We consider a storage allocation problem which combines storage location assignment with sequencing decisions about the assigned storage locations, and which originates from a real-world application context. We propose a very efficient successive constrained shortest path method, which outperforms a matheuristic approach recently proposed in the literature in terms of both the computational time required and regarding the quality of the solutions found.

Lanza, G., Passacantando, M., Scutellà, M. (2022). A Fast Heuristic Approach for the Assignment and Sequencing Storage Location Problem Under a Two Level Storage Policy. In L. Amorosi, P. Dell’Olmo, I. Lari (a cura di), Optimization in Artificial Intelligence and Data Sciences (pp. 151-161). Springer [10.1007/978-3-030-95380-5_14].

A Fast Heuristic Approach for the Assignment and Sequencing Storage Location Problem Under a Two Level Storage Policy

Passacantando, M;
2022

Abstract

We consider a storage allocation problem which combines storage location assignment with sequencing decisions about the assigned storage locations, and which originates from a real-world application context. We propose a very efficient successive constrained shortest path method, which outperforms a matheuristic approach recently proposed in the literature in terms of both the computational time required and regarding the quality of the solutions found.
Capitolo o saggio
Heuristic; Mixed-integer linear programming; Multicommodity flows; Storage location assignment; Storage location sequencing;
English
Optimization in Artificial Intelligence and Data Sciences
Amorosi, L; Dell’Olmo, P; Lari, I
2022
978-3-030-95379-9
8
Springer
151
161
Lanza, G., Passacantando, M., Scutellà, M. (2022). A Fast Heuristic Approach for the Assignment and Sequencing Storage Location Problem Under a Two Level Storage Policy. In L. Amorosi, P. Dell’Olmo, I. Lari (a cura di), Optimization in Artificial Intelligence and Data Sciences (pp. 151-161). Springer [10.1007/978-3-030-95380-5_14].
partially_open
File in questo prodotto:
File Dimensione Formato  
Lanza-2022-Optim in AI and DS-AAM.pdf

Accesso Aperto

Descrizione: Contributo in libro
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 288.5 kB
Formato Adobe PDF
288.5 kB Adobe PDF Visualizza/Apri
Lanza-2022-Optim in AI and DS-VoR.pdf

Solo gestori archivio

Descrizione: Contributo in libro
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 206.75 kB
Formato Adobe PDF
206.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/391588
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact