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Abstract
Given a finite permutation groupG with domain�, we associate two subsets of natural
numbers to G, namely I(G,�) and M(G,�), which are the sets of cardinalities of
all the irredundant and minimal bases of G, respectively. We prove that I(G,�) is an
interval of natural numbers, whereasM(G,�) may not necessarily form an interval.
Moreover, for a given subset of natural numbers X ⊆ N, we provide some conditions
on X that ensure the existence of both intransitive and transitive groups G such that
I(G,�) = X and M(G,�) = X .
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1 Introduction

Let G be a permutation group on �. A subset � = {ω1, . . . , ω�} of � is said to be a
base if the pointwise stabilizer

G(�) = Gω1,...,ω�
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equals the identity. Moreover, � is said to be minimal if no proper subset of it is a
base. We denote with b(G,�) the smallest cardinality of a (minimal) base of G and
with B(G,�) the maximum cardinality of a minimal base of G.

Given an ordered sequence (ω1, . . . , ω�) of elements of �, we study the associated
stabilizer chain:

G ≥ Gω1 ≥ Gω1,ω2 ≥ · · · ≥ Gω1,ω2,...,ω�
.

If all the inclusions given above are strict, then the stabilizer chain is called irre-
dundant. If, furthermore, the group Gω1,...,ω�

is the identity, then the sequence
(ω1, . . . , ω�) is called an irredundant base. The size of the longest possible irre-
dundant base is denoted I (G,�). Note that an irredundant base is not a base, because
it is an ordered sequence and not a set. However, each minimal base gives rise to an
irredundant base. Therefore,

b(G,�) ≤ B(G,�) ≤ I (G,�).

In this paper, given a finite permutation group G with domain �, we are interested
in two subsets of integers associated to G arising from irredundant bases and from
minimal bases. We let

I(G,�) := {� ∈ N | ∃ω1, . . . , ω� ∈ � such that (ω1, . . . , ω�) is an irredundant base for G},
M(G,�) := {� ∈ N | ∃ω1, . . . , ω� ∈ � such that {ω1, . . . , ω�} is an minimal base for G}.

Our main results describe the subsets of N that arise as I(G,�) and M(G,�).

Theorem 1.1 Let G be a finite permutation group with domain �. Then I(G,�) is an
interval of natural numbers, that is,I(G,�) = {b(G,�), b(G,�)+1, . . . , I (G,�)}.
Theorem 1.2 Let X be an arbitrary non-empty subset of positive integers. Then, there
exists a permutation group G with domain � such that X = M(G,�).

Theorem 1.3 Let X be an interval of positive integers, not containing 1. Then, there
exists a finite transitive permutation group G with domain� such that X = M(G,�)

and a finite transitive permutation group H with domain � such that X = I(H ,�).

Theorem 1.1 shows that the cardinalities of the irredundant bases of finite permu-
tation groups form an interval of positive integers, and it somehow resembles a result
of Tarski [10]. Indeed, one of the main results in [10] shows that the cardinalities of
the irredundant generating sets of a finite group form an interval. Recall that a set
of generators of a finite group G is said to be irredundant if no proper subset of it
generates G. This means that, ifG has irredundant generating sets of cardinality x and
y with x ≤ y, then for every z with x ≤ z ≤ y,G admits an irredundant generating set
of cardinality z. In this light, Theorem 1.1 is a permutation group analogue of Tarski’s
theorem. Despite the fact that the result of Tarski applies to general universal algebras
and to general closure operations, we are not able to adapt the proof in [10] to prove
Theorem 1.1.
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The proof of Theorem 1.1 is due to Peter Cameron. It should be noted that this proof
remains unpublished, except for its appearance on Cameron’s blog.1 For the sake of
completeness, we include the proof of Theorem 1.1 in Sect. 2.

In the light of this, Theorem 1.2 comes as a surprise, because it shows that any set
of positive integers arises as M(G,�) for some permutation group G. In particular,
M(G,�) is not an interval of natural numbers.

The next question to explore is the behaviour of M(G,�) when G is a transitive
group. Theorem 1.3 shows that every interval of positive integers, not containing the
number 1, can be realized asM(G,�) for some transitive permutation groupG acting
on its domain �. It is important to note that if 1 ∈ M(G,�) and G is transitive, then
M(G,�) = {1}, because G is regular on �.

While this last result might suggest that M(G,�) is always an interval when G
is transitive, we prove in Sect. 4 that this is not universally true. In fact, we show that
for certain non-interval subsets X ⊆ N, there exists a transitive permutation group G
acting on its domain � such that M(G,�) = X . However, we encounter limitations
when addressing the problem in a general context. For instance, we are unable to
find an example with M(G,�) = {4, 6}. Nevertheless, we propose the following
conjecture.

Conjecture 1.4 Let X ⊆ N, with 1 /∈ X. Then, there exists a transitive permutation
group G on � withM(G,�) = X .

We conclude this introductory section by observing that we know very little about
the structure of M(G,�) when G is primitive on �. Indeed, in the case of primitive
groups, we have no example where M(G,�) is not an interval. This leads us to
propose the following conjecture.

Conjecture 1.5 Let G be a primitive permutation group on �. Then, M(G,�) is an
interval of natural numbers.

We do not believe that, for each interval X of natural numbers, there exists a
primitive group G on � with M(G,�) = X . We give some evidence of this in
Sect. 5.

A permutation group G on � is said to be IBIS (Irredundant Bases of Invariant
Size) if all irredundant bases have cardinality b(G,�), that is, I(G,�) = {b(G,�)}.
Cameron and Fon-der-Flaass [2] (see also [1, Section 4.14]) have proved that, in a
finite permutation group, the following conditions are equivalent:

• all irredundant bases have the same size;
• the irredundant bases are invariant under re-ordering;
• the irredundant bases are the bases of a matroid.

Observe that, for every permutation group G on �, we have M(G,�) ⊆ I(G,�).
Therefore, we say that G is MiBIS (Minimal Bases of Invariant Size) if all minimal
bases have cardinality b(G,�), that is,M(G,�) = {b(G,�)}. It is evident that each
IBIS group is also a MiBIS group, but the reverse is far from being true.2 This leads us

1 https://cameroncounts.wordpress.com/2023/04/15/bases-2/.
2 The action ofG = GL4(2) on the 2-subspaces of F

4
2 has irredundant bases of size 4 and 5; however, it can

be verified with the auxiliary help of a computer that every minimal base of G has cardinality 4. Therefore,
in this action, G is MiBIS, but not IBIS.
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to question whether MiBIS groups possess a geometric characterization in the same
vein as Cameron and Fon-der-Flaass. In addition, Lucchini, Morigi, and Moscatiello
have established a theorem that reduces the problem of classifying finite primitive
IBIS groups G to cases where the socle of G is either abelian or non-abelian simple.
We also wonder whether a similar reduction applies to MiBIS groups.

2 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 LetG be a transitive groupwith domain�. Let a = (a1, . . . , ax )
and b = (b1, . . . , by) be irredundant bases for G. Suppose, for a contradiction, that
there is no irredundant base of length z, for some z with x < z < y. Consider the
tuple (b1, . . . , bz−x , a1, . . . , ax ) of points in the domain �. This is a base, since it
contains a. By assumption it is redundant because it is of length z. None of the bs
is redundant, so we must have to delete some of the as. The number remaining is,
say x ′; we have x ′ < x (since there is no irredundant base of length z) and x ′ > 0
(since the bs are irredundant). Let a′ be the tuple of as of length x ′. Now consider the
tuple (b1, . . . , bz−x ′) with a′ appended. Again this is a base, and must be redundant,
so there is a subtuple a′′ of length x ′′ which forms a base with these bs. Again we have
0 < x ′′ < x ′. This process can be continued ad infinitum to give an infinite descending
sequence of natural numbers less than x , which is a contradiction. �	

Prior to demonstrating Theorem 1.2 in its complete generality, we begin by pro-
viding an illustrative example that exemplifies the fundamental concepts of the proof,
when X is defined as {1, 3, 5, 7}. The idea is to consider a sequence of regular ele-
mentary abelian groups with disjoint orbits, and combining their generators in order
to obtain the desired group.

Consider the group

G1 = 〈g11, . . . , g17〉

to be a regular elementary abelian group of order 27 acting on �1 (to construct it,
just consider the elementary abelian group of order 27 in its action on itself by right
multiplication). Then, take the group

G2 = 〈g21, g22, g23〉

to be a regular elementary abelian group of order 23 acting on �2. Then, take

G3 = 〈g31, . . . , g35〉

to be a regular elementary abelian group of order 25 acting on �3. Suppose that the
�i s are mutually disjoint. Finally, take g41, . . . , g47 to be transpositions, each one
acting on �41, . . . ,�47, respectively, disjoint from each other, and also disjoint from
�1,�2,�3. Now define
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G = 〈h1 = g11g21g31g41, h2 = g12g22g32g42, h3 = g13g23g33g43,

h4 = g14g34g44, h5 = g15g35g45, h6 = g16g46, h7 = g17g47〉,

and consider the action of G on � = �1 ∪ �2 ∪ �3 ∪ �4,1 ∪ · · · ∪ �4,7. We claim
that

M(G,�) = {1, 3, 5, 7}.

Note that G is an elementary abelian group of order 27. Moreover, note that the gi, j ’s
appearing in h j commute among themselves, because their supports are disjoint.

