This thesis presents a study on the design and optimization of stimuli-responsive filler materials for smart composites, focusing on environmental sustainability and advanced functionality. The primary goal was to create light responsive materials with potential applications in smart packaging. The study used silica nanoparticles (SiO₂ NPs) and sepiolite nanofibers (Sep NFs) functionalized with cinnamic or coumarin groups, which undergo reversible 2+2 cycloaddition reactions when exposed to specific light wavelengths. Incorporating these fillers within a suitable modified polymer matrix enables to have materials with properties such as assembly and disassembly when exposed to specific light wavelengths. Two functionalization approaches were evaluated in detail: a one-step process and a two-step process, both aimed at anchoring cinnamic groups onto the filler surfaces. The one-step method involves the preliminary synthesis of a novel alkoxysilane containing the desired functionality, which was fully characterized, particularly through NMR spectroscopy, before its use in the functionalization of SiO₂ NPs and Sep NFs. This strategy demonstrated higher functionalization yields. The two-step process, involved the preliminary functionalization of the nanofillers with a common alkoxysilane with an amino termination, followed by the modification of this group with cinnamic functionality. Although the functionalization yield was lower than that of the one-step method, it was possible to adjust the yield depending on the cinnamic acid derivative used, making this approach also promising. These fillers were then preliminarily combined with modified starch, chosen for its biodegradability, renewability, and cost-effectiveness. The starch was functionalized through etherification with cinnamyl chloride, introducing light-reactive crosslinking units to improve mechanical properties, water resistance, and durability, and to enable potential crosslinking with fillers functionalized with cinnamic units. This approach supports sustainable, smart packaging applications that adapt to environmental changes and end-of-life disposal requirements. Future work aims to enhance these materials by using starch extracted from food waste, further improving their eco-friendliness and aligning with circular economy principles. Additionally, coumarin-based fillers were investigated to achieve a broader range of light-activated behaviors, complementing cinnamic-based systems for more versatile smart packaging solutions. The second goal was to develop thermoresponsive solvent-free nanofluids (SNFs) as potential smart lubricants, designed to offer adaptive viscosity and friction reduction. SiO₂ NPs and Sep NFs were functionalized in a one-step process with a newly synthesized and characterized alkoxysilane, which covalently bears guanidinium units. These units form strong ionic bonds with sulfonated polyethylene glycol (sulfo-PEG) chains. This robust interaction, confirmed through time-domain NMR, results in a stable polymer-nanofiller interface that dynamically responds to temperature changes, as verified by DSC. The guanidinium-functionalized nanofillers enabled the nanofluids to exhibit thermoresponsive changes in viscosity and transparency, properties particularly valuable for lubricant applications where minimizing friction and wear is essential. This part of the research was developed at the Charles Gerhardt Institute in Montpellier. Future work will focus on refining the functionalization process to remove synthesis by-products, ensuring cleaner materials and more accurate performance assessments. The research demonstrated the potential of these stimuli-responsive fillers for industrial applications where material adaptability, responsiveness, and environmental sustainability are essential. Looking forward, optimization of these filler materials, particularly through scalable and environmentally sustainable synthesis methods, will be critical.
Questo lavoro di tesi presenta uno studio sul design e l’ottimizzazione di filler responsivi a stimoli esterni per impiego in compositi intelligenti, con un focus sulla sostenibilità ambientale e su funzionalità avanzate. Il primo obiettivo è stato la creazione di materiali reattivi alla luce con potenziali applicazioni nel packaging. Sono state utilizzate nanoparticelle di silice (SiO₂ NP) e nanofibre di sepiolite (Sep NF) funzionalizzate con gruppi cinnamici o cumarinici, che subiscono reazioni reversibili di cicloaddizione 2+2 se esposti a specifiche lunghezze d’onda della luce. L’incorporazione di questi filler in una matrice polimerica adeguatamente modificata permette di ottenere materiali con proprietà di assemblaggio e disassemblaggio attivabili tramite luce a lunghezze d’onda specifiche. Sono stati valutati due approcci di funzionalizzazione. Il metodo one-step include la sintesi di un nuovo alcossisilano contenente la funzionalità cinnamica, che è stato caratterizzato tramite spettroscopia NMR, prima del suo utilizzo nella funzionalizzazione di SiO₂ NP e Sep NF, dimostrando rese di funzionalizzazione promettenti. Il processo a due fasi ha previsto la funzionalizzazione dei nanofiller con un alcossisilano a terminazione amminica, seguita dalla modifica di questo gruppo con funzionalità cinnamica. Sebbene la resa della funzionalizzazione fosse inferiore rispetto al metodo one-step, è stato possibile modularla in base al derivato dell’acido cinnamico utilizzato, rendendo anche questo approccio promettente. Questi filler sono stati quindi combinati preliminarmente con amido modificato a sua volta con unità cinnamiche, scelto per la sua biodegradabilità, rinnovabilità e convenienza economica. La presenza delle unità cinnamiche nell’amido consente una possibile reticolazione con i filler funzionalizzati con unità cinnamiche. Questo approccio favorisce applicazioni sostenibili di packaging intelligente, che si adattano alle esigenze di smaltimento. Il lavoro futuro si propone di migliorare ulteriormente questi materiali utilizzando amido estratto da scarti alimentari allineandosi ai principi dell’economia circolare. Inoltre, sono stati studiati filler a base di cumarina per ottenere