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Abstract. For a prime number p, we show that if two certain canonical
finite quotients of a finitely generated Bloch-Kato pro-p group G coin-
cide, then G has a very simple structure, i.e., G is a p-adic analytic pro-p
group (see Theorem A). This result has a remarkable Galois-theoretic

consequence: if the two corresponding canonical finite extensions F (3)/F

and F {3}/F of a field F – with F containing a primitive p-th root of
unity – coincide, then F is p-rigid (see Corollary B). The proof relies
only on group-theoretic tools, and on certain properties of Bloch-Kato
pro-p groups. This paper will appear on the Annales mathématiques du
Québec.

1. Introduction

Let p be a prime number, and let G be a pro-p group. The Frattini sub-
group Φ(G) of G is the closed subgroup of G generated by the p-powers and
the commutators of the elements of G. In particular, the quotient G/Φ(G)
is an elementary abelian p-group. Let Φ2(G) be the Frattini subgroup of
the Frattini subgroup of G, i.e., Φ2(G) = Φ(Φ(G)).

Also, let Pn(G), n ≥ 1, denote the p-descending central series of G. In
particular, one has P2(G) = Φ(G) and P3(G) = Φ(G)p[G,Φ(G)] ⊇ Φ2(G).
For the class of finitely generated Bloch-Kato pro-p groups, we prove the
following result.

Theorem A. One has the equality Φ2(G) = P3(G) if, and only if, G is
p-adic analytic.

In this case the group G has a very simple structure, as it is meta-abelian
and it is possible to provide an explicit presentation for G (cf. [13, Theo-
rem 4.6]).

One has also the following Galois-theoretic consequence. Let F be a field
containing a primitive p-th root of unity. By F× we denote the (multiplica-
tive) group of non-zero elements of F . We consider the Galois extension

F (3) of F obtained by first taking F (2) to be the compositum over F of all
extensions of F of degree p, and then taking F (3) to be the compositum over
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F (2) of all the extensions of F (2) of degree p that are Galois over F . We also
denote by F {3} the compositum over F (2) of all extensions of F (2) of degree
p (cf. [3, § 2.3]). Thus

F {3} = (F (2))
(2)
.

Then one may characterize those fields F with the property that F (3) =
F {3}. In fact, from Theorem A we shall obtain the following result.

Corollary B. Let F be a field containing a primitive p-th root of unity, and
assume that the quotient F×/(F×)p is finite. (Assume further that

√
−1 ∈ F

if p = 2). Then F (3) = F {3} if, and only if, F is p-rigid;

(For the definition of p-rigid field, see Section 4.)
Bloch-Kato pro-p groups were introduced in [2] and studied first in [13]. A

Bloch-Kato pro-p group is a pro-p group which satisfies the conclusion of the
Rost-Voevodsky theorem (formerly known as the Bloch-Kato conjecture),
i.e., such that the cohomology ring of every closed subgroup of G with
coefficients in the finite field Fp is a quadratic algebra over Fp. For example,
absolute Galois groups of fields which are pro-p and Galois groups of the
maximal p-extension of certain fields are Bloch-Kato pro-p groups. Thus,
a Bloch-Kato pro-p group is a very natural “candidate” for being realized
as absolute Galois group, and this shows the relevance of Bloch-Kato pro-p
groups for Galois theory.

The problem to characterize a field F yielding the equality

(1.1) F (3) = F {3}

arises rather naturally, and the case when equality (1.1) holds is consid-
ered very significant in field theory. Indeed, such problem has been widely
studied in the past: in the case p = 2 Corollary B was proved in [1, Theo-
rem 3.1], with arguments which make use of Galois cohomology, and later
in [8, Theorem A], with arguments relying on the theory of quadratic forms.
For p odd, Corollary B was proved in [3, Theorem A], and the proof relies
on certain properties of Bloch-Kato pro-p groups, together with an essential
arithmetic argument (cf. [3, Theorem 4.3]).

The above results provide a motivation for the paper, as Theorem A is
the “group-theoretic translation”, and it is in fact more genaral, as it holds
for Bloch-Kato pro-p groups, and not only for Galois groups of maximal
p-extensions. Moreover, part of the interest of this result lies in the fact
that the proof is purely group-theoretical, and it does not rely on results
form field theory. Further, the proof makes use of the Zassenhaus filtration
of pro-p groups, which is gaining increasing importance as tool for the study
of Galois groups (see, e.g., [5] and [11]).

The paper is organized as follows. In the second section, we state a
number of properties on pro-p groups and on their descending series. In
section 3 we prove Theorem A, and in section 4 we provide the “arithmetic
translation” of Theorem A, and we prove Corollary B.

This paper will be published on the Annales mathématiques du Québec.
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2. Preliminaries on pro-p groups

Throughout this paper, subgroups of pro-p groups are assumed to be
closed (in the pro-p topology), and every generator is to be intended as
topological generator. In particular, given two (closed) subgroups H1 and
H2 of a pro-p group G, the subgroup [H1, H2] is the (closed) subgroup of G
generated by the commutators [g1, g2], with gi ∈ Hi for i = 1, 2. Also, for a
positive integer n, Gn denotes the (closed) subgroup of G generated by the
n-powers of the elements of G.

For a finitely generated pro-p group G, let d(G) denote the minimal num-
ber of generators of G. In particular, d(G) is the dimension of the quotient
G/Φ(G) as vector space over the finite field Fp (cf. [4, Prop. 1.14]). Then,
one defines the rank of a pro-p group G to be the number

rk(G) = sup{d(H) |H ≤ G closed} ∈ N ∪ {∞}
(cf. [4, Definition 3.12]).

For a pro-p group G, the lower p-central series of G is the series Pn =
Pn(G), n ≥ 1, of characteristic subgroups defined by P1 = G and

Pn+1 = P p
n [G,Pn].

In particular, one has that P2(G) is the Frattini subgroup Φ(G), and [Pi, Pj ] ≤
Pi+j for every i, j ≥ 1. Moreover, if G is finitely generated, then the lower
p-central series is a base of neighbourhoods of 1 in G (cf. [4, Prop. 1.16]).

Definition. A pro-p group G is said to be powerful if G/Gp is abelian, if p
is odd, or if G/G4 is abelian, if p = 2.

In particular, one has the following (cf. [4, Theorems 3.6, 3.8]).

Proposition 2.1. Let G be a powerful pro-p group.

(1) Pn(G) = Gpn−1
for every n ≥ 1.

(2) if G is finitely generated, then rk(G) = d(G).

Another important descending series of pro-p groups is the Zassenhaus
filtration. For an arbitrary group G, the Zassenhaus filtration of G is the
series Dn = Dn(G), n ≥ 1, of characteristic subgroups defined by D1 = G
and

(2.1) Dn = Dp
dn/pe

∏
i+j=n

[Di, Dj ] ,

where dn/pe is the least integer m such that mp ≥ n. In particular, the
Zassenhaus filtration is the fastest descending series starting at G such that
[Di, Dj ] ≤ Di+j and Dp

i ≤ Dip for every i, j ≥ 1. For computational pur-
poses, one has the formula

(2.2) Dn =
∏

iph≥n

γi(G)p
h
,

established by M. Lazard (cf. [4, Theorem 11.2]), where the γi(G)’s are
the elements of the descending central series of G (i.e., γ1(G) = G and
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γi+1(G) = [G, γi(G)] for every i ≥ 1). Thus, if G is a (pro-)p group, then
D2(G) is the Frattini subgroup Φ(G).

For the Zassenhaus filtration of a pro-p group, one has the following re-
markable result (cf. [4, Theorem 11.4]).

Theorem 2.2. Let G be a finitely generated pro-p group. Then G has finite
rank if, and only if, Dn(G) = Dn+1(G) for some n ≥ 1.

Definition. A topological group G is a p-adic analytic group if G has the
structure of analytic manifold over the field of p-adic numbers Qp with the
properties

(1) the multiplication function G × G → G given by (x, y) 7→ xy is
analytic;

(2) the inversion function G→ G defined by x 7→ x−1 is analytic.

Powerful pro-p groups and p-adic analytic groups are tightly related. In-
deed, a topological group G has the structure of a p-adic analytic group
if, and only if, G has an open subgroup which is a powerful finitely gener-
ated pro-p group (cf. [4, Theorem 8.1]). In the case of Bloch-Kato pro-p
groups, p-adic analytic groups have a rather simple structure, as stated by
the following (cf. [13, Theorem 4.8]).

