
A fast heuristic approach for the assignment and
sequencing storage location problem under a two
level storage policy

Giacomo Lanza, Mauro Passacantando and Maria Grazia Scutellà

Abstract We consider a storage allocation problem which combines storage loca-
tion assignment with sequencing decisions about the assigned storage locations, and
which originates from a real-world application context. We propose a very efficient
successive constrained shortest path method, which outperforms a matheuristic ap-
proach recently proposed in the literature in terms of both the computational time
required and regarding the quality of the solutions found.

1 Introduction

Storage Location Assignment Problems (SLAPs) are operational problems aiming
at defining the exact physical location of a set of items in a storage area, which
broadly could be a warehouse, a yard, the bunt of a container ship or even a tram/bus
depot. Such decisions are made by considering some long-term storage assignment
policies (random, dedicated and class-based are the most popular [1, 2]), that broadly
prescribe the rules to follow when stocking is needed, by respecting additional
requirements related to the specific application context and, generally, by optimizing
criteria such as material handling cost or storage space utilization [3, 4, 5].

The problem addressed in this paper has been motivated by a real application
involving a production site of an Italian company, in Tuscany, whose large warehouse
(more than 10,000 m2) is the subject of a big modernization project requesting the
resolution of a SLAP with operations research techniques. Specifically, a set of
storage locations (SLs) has to be assigned to a set of different product types, each
with its own storage demand expressed in number of items to store in a given time
horizon. Each SL has a fixed capacity and can be assigned to at most one product

Giacomo Lanza, Mauro Passacantando, Maria Grazia Scutellà
Dipartimento di Informatica, University of Pisa, Largo Bruno Pontecorvo, 3, 56127,
e-mail: giacomo.lanza@di.unipi.it,mauro.passacantando@unipi.it,maria.grazia.
scutella@unipi.it

1



2 Giacomo Lanza, Mauro Passacantando and Maria Grazia Scutellà

type, i.e., different types of products cannot share the same SL. The majority of
the product types can be stored in any available SL, i.e., a random storage policy
is considered. However, special product types do exist, which have to be preferably
managed according to a dedicated storage policy.

In addition, a suitable sequencing of the assigned SLs must be devised for each
product type, i.e., it has to be decided the ordering with which the assigned SLs
will be filled up during the storing operations. A motivation is that a FIFO (First-In
First-Out) order picking policy based on the time of permanence of the items in
the warehouse has to be pursued, separately per product type, when items must be
retrieved to fulfill customers’ orders. The sequencing established for the assigned
SLs will thus allow to easily implement the FIFO policy in the successive order
picking steps. Moreover, the selected sequencing also determines the availability of
additional extra storage per product type. Specifically, an additional amount of storage
can be made available on the top of pairs of consecutive SLs along the sequence,
provided that they are fully replenished and physically contiguous, thus allowing a
two level stocking policy. The objective is to maximize the storage capacity which
remains available after the assignment of the SLs.

The recent paper [6] describes the problem more formally, providing two Mixed
Integer Linear Programming (MILP) formulations and the proof of its NP-hardness.
Additionally, since the state-of-the-art commercial solver CPLEX is not able to
address real-size instances, such those faced daily by our industrial partner, a simple
yet effective matheuristic approach to tackle such instances is proposed in [6].

In this paper, we propose a heuristic solution method based on successive con-
strained shortest paths. The heuristic is able to find solutions to real-size instances
in a few seconds, also improving the quality of those found in [6] in terms of both
available storage capacity and other crucial features that our industrial partner is
interested in.

The paper is organized as follows. We briefly describe the problem statement
in Section 2. The heuristic method designed to tackle the problem is presented in
Section 3. Section 4 describes the experimental plan and reports the results of the
preliminary computational experiments we performed. Finally, Section 5 concludes
the paper and identifies some future directions of research.

2 Problem statement

Let K be the set of the different product types requiring storage in a given time
horizon, and 𝑞𝑘 be the number of items of product type 𝑘 that needs storage, for each
𝑘 ∈ K. Let S be the set of available SLs in the warehouse where the products in K
have to be stocked, each SL 𝑠 ∈ S having a capacity 𝑢𝑠 . Two subsets of K of special
product types are given: K𝑃 ⊆ K denoting perishable products and K𝐻𝑅 ⊆ K
denoting high rotational products. Products in K𝑃 and K𝐻𝑅 should be preferably
stocked in specific SLs, denoted as S𝑃 ⊆ S and S𝐻𝑅 ⊆ S, respectively.



A heuristic approach for the assignment and sequencing of storage locations 3

The addressed problem consists in assigning a sequence of available SLs to each
𝑘 ∈ K, by satisfying the following constraints:

• each SL in S can be assigned to a unique product type in K;
• the sum of the capacities of the SLs assigned to a product type plus the extra

storage made available for it on the top level (in case of pairs of fully replenished
and physically contiguous SLs) must be greater than or equal to the storage
demand of the product type;

• the special product types in K𝑃 and K𝐻𝑅 should be preferably assigned to SLs
in S𝑃 and S𝐻𝑅, respectively;

with the aim of maximizing the residual storage capacity, i.e., the one which remains
available after the assignment of the SLs.

Figure 1 depicts a storage area where four SLs are available for stocking, depicted
as white rectangles, while three SLs are occupied by some items, depicted as full
black rectangles. An example of the two level storage policy is shown for the first two
occupied SLs. The residual storage capacity, in this case, is defined as the sum of the
capacities of the 4 available SLs at the ground level, plus the capacities exploitable
on top of SLs 1 and 2, as well as on top of 2 and 3.

Fig. 1 Available SLs in a
storage area.

3 A successive constrained shortest path method

For each product type 𝑘 ∈ K, the proposed heuristic finds a constrained shortest path
on a suitable auxiliary graph, whose set of nodes describes the current availability
of SLs in the warehouse. This path specifies the SLs assigned to 𝑘 and the order in
which they must be filled up, in such a way as to guarantee that the total capacity of
the assigned SLs is enough to store the 𝑞𝑘 items required by 𝑘 , taking into account
the possibility of exploiting extra storage on the top of the assigned SLs. After the
assignment to 𝑘 , the auxiliary graph is suitably pruned by removing the assigned
nodes and the corresponding incident arcs, to avoid that the corresponding SLs can
be assigned to product types other than 𝑘 .

In the following subsections, we introduce the auxiliary graph, we present the
constrained shortest path problem to be solved for each product type and we describe
the overall heuristic method.

3.1 The auxiliary graph

In the auxiliary graph G = (N ,A), the set of nodes N consists of:

• a fictitious source node Σ,



4 Giacomo Lanza, Mauro Passacantando and Maria Grazia Scutellà

• a fictitious target node Θ,
• a set L containing one node for each currently available SL in the warehouse.

The set L is partitioned into two subsets, L𝐼 and L\L𝐼 : L𝐼 is composed of all those
nodes of L corresponding to isolated SLs in the warehouse (that is, no contiguous
SL is available for storage, like SL 4 in Figure 1), while L \L𝐼 is in turn partitioned
into ∪ℎ=1,...,𝐻Fℎ subsets, each of them defining a group of nodes associated with
physically contiguous SLs. For example, SLs 1, 2 and 3 in Figure 1 define one of
these groups. A generic subset Fℎ contains nodes of type { 𝑗ℎ1 , 𝑗

ℎ
2 , . . . , 𝑗

ℎ
|Fℎ |}, where

𝑗ℎ1 and 𝑗ℎ|Fℎ | respectively denote the nodes associated with the first and the last SL
of the physically contiguous group Fℎ (like SLs 1 and 3 in Figure 1), while the
remaining nodes 𝑗ℎ𝑚, with 1 < 𝑚 < |Fℎ |, are associated with intermediate SLs (like
SL 2 in Figure 1). In particular, the SL associated with node 𝑗ℎ𝑚 is in between the
SLs associated with nodes 𝑗ℎ

𝑚−1 (being the previous one) and 𝑗ℎ
𝑚+1 (being the next

one).
A capacity 𝑢 𝑗 is associated with each node 𝑗 ∈ L. It coincides with the capacity

of the SL the node 𝑗 is associated with, if the SL is isolated or it is the first SL in a
group of physically contiguous SLs; otherwise, it coincides with its double, so as to
model the two level storage policy. Moreover, a profit 𝛿𝑘

𝑗
is defined for each product

type 𝑘 ∈ K and each node 𝑗 ∈ L. This profit aims to favour the assignment of 𝑘 to
the preferable subsets S𝑃 or S𝐻𝑅, if 𝑘 ∈ K𝑃 or 𝑘 ∈ K𝐻𝑅. Otherwise, it tends to
favour the assignment of 𝑘 to SLs in S \ (S𝑃 ∪ S𝐻𝑅).

The set of arcs A is defined in order to model the assignment of a sequence of
SLs to each product type in K. The set A contains:

• arcs (Σ, 𝑗), with 𝑗 ∈ L𝐼 , and arcs (Σ, 𝑗ℎ1 ), with ℎ = 1, . . . , 𝐻, to model the
assignment of the first SL to a product type;

• arcs ( 𝑗 ,Θ), with 𝑗 ∈ L, to model the assignment of the last SL to a product type;
• arcs ( 𝑗ℎ𝑚, 𝑗ℎ𝑚+1), with ℎ = 1, . . . , 𝐻 and 𝑚 = 1, . . . , |Fℎ | − 1, to model the assign-

ment of the available SL 𝑗ℎ
𝑚+1 immediately after the available and contiguous SL

𝑗ℎ𝑚;
• arcs ( 𝑗ℎ|Fℎ | , 𝑗

ℎ′

1 ), with ℎ, ℎ′ = 1, . . . , 𝐻, and ℎ ≠ ℎ′, to model the assignment of
the SL 𝑗ℎ

′

1 of group Fℎ′ immediately after the SL 𝑗ℎ|Fℎ | of group Fℎ;
• arcs ( 𝑗ℎ|Fℎ | , 𝑖), with ℎ = 1, . . . , 𝐻, and 𝑖 ∈ L𝐼 , to model the assignment of the

isolated SL 𝑖 immediately after the SL 𝑗ℎ|Fℎ | of group Fℎ;
• arcs (𝑖, 𝑗ℎ1 ), with 𝑖 ∈ L𝐼 and ℎ = 1, . . . , 𝐻, to model the assignment of the SL 𝑗ℎ1

of group Fℎ immediately after the isolated SL 𝑖;
• arcs (𝑖, 𝑗), 𝑖, 𝑗 ∈ L𝐼 , and 𝑖 ≠ 𝑗 , to model the assignment of the isolated SL 𝑗

immediately after the isolated SL 𝑖.

Finally, a weight 𝑐𝑖 𝑗 is associated with each arc (𝑖, 𝑗) ∈ A, which indicates the
amount of space which becomes unavailable for future assignments due to the joint
assignment of 𝑖 and 𝑗 to 𝑘:



A heuristic approach for the assignment and sequencing of storage locations 5

𝑐𝑖 𝑗 =


𝑢 𝑗 if 𝑗 ≠ Θ,

𝑢𝑖 if 𝑗 = Θ and ∃ ℎ such that 𝑖 = 𝑗ℎ1 ,

𝑢𝑖/2 if 𝑗 = Θ and ∃ ℎ such that 𝑖 = 𝑗ℎ𝑚, with 1 < 𝑚 < |Fℎ |,
0 if 𝑗 = Θ and ∃ ℎ such that 𝑖 = 𝑗ℎ|Fℎ | or 𝑖 ∈ L𝐼 .

Figure 2 reports the auxiliary graph associated with the available SLs depicted in
Figure 1. In this example, the capacity of each SL is 10 items. Thus, according to the
definition above, the capacity of nodes 1 and 4 is equal to 10, while the capacity of
nodes 2 and 3 is equal to 20 to model the two level storage policy. Nodes 1 and 4 are
linked with Σ through an entering arc and each node is linked to Θ through an exiting
arc. The weight associated with each arc (Σ, 𝑗), 𝑗 = 1, 4, is equal to the capacity of
node 𝑗 , i.e., 10. The weight associated with the arcs ( 𝑗 ,Θ) is 0 for 𝑗 = 3 and 𝑗 = 4
(since 3 is the last SL of a group of contiguous SLs, and 4 is an isolated SL), while
it is 10 for 𝑗 = 1 and 𝑗 = 2 (since 1 represents the first SL and 2 an intermediate SL
of a group of contiguous SLs). Finally, the weight of an arc entering node 𝑗 , with
𝑗 ≠ Θ, is equal to the capacity of 𝑗 .

Fig. 2 Graph representation
of the available SLs depicted
in Figure 1.

3.2 The constrained shortest path problem

Given the current product type 𝑘 ∈ K, the problem of determining a directed path
from Σ to Θ in the auxiliary graph G, which represents the sequence of SLs assigned
to 𝑘 , is formulated using the following two families of variables:

• 𝑥𝑖 𝑗 ∈ {0, 1}, for any (𝑖, 𝑗) ∈ A, to model the sequence of SLs assigned to 𝑘 in
terms of a directed path in G from node Σ to node Θ;

• 𝑦𝑖 ∈ Z+, for any 𝑖 ∈ N , to model Miller-Tucker-Zemlin-like constraints, aimed at
avoiding subtours.

For each 𝑖 ∈ N , we also define N+ (𝑖) and N− (𝑖) as the sets of nodes linked to 𝑖 ∈ N
via an exiting and an entering arc, respectively:

N+ (𝑖) = { 𝑗 ∈ N : ∃ (𝑖, 𝑗) ∈ A} , N− (𝑖) = { 𝑗 ∈ N : ∃ ( 𝑗 , 𝑖) ∈ A} . (1)

The constrained shortest path problem related to 𝑘 can be formulated as follows:

min
∑︁

(𝑖, 𝑗) ∈A
𝑐𝑖 𝑗𝑥𝑖 𝑗 −

∑︁
𝑗∈N

𝛿𝑘𝑗

∑︁
𝑖∈N− ( 𝑗)

𝑥𝑖 𝑗 (2)



6 Giacomo Lanza, Mauro Passacantando and Maria Grazia Scutellà

∑︁
𝑗∈N− (𝑖)

𝑥 𝑗𝑖 −
∑︁

𝑗∈N+ (𝑖)
𝑥𝑖 𝑗 =


−1 if 𝑖 = Σ

0 if 𝑖 ∈ L
1 if 𝑖 = Θ

∀ 𝑖 ∈ N , (3)

∑︁
𝑗∈N

∑︁
𝑖∈N− ( 𝑗)

𝑢 𝑗𝑥𝑖 𝑗 ≥ 𝑞𝑘 , (4)

𝑦 𝑗 − 𝑦𝑖 − 1 + (1 − 𝑥𝑖 𝑗 ) |N | ≥ 0 ∀ (𝑖, 𝑗) ∈ A. (5)

The objective function (2) consists of two parts: the first summation defines the
primary optimization goal to be minimized, i.e., the space no longer available in the
warehouse after storing items of type 𝑘 along the nodes of the path; the second sum
is related to the secondary optimization goal, i.e., the request that special product
types should be preferably stored in specific SLs. It involves parameters 𝛿𝑘

𝑗
which

are set in such a way that it is convenient to assign SL 𝑗 to the product type 𝑘 , if 𝑗 is
one of the preferable SLs for 𝑘 . Constraints (3) define a directed path for 𝑘 , by means
of the binary variables 𝑥𝑖 𝑗 , in terms of a unitary flow sent from the source node Σ

to the target node Θ, with the aim of modeling the assignment of a sequence of SLs
to 𝑘 . Constraint (4) imposes that the sum of the capacities of the nodes along the
path be greater than or equal to the storage demand of the product type 𝑘 . Finally,
constraints (5) are Miller-Tucker-Zemlin-like constraints, which avoid subtours in
the returned solution [7].

Figure 3 shows two feasible solutions referring to the auxiliary graph in Figure
2, assuming 𝑞𝑘 = 25. The solution on the left assigns to 𝑘 the sequence of SLs 4, 1,
and 2, whose total capacity, given by the sum of the node capacities, is 40, enough
to stock all the items of 𝑘 . The selected SLs will be filled starting from 4 (10 items),
passing then to 2 (other 10 items), and finally considering 2 (the remaining 5 items).
The space no longer available in the warehouse for future assignments, i.e., the first
sum of (2), is 50. Notice that the assignment of the SL 2 will make unavailable the
extra storage on top of 2 and 3 in the future: this is why a weight 10 is associated
with the arc (2,Θ). The solution on the right, instead, which is optimal, assigns the
SLs 1 and 2 to 𝑘 , with total capacity 30. The selected SLs will be filled starting from
1 (10 items) and then passing to 2, thus exploiting the capacity made available on top
of 1 and 2 (10 items at the ground level and the remaining 5 on top of 1 and 2). The

Fig. 3 Two feasible solutions representations.



A heuristic approach for the assignment and sequencing of storage locations 7

space no longer available for future assignments is 40, better than in the previously
considered solution.

3.3 The overall heuristic method

As outlined before, the idea underlying the heuristic approach is to address the
product types in cascade, each time solving the constrained shortest path problem
described in Section 3.2 over an auxiliary graph which is progressively pruned. The
steps of the heuristic method are summarized in Algorithm 1.

Algorithm 1 Successive constrained shortest path method
1: Sort the product types in K in a nonincreasing order with respect to the number of items to

stock. Set K = {𝑘1, . . . , 𝑘|K | }.
2: Define L as the set of nodes corresponding to all the available SLs in the warehouse.
3: for 𝑡 = 1, . . . , |K | do
4: Solve the constrained shortest path problem related to 𝑘𝑡 on the graph induced by L.
5: Define Φ𝑡 as the set of nodes corresponding to the SLs assigned to 𝑘𝑡 .
6: L := L \Φ𝑡 .
7: end for
8: Unify the subproblem solutions Φ1, . . . ,Φ|K | .

At the beginning, the product types in K are sorted in a nonincreasing order with
respect to the number of items to stock. In the first iteration, the first product type
in the resulting ordered set is considered. The constrained shortest path problem in
Section 3.2 is solved on the graph defined in Section 3.1, where the set of nodes L
corresponds to all the available SLs in the warehouse. In any successive iteration,
say 𝑡, the 𝑡-th product type in the considered order is analysed and the corresponding
constrained shortest path problem is solved over a graph obtained from the initial
one by removing all the nodes corresponding to the SLs assigned till iteration 𝑡 and
their incident arcs. The complete solution is finally given by the set of the paths
which have been separately determined for all the product types in K.

4 Numerical experiments

Two types of experiments have been performed. The first one aims at analysing the
performance of the heuristic for different values of the parameters 𝛿𝑘

𝑗
, while in the

latter we compare the results of the heuristic here proposed with the ones returned
by the matheuristic in [6]. The heuristic has been implemented by using the language
OPL and solved via CPLEX 12.6 (IBM ILOG, 2016). All the experiments have been
conducted on an Intel Xeon 5120 computer with 2.20 GHz and 32 GB of RAM.

4.1 The instances

We considered the same set of real instances solved in [6], corresponding to 20
randomly selected days. The instances are divided into two classes, called ClassHA



8 Giacomo Lanza, Mauro Passacantando and Maria Grazia Scutellà

Table 1 Performance of the heuristic for ClassLA and ClassHA

ClassLA ClassHA

Solving Available %P in %HR in Solving Available % P in %HR in
𝑝 Time

(sec.)
space
(items)

S𝑃 S𝐻𝑅 Time
(sec.)

space
(items)

S𝑃 S𝐻𝑅

0.8 2.92 2874 100% 75.40% 2.83 2062 96.08% 84.33%
0.5 3.32 2886 100% 75.37% 3.21 2080 84.97% 81.85%
0.2 3.73 2904 56.67% 57.57% 3.29 2096 77.12% 75.46%

and ClassLA, each referring to 10 days where the number of items to stock is higher
(ClassHA) or lower (ClassLA) than the average number of items to stock over the
20 selected days. Two kinds of special product types exist, i.e., perishable (P) and
high rotational (HR), which should be preferably assigned to specific SLs. More in
detail, the instances in ClassHA have to assign 1150 items of 14 different product
types on average: 1.2% are items of type P, whereas 21.2% are items of type HR.
The instances in ClassLA have to assign 787 items of 11 different product types on
average: 1.5% are items of type P, whereas 40.7% are items of type HR.

4.2 Efficacy and efficiency of the heuristic approach

As specified, parameters 𝛿𝑘
𝑗

are used to favour the assignment of specific SLs to
special product types. In particular, if product 𝑘 is of type P, then its preferable SLs
are those specified in subset S𝑃 ⊂ S. In this case, 𝛿𝑘

𝑗
> 0 if 𝑗 ∈ S𝑃 , and 𝛿𝑘

𝑗
= 0

otherwise. The same logic applies to a product 𝑘 of type HR, for which 𝛿𝑘
𝑗

are set
in such a way to favour the assignment of SLs belonging to subset S𝐻𝑅 ⊂ S. On
the other hand, for a product 𝑘 neither of type P nor HR, 𝛿𝑘

𝑗
tend to favour the

assignment of SLs in S \ (S𝑃 ∪S𝐻𝑅). Three settings for positive values of 𝛿𝑘
𝑗

have
been investigated, of form 𝛿𝑘

𝑗
= 𝑝 · 𝑢 𝑗 , where 𝑝 = 0.2, 0.5 and 0.8.

Table 1, for both the instances in ClassLA and ClassHA, shows the features
of the solutions our industrial partner is interested in for the different settings of
𝛿𝑘
𝑗
. Specifically, we report the average solving time (in seconds), the average space

available after the assignment (given by the total capacity of the empty SLs at the
ground level plus, whenever two empty SLs are contiguous, the capacity of the SL
that can be created on top of them), the percentage of items of type P assigned to
SLs in S𝑃 , and the percentage of items of type HR assigned to SLs in S𝐻𝑅.

As expected, by increasing 𝑝, i.e., the value of 𝛿𝑘
𝑗
, the percentage of items of types

in P and HR assigned to their preferable SLs increases, at the expenses of the space
available after the assignment. In fact, as already observed in [6], the two objectives
are often conflicting, since forcing the assignment of items to specific locations may
be in contrast with the maximization of the total space available after the assignment.
Interestingly, the higher is value 𝑝, the lower is the average solving time.

ClassHA was identified in [6] as the hardest group of instances to solve with the
matheuristic, mainly due to the higher number of items to stock. As opposed, the



A heuristic approach for the assignment and sequencing of storage locations 9

Table 2 Comparison between the proposed heuristic and the matheuristic in [6].

ClassLA ClassHA

Solving Available %P in %HR in Solving Available %P in %HR in
Time
(sec.)

space
(items)

S𝑃 S𝐻𝑅 Time
(sec.)

space
(items)

S𝑃 S𝐻𝑅

Heuristic 2.98 2886 100% 75.37% 3.21 2080 84.97% 81.85%
Matheuristic [6] 3330 2897 83.89% 70.60% 3442 2073 85.89% 82.15%

heuristic seems to address such instances more easily. The higher number of items
to stock per product type in ClassHA requires longer paths. This implies a wide
pruning of the associated graphs at each iteration of the heuristic, and smaller and
easier constrained shortest path problems to address during the resolution process.

4.3 Comparison with a matheuristic approach

The SLAP here addressed has been formulated in [6] as a multicommodity flow
model, where the assignment of SLs is simultaneously addressed for all the product
types in K. Specifically, given an auxiliary graph whose set of nodes correspond
to the SLs available in the warehouse, |K | directed paths are sought along which
the quantity 𝑞𝑘 is sent for each 𝑘 , by taking into account the two level storage
policy. The objective function aims at maximizing the available storage capacity
after the assignment and the number of items of types K𝑃 and K𝐻𝑅 assigned to
S𝑃 and S𝐻𝑅, respectively. A two-phase matheuristic has been proposed in [6],
which is based on decomposition. In the first phase, K is partitioned into Λ subsets,
in such a way that each group contains about the same number of items to store.
Thus, Λ subproblems are generated and sequentially solved by CPLEX, each time
removing those SLs already assigned in the previous solved subproblems. Finally, the
Λ solutions obtained are merged into a unique solution, which is provided as initial
feasible solution to the Branch and Bound algorithm of CPLEX. The matheuristic
relies on several parameters, whose impact on the performance of the resolution
process has been deeply investigated, by identifying a suitable parameter setting.

Table 2 compares the results obtained by the heuristic here proposed with the
ones achieved by the matheuristic in [6], on the set of instances described in Section
4.1. For the matheuristic, the most suitable parameter setting devised in [6] has been
used. For the heuristic, we selected 𝑝 = 0.5 as a good compromise between efficiency
and efficacy of results. Table 2 reports, separately for ClassLA and CLassHA, the
average solving time (in seconds), the average space available in the warehouse after
the assignment, the percentage of items of type P assigned to their preferable SLs,
and the percentage of items of type HR assigned to their preferable storage locations.

For ClassLA, the successive constrained shortest path heuristic outperforms the
matheuristic for the preferable SLs assigned to the special product types. The avail-
able space after the assignment is almost the same, just decreasing of a few units on
average. For ClassHA, the results are similar for both the approaches, with the suc-



10 Giacomo Lanza, Mauro Passacantando and Maria Grazia Scutellà

cessive constrained shortest path heuristic outperforming the matheuristic regarding
the available space after the assignment. The strength of the heuristic is the time
required to obtain solutions. In fact, it is of about 3 seconds on average, i.e., about
one thousandth of the time required by the matheuristic. The proposed heuristic thus
appears to be a very promising tool to solve the addressed SLAP problem, rapidly
determining solutions which, for the majority of the tested instances, also improve
the quality of the solutions found by the matheuristic approach.

5 Conclusions

A very fast successive constrained shortest path heuristic has been proposed to
address the assignment of items to SLs jointly with sequencing decisions about the
assigned SLs, as required in a real application context. The heuristic ouperforms
the matheuristic in [6] on real-size instances, in terms of both solving time and
solution quality. Future research will address a more general problem where storage
allocation decisions are considered jointly with the routing of the vehicles in charge
of moving items towards the selected locations.

Acknowledgements

The research has been supported by Region of Tuscany-Regional Government (POR
FESR 2014-2020-Line 1-Research and Development Strategic Projects) through the
Project IREAD4.0 under Grant CUP 7165.24052017.112000028.

References

1. Hausman, W.H., Schwarz, L.B., Graves, S.C.: Optimal storage assignment in automatic ware-
housing systems. Management Science. 22, 629–638 (1976)

2. Ashayeri, J., Gelders, L.F.: Warehouse design optimization. European Journal of Operational
Research. 21, 285–294 (1985)

3. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: A comprehensive
review. European Journal of Operational Research. 177, 1–21 (2007)

4. Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage areas:
Survey and classification. European Journal of Operational Research. 239, 297–312 (2014)

5. Reyes, J., Solano-Charris, E., Montoya-Torres, J.: The storage location assignment problem: A
literature review. International Journal of Industrial Engineering Computations. 10, 199–224
(2019)

6. Lanza, G., Passacantando, M., Scutellà, M.G.: Assigning and sequencing storage locations
under a two level storage policy: optimization model and matheuristic approach. Technical
Report 2398, University of Pisa (2021)

7. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling sales-
man problems. Journal of the ACM. 7, 326–329 (1960)