una gamma più ampia di soluzioni per packaging intelligente. Il secondo obiettivo è stato lo sviluppo di nanofluidi termoresponsivi e privi di solventi (SNF), come potenziali lubrificanti intelligenti progettati per offrire adattabilità in funzione della viscosità e riduzione dell’attrito. Le SiO₂ NP e Sep NF sono state funzionalizzate con un processo one-step utilizzando un nuovo alcossisilano contenente unità guanidiniche. Queste unità formano forti legami ionici con catene di polietilenglicole solfonato (sulfo-PEG). Questa forte interazione, confermata tramite spettroscopia time-domain NMR, ha portato a un’interfaccia stabile polimero-nanofiller che risponde dinamicamente alle variazioni di temperatura, come verificato mediante DSC. I nanofiller funzionalizzati con unità guanidiniche hanno conferito ai nanofluidi variazioni termoresponsive di viscosità e trasparenza, proprietà particolarmente utili per applicazioni in lubrificanti in cui è essenziale ridurre al minimo attrito e usura. Questa parte della ricerca è stata sviluppata presso l'Istituto Charles Gerhardt a Montpellier. Il lavoro futuro si concentrerà sul miglioramento del processo di funzionalizzazione per eliminare i sottoprodotti della sintesi, garantendo materiali più puri e valutazioni delle prestazioni più accurate. La ricerca ha dimostrato il potenziale di questi filler responsivi a stimoli esterni per applicazioni industriali dove adattabilità del materiale, reattività e sostenibilità ambientale sono elementi essenziali. Guardando al futuro, l’ottimizzazione di questi materiali, in particolare attraverso metodi di sintesi scalabili e sostenibili dal punto di vista ambientale, sarà cruciale.
(2025). DESIGN OF FILLER MATERIALS WITH STIMULI-RESPONSIVE PROPERTIES FOR SMART COMPOSITES APPLICATIONS. (Tesi di dottorato, , 2025).
DESIGN OF FILLER MATERIALS WITH STIMULI-RESPONSIVE PROPERTIES FOR SMART COMPOSITES APPLICATIONS
ORSINI, SARA FERNANDA
2025
Abstract
This thesis presents a study on the design and optimization of stimuli-responsive filler materials for smart composites, focusing on environmental sustainability and advanced functionality. The primary goal was to create light responsive materials with potential applications in smart packaging. The study used silica nanoparticles (SiO₂ NPs) and sepiolite nanofibers (Sep NFs) functionalized with cinnamic or coumarin groups, which undergo reversible 2+2 cycloaddition reactions when exposed to specific light wavelengths. Incorporating these fillers within a suitable modified polymer matrix enables to have materials with properties such as assembly and disassembly when exposed to specific light wavelengths. Two functionalization approaches were evaluated in detail: a one-step process and a two-step process, both aimed at anchoring cinnamic groups onto the filler surfaces. The one-step method involves the preliminary synthesis of a novel alkoxysilane containing the desired functionality, which was fully characterized, particularly through NMR spectroscopy, before its use in the functionalization of SiO₂ NPs and Sep NFs. This strategy demonstrated higher functionalization yields. The two-step process, involved the preliminary functionalization of the nanofillers with a common alkoxysilane with an amino termination, followed by the modification of this group with cinnamic functionality. Although the functionalization yield was lower than that of the one-step method, it was possible to adjust the yield depending on the cinnamic acid derivative used, making this approach also promising. These fillers were then preliminarily combined with modified starch, chosen for its biodegradability, renewability, and cost-effectiveness. The starch was functionalized through etherification with cinnamyl chloride, introducing light-reactive crosslinking units to improve mechanical properties, water resistance, and durability, and to enable potential crosslinking with fillers functionalized with cinnamic units. This approach supports sustainable, smart packaging applications that adapt to environmental changes and end-of-life disposal requirements. Future work aims to enhance these materials by using starch extracted from food waste, further improving their eco-friendliness and aligning with circular economy principles. Additionally, coumarin-based fillers were investigated to achieve a broader range of light-activated behaviors, complementing cinnamic-based systems for more versatile smart packaging solutions. The second goal was to develop thermoresponsive solvent-free nanofluids (SNFs) as potential smart lubricants, designed to offer adaptive viscosity and friction reduction. SiO₂ NPs and Sep NFs were functionalized in a one-step process with a newly synthesized and characterized alkoxysilane, which covalently bears guanidinium units. These units form strong ionic bonds with sulfonated polyethylene glycol (sulfo-PEG) chains. This robust interaction, confirmed through time-domain NMR, results in a stable polymer-nanofiller interface that dynamically responds to temperature changes, as verified by DSC. The guanidinium-functionalized nanofillers enabled the nanofluids to exhibit thermoresponsive changes in viscosity and transparency, properties particularly valuable for lubricant applications where minimizing friction and wear is essential. This part of the research was developed at the Charles Gerhardt Institute in Montpellier. Future work will focus on refining the functionalization process to remove synthesis by-products, ensuring cleaner materials and more accurate performance assessments. The research demonstrated the potential of these stimuli-responsive fillers for industrial applications where material adaptability, responsiveness, and environmental sustainability are essential. Looking forward, optimization of these filler materials, particularly through scalable and environmentally sustainable synthesis methods, will be critical.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_811935.pdf
accesso aperto
Descrizione: Tesi di Orsini Sara Fernanda - 811935
Tipologia di allegato:
Doctoral thesis
Dimensione
70.68 MB
Formato
Adobe PDF
|
70.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.