Theorem 2.3. Let G be a finitely generated Bloch-Kato pro-p group, and
assume furhter that G is torsion-free, if p = 2. The following are equivalent.

(1) G has finite rank.
(2) G is p-adic analytic.
(3) G is powerful.
(4) G has a presentation

(2.3) G =
〈
σ, τ1, . . . , τd

∣∣∣ στiσ−1 = τ1+pk

i , τiτj = τjτi ∀ i, j
〉
,

with d = d(G)− 1, for some k ≥ 1 (k ≥ 2, if p = 2).

3. Proof of Theorem A

Lemma 3.1. If G is a powerful Bloch-Kato group, then Φ2(G) = P3(G).

Proof. Recall first that if G is a Bloch-Kato pro-p group, then every closed
subgroup of G is again a Bloch-Kato pro-p group. By Proposition 2.1, one

has Φ(G) = Gp and P3(G) = Gp2 . Since rk(G) is finite, also rk(Φ(G)) is
finite, thus Φ(G) is powerful by Theorem 2.3. Therefore,

Φ2(G) = Φ(Φ(G)) = Φ(G)p = Gp2 ,

and this yields the claim. �

Proof of Theorem A. Assume that G is a finitely generated p-adic analytic
Bloch-Kato group. Then, the claim holds by Theorem 2.3 and Lemma 3.1.
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Conversely, assume that Φ2(G) = P3(G). Since [D2, D2] ≤ D4 and Dp
2 ≤

D2p, one has Φ2(G) = Dp
2[D2, D2] ≤ D4, as Φ(G) = D2. Moreover, one has

the inclusion γ3(G) ≤ P3(G). Therefore, one has the chain of inclusions

(3.1) γ3(G) ≤ P3(G) = Φ2(G) ≤ D4.

We shall split the proof of this implication in three cases.

(1) Assume p > 3. By (2.2), one has

D3 =
∏

iph≥3

γi(G)p
h

= γ3(G) ·Gp

and D4 =
∏

iph≥4

γi(G)p
h

= γ4(G) ·Gp.

Therefore, (3.1) implies

D3(G) = γ3(G) ·Gp ≤ P3(G) = Φ2(G) ·Gp ≤ D4,

as Gp ≤ D4. Thus, one has the equality D3 = D4. Hence, Theo-
rem 2.2 implies that rk(G) is finite, and thus by Theorem 2.3 G is a
p-adic analytic Bloch-Kato pro-p group.

(2) Assume p = 2. From (2.2) one obtains

D3 =
∏

i2h≥3

γi(G)2
h

= γ3(G) · γ2(G)2 ·G4

and D4 =
∏

i2h≥4

γi(G)2
h

= γ4(G) · γ2(G)2 ·G4.

Therefore, (3.1) implies

D3 = γ3(G) · γ2(G)2 ·G4 ≤ Φ2(G) · γ2(G)2 ·G4 ≤ D4,

as γ2(G)2G4 ≤ D4. Thus, one has the equality D3 = D4. Hence,
Theorem 2.2 implies that rk(G) is finite, and thus by Theorem 2.3
G is a p-adic analytic Bloch-Kato pro-p group.

(3) Assume p = 3. By (2.2), one has

D4 =
∏

i3h≥4

γi(G)3
h

= γ4(G) · γ2(G)3 ·G9

and D5 =
∏

i3h≥5

γi(G)3
h

= γ5(G) · γ2(G)3 ·G9.

Therefore, from (3.1) one obtains the chain of inclusions

γ4(G) = [G, γ3(G)] ≤ [G,D4] = [D1, D4] ≤ D5,

which implies

D4 = γ4(G) · γ2(G)3 ·G9 ≤ D5,

as G9, γ2(G)3 ≤ D5. Thus, one has the equality D4 = D5. Hence,
Theorem 2.2 implies that rk(G) is finite, and thus by Theorem 2.3
G is a p-adic analytic Bloch-Kato pro-p group.
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This establishes the theorem. �

Note that if G is a finitely generated pro-p group, then Φ2(G) is an open
subgroup of G. Thus, the quotient G/Φ2(G) is finite, and one may reduce
the equality Φ2(G) = P3(G) to a condition on finite p-groups, as done in [3,
Corollary 4.15].

Corollary 3.2. A finitely generated Bloch-Kato pro-p group G is p-adic
analytic if, and only if, Φ(G)/Φ2(G) is contained in the centre of G/Φ2(G).

Proof. Assume that G is p-adic analytic. Then Theorem A yields the equal-
ity Φ2(G) = P3(G). Since [G,P2] = [P1, P2] ≤ P3, one has [G,Φ(G)] ≤
Φ2(G), and Φ(G)/Φ2(G) is central in G/Φ2(G).

Conversely, assume that Φ(G)/Φ2(G) is central in G/Φ2(G). Hence the
commutator subgroup [G,Φ(G)] is contained in Φ2(G). Since

Φ(G)p ≤ Φ2(G) and P3 = Φ(G)p[G,Φ(G)],

it follows that Φ2(G) contains P3(G), and thus the two subgroups are equal.
Therefore G is p-adic analytic by Theorem A. �

4. Proof of Corollary B

Throughout this section, a field F is always assumed to contain a prim-
itive p-th root of unity (and also

√
−1, if p = 2). Also, F× denotes the

multiplicative group of non-zero elements of F , and (F×)p is the subgroup
of p-powers of F×.

Definition. Let N denote the norm map N : F ( p
√
a) → F of the p-cyclic

extension F ( p
√
a)/F . An p-power-free unit a ∈ F× is said to be p-rigid if

b ∈ N
(
F ( p
√
a)
)

if, and only if, b ∈
p−1⋃
k=0

ak(F×)p

for every b ∈ F× r (F×)p. The field F is called p-rigid if every element of
F× r (F×)p is p-rigid.

Recall from the Introduction that F (2) = F ( p
√
F ) is the compositum over

F of all extensions F ( p
√
a) with a ∈ F×. Also,

• F {3} = F (2)(
p
√
F (2)) is the compositum over F (2) of all the extensions

F (2)( p
√
a) with a ∈ (F (2))×;

• F (3) is the compositum over F (2) of all the extensions F (2)( p
√
a) such

that F (2)( p
√
a)/F is Galois.

Therefore, both F {3}/F and F (3)/F are Galois extensions, and F (3) ⊆ F {3}
(cf. [3, § 2.3]).

Let G be the maximal pro-p Galois group of F , i.e.,

G = GF (p) = Gal(F (p)/F ),
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where F (p) is the maximal p-extension of F . Recall that the maximal pro-p
Galois group of a field containing a primitive p-th root of unity is a Bloch-
Kato pro-p group (cf. [13, § 2]).

By Kummer theory, one has that the Galois group of F (2)/F is the quo-
tient G/Φ(G). Note that G is finitely generated if, and only if, the quotient
F×/(F×)p is finite (and in this case d(G) = dim(F×/(F×)p)), as G/Φ(G)
and F×/(F×)p are isomorphic as discrete groups of exponent p. Moreover,

(4.1) Gal(F (3)/F ) = G/P3(G) and Gal(F {3}/F ) = G/Φ2(G)

(cf. [3, § 4.1], see also [1, § 2]).

Remark 4.1. In the case p = 2, the Galois groups Gal(F (3)/F ) and Gal(F {3}/F )
are called W -group, resp. V -group, of the field F , for the relations with the
Witt ring of F (cf. [10] and [1]).

Proof of Corollary B. Let G be the maximal pro-p Galois group GF (p). By
hypothesis, G is finitely generated. Moreover, G is torsion free, since we are
assuming that

√
−1 ∈ F for p = 2.

Assume first that the equality F (3) = F {3} holds. Then, by (4.1) one has
also the equality Φ2(G) = P3(G), and thus Theorem A implies that G is a
p-adic analytic Bloch-Kato pro-p group, and Theorem 2.3 implies that G is
powerful. Therefore, by [3, Proposition 3.8] the field F is p-rigid.

Conversely, assume that F is p-rigid. Then, again by [3, Proposition 3.8]
the Galoi group G is powerful, and thus p-adic analytic by Theorem 2.3.
Therefore, Theorem A implies the equality Φ2(G) = P3(G), and the equality

F (3) = F {3} follows by (4.1). �
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