We propose a re-calibration method for Machine Learning models, based on computing confidence intervals for the predicted confidence scores. We show the effectiveness of the proposed method on a COVID-19 diagnosis benchmark.
Campagner, A., Famiglini, L., Cabitza, F. (2022). A Confidence Interval-Based Method for Classifier Re-Calibration. In Studies in Health Technology and Informatics (pp.127-128). IOS Press [10.3233/SHTI220413].
A Confidence Interval-Based Method for Classifier Re-Calibration
Campagner A.
;Famiglini L.;Cabitza F.
2022
Abstract
We propose a re-calibration method for Machine Learning models, based on computing confidence intervals for the predicted confidence scores. We show the effectiveness of the proposed method on a COVID-19 diagnosis benchmark.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10281-394400_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
212.74 kB
Formato
Adobe PDF
|
212.74 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.