For a prime number p, the author shows that if two certain canonical finite quotients of a finitely generated Bloch–Kato pro-p group G coincide, then G has a very simple structure, i.e., G is a p-adic analytic pro-p group (see Theorem 1). This result has a remarkable Galois-theoretic consequence: if the two corresponding canonical finite extensions of a field F—with F containing a primitive p-th root of unity—coincide, then F is p-rigid (see Corollary 1). The proof relies only on group-theoretic tools, and on certain properties of Bloch–Kato pro-p groups.

Quadrelli, C. (2015). Finite quotients of Galois pro- p groups and rigid fields. ANNALES MATHÉMATIQUES DU QUÉBEC, 39(1), 113-120 [10.1007/s40316-015-0027-5].

Finite quotients of Galois pro- p groups and rigid fields

QUADRELLI, CLAUDIO
2015

Abstract

For a prime number p, the author shows that if two certain canonical finite quotients of a finitely generated Bloch–Kato pro-p group G coincide, then G has a very simple structure, i.e., G is a p-adic analytic pro-p group (see Theorem 1). This result has a remarkable Galois-theoretic consequence: if the two corresponding canonical finite extensions of a field F—with F containing a primitive p-th root of unity—coincide, then F is p-rigid (see Corollary 1). The proof relies only on group-theoretic tools, and on certain properties of Bloch–Kato pro-p groups.
Articolo in rivista - Articolo scientifico
Pro-p groups, Zassenhaus filtration, Absolute Galois groups, p-rigid fields
English
2015
39
1
113
120
open
Quadrelli, C. (2015). Finite quotients of Galois pro- p groups and rigid fields. ANNALES MATHÉMATIQUES DU QUÉBEC, 39(1), 113-120 [10.1007/s40316-015-0027-5].
File in questo prodotto:
File Dimensione Formato  
quotients.pdf

accesso aperto

Descrizione: Articolo principale
Dimensione 285.02 kB
Formato Adobe PDF
285.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/79821
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact