Given a finite permutation group G with domain Ω, we associate two subsets of natural numbers to G, namely I(G,Ω) and M(G,Ω), which are the sets of cardinalities of all the irredundant and minimal bases of G, respectively. We prove that I(G,Ω) is an interval of natural numbers, whereas M(G,Ω) may not necessarily form an interval. Moreover, for a given subset of natural numbers X⊆N, we provide some conditions on X that ensure the existence of both intransitive and transitive groups G such that I(G,Ω)=X and M(G,Ω)=X.

Dalla Volta, F., Mastrogiacomo, F., Spiga, P. (2024). On the cardinality of irredundant and minimal bases of finite permutation groups. JOURNAL OF ALGEBRAIC COMBINATORICS, 60(2 (September 2024)), 569-587 [10.1007/s10801-024-01343-w].

On the cardinality of irredundant and minimal bases of finite permutation groups

Dalla Volta F.;Mastrogiacomo F.;Spiga P.
2024

Abstract

Given a finite permutation group G with domain Ω, we associate two subsets of natural numbers to G, namely I(G,Ω) and M(G,Ω), which are the sets of cardinalities of all the irredundant and minimal bases of G, respectively. We prove that I(G,Ω) is an interval of natural numbers, whereas M(G,Ω) may not necessarily form an interval. Moreover, for a given subset of natural numbers X⊆N, we provide some conditions on X that ensure the existence of both intransitive and transitive groups G such that I(G,Ω)=X and M(G,Ω)=X.
Articolo in rivista - Articolo scientifico
Base size; Irredundant base; Minimal bases; Primary 20B15;
English
5-lug-2024
2024
60
2 (September 2024)
569
587
open
Dalla Volta, F., Mastrogiacomo, F., Spiga, P. (2024). On the cardinality of irredundant and minimal bases of finite permutation groups. JOURNAL OF ALGEBRAIC COMBINATORICS, 60(2 (September 2024)), 569-587 [10.1007/s10801-024-01343-w].
File in questo prodotto:
File Dimensione Formato  
Dalla Volta-2024-Journal of Algebraic Combinatorics-VoR.pdf

accesso aperto

Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 325.54 kB
Formato Adobe PDF
325.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/532881
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact