enough (i.e., the Nash equilibrium coincides with

12



the social optimum) or greater than some threshold (i.e., the Nash equilibrium and the social
optimum are both interior to the feasible region); the larger the value of β, the larger the
asymptotic value of the price of anarchy is.

The case B = −0.5 with strategic substitutes is analysed in Table 2 and Figure 2. In

Table 2: Case B = −0.5: unconstrained Nash equilibrium, constrained Nash equilibrium
(assuming L = 1) and social optimum for Example 1.

Player Unconstrained NE Constrained NE Social Optimum

1 0.1053 0.1053 0.0000
2 0.7368 0.7368 0.8000
3 0.1053 0.1053 0.0000
4 0.7368 0.7368 0.8000
5 0.1053 0.1053 0.0000

particular, Table 2 shows that in the case of strategic substitutes, neither the inequality (17)
between the Nash equilibrium and the social optimum nor the opposite inequality applies.

On the other hand, Figure 2 suggests that in the case of strategic substitutes, the price
of anarchy is not in general a non-increasing function of L (contrary to the case of strategic
complements), while, as in the case of strategic complements, the price of anarchy is constant
when either L is small enough or greater than some threshold, and the larger the value of β,
the larger its asymptotic value is.

0 0.5 1 1.5 2 2.5 3

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Figure 2: Case B = −0.5: Price of Anarchy for different values of L and β.

5 Conclusions and future research perspectives

In this work we carried on our research program of applying the variational inequality ap-
proach to network game problems. We investigated a class of parametric quadratic utility
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functions for which we obtained a Katz-Bonacich-like representation formula for the unique
solution, and studied both theoretically and numerically the price of anarchy. Future research
will concern the investigation of games with nonlinear utility function, and the inclusion of
random data in the model (see, e.g., [11, 18]). Moreover, the topic of generalized Nash equi-
librium problems on networks will be investigated using the theoretical results developed
in [8].
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