The atomic-scale surface structure of methyl-terminated germanium (111) has been characterized by using a combination of helium atom scattering and density functional theory. High-resolution helium diffraction patterns taken along both the "1I¯21I¯" and the "011I¯" azimuthal directions reveal a hexagonal packing arrangement with a 4.00 ± 0.02 Å lattice constant, indicating a commensurate (1 × 1) methyl termination of the primitive Ge(111) surface. Taking advantage of Bragg and anti-Bragg diffraction conditions, a step height of 3.28 ± 0.02 Å at the surface has been extracted using variable de Broglie wavelength specular scattering; this measurement agrees well with bulk values from CH3-Ge(111) electronic structure calculations reported herein. Density functional theory showed that methyl termination of the Ge(111) surface induces a mild inward relaxation of 1.66% and 0.60% from bulk values for the first and second Ge-Ge bilayer spacings, respectively. The DFT-calculated rotational activation barrier of a single methyl group about the Ge-C axis on a fixed methyl-terminated Ge(111) surface was found to be approximately 55 meV, as compared to 32 meV for a methyl group on the H-Ge(111) surface, sufficient to hinder the free rotation of the methyl groups on the Ge(111) surface at room temperature. However, accurate MD simulations demonstrate that cooperative motion of neighboring methyl groups allows a fraction of the methyl groups to fully rotate on the picosecond time scale. These experimental data in conjunction with theory provide a quantitative evaluation of the atomic-scale surface structure for this largely unexplored, yet technologically interesting, hybrid organic-semiconductor interface.
Hund, Z., Nihill, K., Campi, D., Wong, K., Lewis, N., Bernasconi, M., et al. (2015). Atomic Surface Structure of CH3-Ge(111) Characterized by Helium Atom Diffraction and Density Functional Theory. JOURNAL OF PHYSICAL CHEMISTRY. C, 119(32), 18458-18466 [10.1021/acs.jpcc.5b05678].
Atomic Surface Structure of CH3-Ge(111) Characterized by Helium Atom Diffraction and Density Functional Theory
CAMPI, DAVIDE;BERNASCONI, MARCO;BENEDEK, GIORGIOPenultimo
;
2015
Abstract
The atomic-scale surface structure of methyl-terminated germanium (111) has been characterized by using a combination of helium atom scattering and density functional theory. High-resolution helium diffraction patterns taken along both the "1I¯21I¯" and the "011I¯" azimuthal directions reveal a hexagonal packing arrangement with a 4.00 ± 0.02 Å lattice constant, indicating a commensurate (1 × 1) methyl termination of the primitive Ge(111) surface. Taking advantage of Bragg and anti-Bragg diffraction conditions, a step height of 3.28 ± 0.02 Å at the surface has been extracted using variable de Broglie wavelength specular scattering; this measurement agrees well with bulk values from CH3-Ge(111) electronic structure calculations reported herein. Density functional theory showed that methyl termination of the Ge(111) surface induces a mild inward relaxation of 1.66% and 0.60% from bulk values for the first and second Ge-Ge bilayer spacings, respectively. The DFT-calculated rotational activation barrier of a single methyl group about the Ge-C axis on a fixed methyl-terminated Ge(111) surface was found to be approximately 55 meV, as compared to 32 meV for a methyl group on the H-Ge(111) surface, sufficient to hinder the free rotation of the methyl groups on the Ge(111) surface at room temperature. However, accurate MD simulations demonstrate that cooperative motion of neighboring methyl groups allows a fraction of the methyl groups to fully rotate on the picosecond time scale. These experimental data in conjunction with theory provide a quantitative evaluation of the atomic-scale surface structure for this largely unexplored, yet technologically interesting, hybrid organic-semiconductor interface.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.