FAMIGLINI, LORENZO
FAMIGLINI, LORENZO
DIPARTIMENTO DI INFORMATICA, SISTEMISTICA E COMUNICAZIONE
Dissimilar Similarities: Comparing Human and Statistical Similarity Evaluation in Medical AI
2024 Cabitza, F; Famiglini, L; Campagner, A; Sconfienza, L; Fusco, S; Caccavella, V; Gallazzi, E
Evaluation of uncertainty quantification methods in multi-label classification: A case study with automatic diagnosis of electrocardiogram
2024 Barandas, M; Famiglini, L; Campagner, A; Folgado, D; Simao, R; Cabitza, F; Gamboa, H
Evidence-based XAI: An empirical approach to design more effective and explainable decision support systems
2024 Famiglini, L; Campagner, A; Barandas, M; La Maida, G; Gallazzi, E; Cabitza, F
Never tell me the odds: Investigating pro-hoc explanations in medical decision making
2024 Cabitza, F; Natali, C; Famiglini, L; Campagner, A; Caccavella, V; Gallazzi, E
Biomarkers for Mixed Dementia: a hard bone to bite? Preliminary analyses and promising results for a debated topic
2023 Campagner, A; Famiglini, L; Arosio, B; Rossi, P; Annoni, G; Cabitza, F
Color Shadows 2: Assessing the Impact of XAI on Diagnostic Decision-Making
2023 Natali, C; Famiglini, L; Campagner, A; La Maida, G; Gallazzi, E; Cabitza, F
Everything is varied: The surprising impact of instantial variation on ML reliability
2023 Campagner, A; Famiglini, L; Carobene, A; Cabitza, F
Explainability meets uncertainty quantification: Insights from feature-based model fusion on multimodal time series
2023 Folgado, D; Barandas, M; Famiglini, L; Santos, R; Cabitza, F; Gamboa, H
Let Me Think! Investigating the Effect of Explanations Feeding Doubts About the AI Advice
2023 Cabitza, F; Campagner, A; Famiglini, L; Natali, C; Caccavella, V; Gallazzi, E
Towards a Rigorous Calibration Assessment Framework: Advancements in Metrics, Methods, and Use
2023 Famiglini, L; Campagner, A; Cabitza, F
A Confidence Interval-Based Method for Classifier Re-Calibration
2022 Campagner, A; Famiglini, L; Cabitza, F
A parsimonious machine learning approach to detect inappropriate treatments in spine surgery on the basis of patient-reported outcomes
2022 Famiglini, L; Milella, F; Berjano, P; Cabitza, F
A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
2022 Famiglini, L; Campagner, A; Carobene, A; Cabitza, F
Application of Machine Learning to Improve Appropriateness of Treatment in an Orthopaedic Setting of Personalized Medicine
2022 Milella, F; Famiglini, L; Banfi, G; Cabitza, F
Color Shadows (Part I): Exploratory Usability Evaluation of Activation Maps in Radiological Machine Learning
2022 Cabitza, F; Campagner, A; Famiglini, L; Gallazzi, E; La Maida, G
Detecting the Effect Size of Weather Conditions on Patient-Reported Outcome Measures (PROMs)
2022 Milella, F; Seveso, A; Famiglini, L; Banfi, G; Cabitza, F
Global Interpretable Calibration Index, a New Metric to Estimate Machine Learning Models’ Calibration
2022 Cabitza, F; Campagner, A; Famiglini, L
How is test laboratory data used and characterised by machine learning models? A systematic review of diagnostic and prognostic models developed for COVID-19 patients using only laboratory data
2022 Carobene, A; Milella, F; Famiglini, L; Cabitza, F
Machine Learning and Laboratory Values in the Diagnosis, Prognosis and Vaccination Strategy of COVID-19
2022 Carobene, A; Famiglini, L; Sabetta, E; Naclerio, A; Banfi, G
Re-calibrating Machine Learning Models Using Confidence Interval Bounds
2022 Campagner, A; Famiglini, L; Cabitza, F