The existing robust methods for model-based classification and clustering deal with elliptically contoured components. Here we introduce robust estimation for mixtures of skew-normal, by the joint usage of trimming and constraints. The model allows to fit heterogeneous skew data with great flexibility.
Garcìa-Escudero, L., Greselin, F., Mayo-Iscar, A. (2015). Robust clustering for heterogeneous skew data. In F. Mola, C. Conversano (a cura di), CLADAG 2015 Book of Abstracts (pp. 154-157). Cagliari : CUEC.
Robust clustering for heterogeneous skew data
Greselin, F;
2015
Abstract
The existing robust methods for model-based classification and clustering deal with elliptically contoured components. Here we introduce robust estimation for mixtures of skew-normal, by the joint usage of trimming and constraints. The model allows to fit heterogeneous skew data with great flexibility.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
GGI Cladag 2015 Robust clustering for heterogeneous skew data.pdf
accesso aperto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.