Let y1 ∈ �1. Each of the h j s moves y1, because every generator of G involves
one generator of G1 and because G1 is regular on �1. Hence, the stabilizer of y1 is
the identity subgroup, that is, Gy1 = 1. Therefore, G has a base of cardinality 1 and
1 ∈ M(G,�). In particular, for the rest of the argument, we may consider minimal
bases containing no point from �1.

Let y2 ∈ �2. This point is moved only by the generators of G which involve
generators of G2, namely h1, h2, h3. This implies that

Gy2 = 〈h4, h5, h6, h7〉,

and this acts non-trivially on �1 ∪ �3 ∪ �4,4 ∪ �4,5 ∪ �4,6 ∪ �4,7. So in order to
construct a minimal base which contains y2 we need to choose the other points from
�1 ∪ �3 ∪ �4,4 ∪ �4,5 ∪ �4,6 ∪ �4,7. Observe that we cannot take a point from
�3. Indeed, the stabilizer of a point y3 ∈ �3, is Gy3 = 〈h6, h7〉 = Gy2,y3 , and so
the base would not be minimal. Since we are excluding the elements of �1 also, the
other points we should take are from �4,4 ∪ �4,5 ∪ �4,6 ∪ �4,7. Observe now that,
if i ∈ {1, . . . , 7} and y4,i ∈ �4,i , then

Gy4,i = 〈h1, . . . , hi−1, hi+1, . . . , h7〉.

So, the stabilizer of y2 and y4,4 is

Gy2 ∩ Gy4,4 = 〈h5, h6, h7〉.

It is now clear that

{y2, y4,4, y4,5, y4,6, y4,7}

is a minimal base of cardinality 5 for G and 5 ∈ M(G,�). In particular, for the rest
of the argument, we may consider minimal bases containing no point from �2.

Analogously, if y3 ∈ �3, then

Gy3 = 〈h6, h7〉,

which acts non-trivially on �1 ∪�4,6 ∪�4,7. So, in order to construct a minimal base
of G which contains y3, we need to choose the other points from this set. Since we
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are excluding the elements of �1, the other points are from �4,6 ∪ �4,7. As before,
we can only choose an arbitrary point from �4,6 and an arbitrary point from �4,7, so
that we have a minimal base of cardinality 3 and hence 3 ∈ M(G,�).

Finally, we can construct a minimal base using points only from �4,i for i =
1, . . . , 7. For what we have observed before, in order to construct a minimal base
we need to take an arbitrary point from each one of the orbits. In conclusion, this
gives a minimal base of cardinality 7. This marks the completion of our introductory
example’s proof.

To prove Theorem 1.2, we need some basic preliminaries. Let G and H be two
permutation groups acting on � and � respectively. We can suppose that � and � are
disjoint, eventually renaming the elements. Thus, the direct product G × H acts, via
its intransitive action, on � ∪ �. From the definition of the action, we have that, for
x ∈ � ∪ �,

(G × H)x =
{
Gx × H if x ∈ �,

G × Hx if x ∈ �.

It follows that, if BG is a minimal base for G and BH is a minimal base for H , then
BG ∪ BH is a minimal base for the action of G × H on � ∪ �. Moreover, every
minimal base of G × H is of this form. Indeed, suppose that B ⊆ � ∪ � is a base for
G × H . Define BX = X ∩ B for X ∈ {�,�}, so that B = B� ∪ B�. Then,

1 = (G × H)(B) = G(B�) × G(B�),

So, B� and B� are bases for G and H respectively. They are also minimal: otherwise,
we could find, for example, B̃� ⊂ B� such that (G × H)

(B̃�∪B�)
= 1, against the

minimality of B. In conclusion, we have the following lemma.

Lemma 2.1 Let G and H be permutation groups on � and �, respectively. Suppose
that � and � are disjoint and consider the action of G × H on � ∪ �. Then

M(G × H ,� ∪ �) = {a + b | a ∈ M(G,�), b ∈ M(H ,�)}.

Proof of Theorem 1.2 Let X = {x1, x2, . . . , xn} ⊆ N, with x1 < x2 < · · · < xn .
Firstly, suppose that x1 = 1, and fix a prime number p. Define

G1 = 〈g1,1, . . . , g1,xn 〉

to be a regular elementary abelian group of order |G1| = pxn with domain �1.
Moreover, for each j = 2, . . . , n − 1, define

G j = 〈g j,1, . . . , g j,xn−xn− j+1+1〉

to be a regular elementary abelian group of order |G j | = pxn−xn− j+1+1 with domain
� j . Suppose that � j ∩ �i = ∅ for i �= j . Additionally, for i > xn − xn− j+1 + 1,
define g j,i = 1.
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Finally, let gn,1, . . . , gn,xn be cycles of length p with pair-wise disjoint supports
�n,1, . . . ,�n,xn , which in turn are also disjoint from �i , for i = 1, . . . , n − 1.
Consider now the group

G = 〈g1,1g2,1 · · · gn,1, g1,2g2,2 · · · gn,2, g1,3g2,3 · · · gn,3, . . . g1,xn g2,xn · · · gn,xn 〉

acting on � = �1 ∪ · · · ∪ �n−1 ∪ �n,1 ∪ · · · ∪ �n,xn . We claim thatM(G,�) = X .
Let i ∈ 1, . . . , n − 1 and let δ ∈ �i . Observe that, by construction,Gi acts regularly

on �i , and hence the stabilizer of δ in G fixes pointwise �i . Moreover, observe that
the stabilizer of δ inG fixes all the points in the orbits�2, . . . , �i . Indeed, the number
of generators of Gi is greater than the number of generators of G j for 1 < j < i .
Thus, the generators of G which involve generators of Gi also involve the ones of G j .
This implies that, whenever we stabilize δ, we also stabilize the points in �2, . . . , �i .
Moreover, note that the points of the orbits �n,1, . . . ,�n,xn−xn−i+1+1 also are fixed
by the stabilizer of δ.
Thus, in order to construct a minimal base for G, if we take a point from �i , we are
forced to choose the other points in the orbits �n,xn−xn−i+1+2, . . . ,�n,xn .

We are now ready to construct the minimal bases of G. Firstly, G has a base of
cardinality 1, given by an arbitrary point in �1. Indeed, the generators of G1 appear
in every generator of G.
Let now i < n, y ∈ �n−i+1, and y j ∈ �n, j , for j = xn − xi + 2, . . . , xn . We claim
that

B = {y, yxn−xi+2, . . . , yxn }

is a minimal base of cardinality xi . By the argument in the previous paragraph,
the only points that are moved by the stabilizer of y are the ones in the orbits
�n,xn−xi+2, . . . ,�n,xn . So, by fixing a point in each of these orbits, we get the identity
subgroup. Moreover, by noting that

gn−i+1,1 · · · gn−i+1,n ∈ Gyxn−xi+2,...,yxn

and

g1,x j · · · gn,x j ∈ Gy,yxn−xi+2,...,y j−1,y j+1,...,yxn ,

we conclude that B is a minimal base.
Finally, a base of cardinality xn is given by B = {y1, . . . , yxn }, where y j ∈ �n, j . So
far, we have proved that X ⊆ M(G,�).

Let now B be a minimal base for G with 1 < |B| < xn . Then B must contain a
point from one of the orbits �2, . . . , �n−1. If not, either it has a point from �1 or it
has points only from �n,1, . . . ,�n,xn . In the former case, the stabilizer of the point
in �1 would be the identity, so it is not possible. In the latter, since |B| < xn , there is
an orbit � j which does not contain points of B, and so G(B) �= 1. From the remark
above, B is a base of the same form of the ones we have constructed in the previous
paragraph. In conclusion, M(G,�) = X .
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Suppose now x1 > 1, and take Y = {1, x2 − x1 + 1, . . . , xn − x1 + 1}. Then,
from the first part of the proof, there exists a permutation group H , acting on �, such
that M(H ,�) = Y . Let Sym(x1) be the symmetric group on x1 symbols acting on
{1, . . . , x1}, and consider the group

G = Sym(x1) × H

acting on the disjoint union � of {1, . . . , x1} and �. By Lemma 2.1,

M(G,�) = {a + b | a ∈ M(Sym(x1), {1, . . . , x1}), b ∈ M(H ,�)}
= {x1 − 1 + b | b ∈ Y } = X .

�	

3 Theorem 1.3

Our proof of Theorem 1.3 is based on the product action of two (or more) permutation
groups. LetG, H be twogroups acting on� and�, respectively.Given (g, h) ∈ G×H
and (δ, λ) ∈ � × �, we define

(δ, λ)(g,h) = (δg, λh).

It is straightforward to see that this defines an action of G × H on � × �. We refer to
this action as the product action. Moreover, if G and H act transitively on � and �,
respectively, then so does G × H on � × �.

Irredundant bases for this particular type of action have been previously examined
in [4]. In this context, as part of our effort to establish Theorem 1.3, we present a result
concerning minimal bases in the product action, a topic that in our opinion carries its
own significance.

To analyse the minimal bases ofG×H in its action on�×�, we use the following
construction. Let {(δ1, λ1), . . . , (δk, λk)} be a minimal base for the product action of
G × H . We define the {0, 1}-vectors vG = (vG1 , . . . , vGk ) and vH = (vH

1 , . . . , vH
k )

where

vGi =
{
1 if ∃g ∈ G : δ

g
i �= δi , δ

g
j = δ j ∀ j �= i,

0 otherwise,

and

vH
i =

{
1 if ∃h ∈ H : λhi �= λi , λ

h
j = λ j ∀ j �= i,

0 otherwise.

Roughly speaking, these vectors measure how many elements of {δ1, . . . , δk} and
{λ1, . . . , λk} are necessary to form a minimal base for G and H , respectively. Observe
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that vG and vH depend on the group G × H in its action on � × � and also on the
minimal base {(δ1, λ1), . . . , (δk, λk)}: for not making the notation too cumbersome,
we omit the dependency on the base for denoting vG and vH .

Finally, for X ∈ {G, H}, we let

nX = |{i ∈ {1, . . . , k} | vX
i = 1}|.

So, nX is the number of 1 s appearing in the vector associated to X .

Remark 3.1 If vGi = 0 and g ∈ G, then two things can happen: either δgi = δi , or there
exists j ∈ {1, . . . , k}, j �= i , such that δgj �= δ j .

Lemma 3.2 Let G, H be acting on �, �, respectively, and let {(δ1, λ1), . . . , (δk, λk)}
be a minimal base for the product action of G × H. Then, the following hold.

(1) nG ≤ B(G,�) and nH ≤ B(H ,�).
(2) There exists no j ∈ {1, . . . , k} with vGj = vH

j = 0. In particular,

nG + nH ≥ k.

(3) k ≤ B(G,�) + B(H ,�). In particular,

B(G × H ,� × �) ≤ B(G,�) + B(H ,�).

(4) If vGi = vGj = 1, then δi �= δ j . Similarly, if vH
i = vH

j = 1, then λi �= λ j .

Additionally, if k = B(G,�) + B(H ,�), then the following hold.

(5) nG = B(G,�) and nH = B(H ,�).
(6) For all i = 1, . . . , k, vGi �= vH

i .

Proof We prove (1). Take 	 = {δi1, . . . , δinG } to be the subset of {δ1, . . . , δk} for

which vGi = 1. For each δ ∈ 	, there exists g ∈ G \ {1} which moves δ while fixing
all the other points, so that g ∈ G(	\{δ})\{1}. This implies that 	 is a minimal base for
G of cardinality nG . Therefore, nG ≤ B(G,�). The proof for H is analogous.

We prove (2). Suppose there exists j ∈ {1, . . . , k} such that vGj = vH
j = 0.

Consider the set

B̃ = {(δ1, λ1), . . . , (δ j−1, λ j−1), (δ j+1, λ j+1), . . . , (δk, λk)}.

Let 	 = {δ1, . . . , δk}. Clearly, G(	) = 1. We claim that G(	\{δ j }) = 1. Let g ∈
G(	\{δ j }). Since vGj = 0 and g does not fix δ j , there exists i �= j such that δ

g
i �= δi .

This is impossible, because g ∈ G(	\{δ j }). Thus, g must fix δ j , so g = 1. The same

happens for H , and this implies that B̃ is a base for G × H in its product action on
� × �, contradicting the minimality of B.

We prove (3). If k > B(G,�) + B(H ,�), then by (2) we have nG + nH ≥ k >

B(G,�) + B(H ,�), but from (1) we have nG + nH ≤ B(G,�) + B(H ,�), which
is a contradiction.
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We prove (4). If δi = δ j , then there is no g which fixes δi and moves all the other
points, as it would also fix δ j . So vGi = vGj = 0.

Part (5) follows from (1) and (2).
We prove (6). Suppose that there exists i such that vGi = vH

i . From (2), they are
both equal to 1. Since k = B(G,�) + B(H ,�) = nG + nH , there exists an index j
such that vGj = vH

j = 0, but this contradicts (2). �	
From Lemma 3.2, when B(G × H ,� × �) = B(G,�) + B(H ,�), the vectors

vG and vH associated to the minimal base of maximal cardinality have B(G,�) and
B(H ,�) coordinates equal to 1 respectively, moreover, vGi + vH

i = 1 for all i .

Remark 3.3 If {(δ1, λ1), . . . , (δk, λk)} is a base for the product action, then {δ1, . . . , δk}
is a base for G. Moreover, if we remove from {δ1, . . . , δk} one δi with vGi = 0, we
obtain another base for G. Furthermore, if we remove from {δ1, . . . , δk} all δi s with
vGi = 0, we obtain a minimal base for G.

Theorem 3.4 Let G, H be two permutation groups acting on�,�, respectively. Then,
the set M(G × H ,� × �) forms an interval of natural numbers, and

M(G × H ,� × �) = {max(b(G,�), b(H ,�)), . . . , B(G,�) + B(H ,�) − ε},

where ε ∈ {0, 1, 2}.
Proof Westart by proving that, for each i = max(b(G,�), b(H ,�)), . . . , B(G,�)+
B(H ,�) − 2, there exists a minimal base for G × H of cardinality i . To do this, it is
sufficient to prove that, for each minimal base of G of size a, and for each minimal
base of H of size b, there exists a minimal base of G × H size k for each k between
max(a, b) and a + b − 2. Without loss of generality, we suppose that a ≤ b.

Let {δ1, . . . , δa} be a minimal base of G of cardinality a and let {λ1, . . . , λb} be a
minimal base of H of cardinality b. We argue geometrically: we draw the elements of
�×� as a grid where the columns are labelled by the elements of � and the rows are
labelled by the elements of �. Moreover, we order columns and rows in such a way
that the two bases of G and H are in the top left corner. To form a minimal base for
G × H , we need to choose points of the grid.

Note that in order to ensure that our grid points form a minimal base for G×H , we
must avoid specific geometric configurations. Indeed, suppose that we choose (δ1, λ1)

and (δ2, λ2), with δ1 �= δ2 and λ1 �= λ2, and consider the stabilizer in G × H of these
two points. Take (g, h) in this stabilizer. Then

(δ1, λ2)
(g,h) = (δ

g
1 , λh2) = (δ1, λ2),

and the same for (λ2, δ1). This shows that, if (g, h) fixes (δ1, λ1) and (δ2, λ2), then
(g, h) fixes the four points of the square (δ1, λ1), (δ1, λ2), (δ2, λ1) and (δ2, λ2). There-
fore, in order to achieve a minimal base for G × H , we must avoid creating triangles
or squares within our grid.

Let k be between max(a, b) and a + b − 2. To construct a base of size k, proceed
in this way.
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• Start from the point (δ1, λ1) and choose a + b − k − 1 points in diagonal:

(δ1, λ1), (δ2, λ2), . . . , (δa+b−k−1, λa+b−k−1).

• Now take b − 1 points horizontally:

(δa+b−k, λa+b−k−1), . . . , (δa−1, λa+b−k−1).

• Now take the point (δa, λa+b−k), and then continue vertically for k − a steps:

(δa, λa+b−k+1), . . . , (δa, λb).

In conclusion, the minimal base for G × H of cardinality k is

(δ1, λ1), (δ2, λ2), . . . , (δa+b−k−1, λa+b−k−1),

(δa+b−k, λa+b−k−1), . . . , (δa−1, λa+b−k−1),

(δa, λa+b−k), (δa, λa+b−k+1), . . . , (δa, λb).

This is a base, because it fills the two bases of G and H , and it is minimal, because
we have not drawn triangles in our grid.

From Remark 3.3, we deduce

b(G × H ,� × �) = max(b(G,�), b(G,�)).

Summing up, so far, we have shown that

M(G × H ,� × �) ⊇ {max(b(G,�), b(H ,�)), . . . , B(G,�) + B(H ,�) − 2}.

Therefore, if B(G × H ,� × �) = B(G,�) + B(H ,�) − 2, then the theorem
follows immediately with ε = 2. Similarly, if B(G × H ,� × �) = B(G,�) +
B(H ,�) − 1, then the theorem follows with ε = 1. Since by Lemma 3.2 part (3)
B(G × H ,� × �) ≤ B(G,�) + B(H ,�), the only case that requires special care is
when B(G × H ,� × �) = B(G,�) + B(H ,�). Indeed, in this latter case, we need
to prove that there exists also a minimal base of cardinality B(G,�) + B(H ,�) − 1.

For, let

B = {(δ1, λ1), . . . , (δk, λk)}

be aminimal base with k = B(G,�)+B(H ,�). By Lemma 3.2, there exists an index
i such that the vectors vG and vH satisfy vGi = 0, vGi+1 = 1, vH

i = 1, vH
i+1 = 0.

Consider now the subset

B ′ = {(δ1, λ1), . . . , (δi−1, λi−1), (δi+1, λi ), (δi+2, λi+2), . . . , (δk, λk)}.

We claim that this is a minimal base for the action of G × H on � × �.
Base: consider � = {δ1, . . . , δi−1, δi+1, . . . , δk}. Since vGi = 0, there exists a subset
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of � which is a base for G, so � is a base for G. The same happens for � =
{λ1, . . . , λi , λi+2, . . . , λk}. This shows that B ′ is a base for G × H .
Minimal: Consider B̃ = B ′\{(δ j , λ j )}, for j = 1, . . . , i − 1, i + 2, . . . , k. Then, at
least one of vGj or vH

j is equal to 1. If for example vGj = 1, then there exists g ∈ G

such that δgj �= δ j and δ
g
t = δt for all t �= j, i . In particular, B̃ is not a base. The same

happens if we consider B̃ = B ′ \ {(δi+1, λi )}. �	
We are currently not able to determine necessary and sufficient conditions that

establish the exact value of ε in Theorem 3.4, see Remark 3.9 for a “running
conjecture”.

Nevertheless, if G and H are symmetric groups of degree n and m, respectively,
then we can compute exactly M(G × H , {1, . . . , n} × {1, . . . ,m}), as we shall see
now. This also gives us examples where ε is 0, 1, 2, respectively, proving that each
possibility in Theorem 3.4 can indeed occur, see Example 3.8.

For the rest of the proof, we let Sn be the symmetric group on {1, . . . , n} and, for not
making the notation too cumbersome,wewrite b(Sn) = B(Sn) = b(Sn, {1, . . . , n}) =
B(Sn, {1, . . . , n}).
Lemma 3.5 Let G be a non-identity permutation group acting on � and let n > 1.
Then

B(G × Sn,� × {1, . . . , n}) ≤ B(G,�) + B(Sn) − 1.

Proof Suppose that B(G × Sn,� × {1, . . . , n}) = B(G,�) + B(Sn). Let

{(δ1, λ1), . . . , (δk, λk)}

be a minimal base for the product action with k = B(G,�) + B(Sn). Without loss
of generality, we can reorder the base and suppose that λ1 = 1, . . . , λn−1 = n − 1.
Consider now the vector vSn . By Lemma 3.2 (2), this should have 1 in the first n − 1
positions, and 0 in the remaining. Now either λ j = n for all j = n, . . . , k, or there
exists a j = n, . . . , k such that λ j = n − s, for s = 1, . . . , n − 1. In the first case,
the vector vSn would be equal to the zero vector, a contradiction. In the latter case,
v
Sn
n−s = 0, again a contradiction. �	
We can actually strengthen Lemma 3.5, when G itself is a symmetric group.

Lemma 3.6 Let n and m be positive integers with n,m > 1. Then

B(Sn × Sm, {1, . . . , n} × {1, . . . ,m}) = B(Sn) + B(Sm) − 2.

Proof Applying Lemma 3.5 with G = Sm , we deduce B(Sn × Sm, {1, . . . , n} ×
{1, . . . ,m}) ≤ B(Sn) + B(Sm) − 1. Suppose that B(Sn × Sm, {1, . . . , n} ×
{1, . . . ,m}) = B(Sn) + B(Sm) − 1, and let

{(δ1, λ1), . . . , (δk, λk)}
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be a minimal base with k = B(Sn) + B(Sm) − 1. Consider the two vectors associated
to this base vSn and vSm , as defined at the beginning of Sect. 3. Let nSn and nSm be
the numbers of 1 s appearing in vSn and vSm , respectively. From Lemma 3.2 (2), we
have nSn + nSm ≥ k = B(Sn) + B(Sm) − 1 and hence there exists j ∈ {n,m} with
nSj = B(S j ). Replacing n with m if necessary, we may suppose that j = n, that is,
nSn = B(Sn). Therefore, we can suppose δ1 = 1, . . . , δn−1 = n − 1. However, this
gives a contradiction, arguing as in the proof of Lemma 3.5.

Now, from Theorem 3.4, we deduce

B(Sn × Sm, {1, . . . , n} × {1, . . . ,m}) = B(Sn) + B(Sm) − 2.

�	
Now, Lemma 3.6 immediately generalizes to an arbitrary number of direct factors.

Proposition 3.7 Let n1, . . . , nt be integer numbers greater than 1. Then

M(Sn1 × · · · × Snt , {1, . . . , n1} × · · · × {1, . . . , nt })

=
{

max
i=1,...,t

(B(Sni )), . . . ,
t∑

i=1

B(Sni ) − t

}
.

Proof Set � = {1, . . . , n1} × · · · × {1, . . . , nt }. Arguing by induction and using
Theorem 3.4, we deduce thatM(Sn1 ×· · ·× Snt ,�) is an interval of integer numbers
and

b(Sn1 × · · · × Snt ,�) = max
i=1,...,t

(b(Sni )).

Let us now focus on B(Sn1 ×· · ·× Snt ,�). Using Lemma 3.5 and induction, we have

B(Sn1 × · · · × Snt ,�)

≤ B(Sn1) + B(Sn2 × · · · × Snt , {1, . . . , n2} × · · · × {1, . . . , nt }) − 1

≤
t∑

i=1

B(Sni ) − (t − 1) − 1 =
t∑

i=1

B(Sni ) − t .

To complete the proof, we establish a minimal base of cardinality
∑t

i=1 B(Sni ) − t .
Indeed, the minimal base is given by

{(1, 1, . . . , 1), (2, 1, . . . , 1), . . . , (n1 − 2, 1, . . . , 1),

(n1 − 1, 2, . . . , 1), (n1 − 1, 3, . . . , 1), . . . , (n1 − 1, n2 − 1, . . . , 1),

...

(n1 − 1, n2 − 1, . . . , 2), . . . , (n1 − 1, n2 − 1, . . . , nt − 1)}.

�	
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Example 3.8 Now we can give some examples with ε = 0, 1, 2, respectively. Take
H = S3 × S3 in its product action on � = � × �, where � = {1, 2, 3}. By
Proposition 3.7, we have

B(H ,� × �) = 2,

so in this case ε = 2.
Consider the action of H × H on � × �. Clearly, this is equivalent to the product
action of S3 × S3 × S3 × S3 on � × � × � × �. So, by Proposition 3.7, we have

B(H × H ,� × �) = B(S3 × S3 × S3 × S3,� × � × � × �)

= 2 + 2 + 2 + 2 − 4 = 4.

This implies that

4 = B(H × H ,� × �) = B(H ,�) + B(H ,�) − ε = 2 + 2 − ε = 4 − ε,

And so ε = 0 in this case.
Finally, take the group Sn × H acting on {1, . . . , n} × � × �. Then

B(Sn × H , {1, . . . , n} × � × �) = n − 1 + 2 − ε = n + 1 − ε.

Again from Proposition 3.5, we have

B(Sn × H , {1, . . . , n} × � × �) = B(Sn × S3 × S3, {1, . . . , n} × � × �)

= n − 1 + 2 + 2 − 3 = n,

implying that ε = 1 in this case.

Remark 3.9 We observe that in Example 3.8 we obtain ε = 1 when the group G =
Sn × H and H itself is endowed with a product action. A similar comment applies for
the example with ε = 0 where G = H × H and both factors of this direct product are
endowed with a product action.

Inspired by these examples, we say that a permutation group X is product inde-
composable if there exist no non-identity permutation groups A and B such that X is
permutation equivalent to A × B with its product action.

We believe that, when G and H are product indecomposable, then ε = 2 in The-
orem 3.4. Similarly, we believe that ε = 0 in Theorem 3.4 when G and H are not
product indecomposable, and ε = 1 in all remaining cases.

The following lemma is an easy generalization of [4, Lemma 2.6].

Lemma 3.10 Let {Gi }ti=1 be non-identity permutation groups, acting on �i , respec-
tively. Then

I (G1 × · · · × Gt ,�1 × · · · × �t ) =
t∑

i=1

I (Gi ,�i ) − (t − 1).
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We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Let X be an interval of positive integers, not containing 1. If
X = {a}, then by taking G = H = Sa+1 we have M(G) = I(H) = {a} = X .
Suppose now |X | > 1 and let X = {a, a + 1, . . . , b}, with a > 1.

We start with the minimal bases. Divide b by a − 1:

b = t(a − 1) + r

with 0 ≤ r < a − 1. We consider two cases.
If r = 0, that is b = t(a − 1), then take

G = Sa+1 × · · · × Sa+1︸ ︷︷ ︸
t-times

in its product action on� = {1, . . . , a+1}×· · ·×{1, . . . , a+1}. FromProposition 3.7,
b(G,�) = a and

B(G,�) =
t∑

i=1

B(Sa+1) − t = ta − t = t(a − 1) = b.

If r > 0, take k = r + 2, so that b = t(a − 1) + (k − 2). Since r < a − 1, then
k − 1 < a. Moreover, k > 2. Consider the group

G = Sa+1 × · · · × Sa+1︸ ︷︷ ︸
t-times

×Sk

in its product action on � = {1, . . . , a + 1} × · · · × {1, . . . , a + 1} × {1, . . . , k}.
Arguing as above, we deduce b(G,�) = max(a, k − 1) = a, and

B(G,�) = at + k − 1 − t − 1 = t(a − 1) + k − 2 = b,

as desired.
For the irredundant bases, again divide b by a − 1: b = t(a − 1) + r . Now if r = 0

take H = G and � as before and use Lemma 3.10. If r > 0, take k = r + 1 and

H = Sa+1 × · · · × Sa+1︸ ︷︷ ︸
t-times

×Sk

in its product action on� = {1, . . . , a+1}× · · ·×{1, . . . , a+1}×{1, . . . , k}. Then,
we have b(H) = max(a, k − 1) = a and, by Lemma 3.10, we have

I (H ,�) = at + k − 1 − t = t(a − 1) + k − 1 = t(a − 1) + r = b.

�	

123



584 Journal of Algebraic Combinatorics (2024) 60:569–587

4 Special cases forM(G,Ä)

Theorem 1.3 shows that any interval of natural numbers is the set of cardinalities of
minimal bases for some transitive group. This could suggest that, if G is a transitive
group, then M(G,�) is an interval, but this is not the case.

Proposition 4.1 Let X = {3, n}, with n > 3. Then, there exists a transitive group G
on � withM(G,�) = X.

Proof Let Sn be the symmetric group on n symbols acting naturally on {1, . . . , n}, let
G = Snwr〈σ 〉 where σ has order 3, let N = Sn × Sn × Sn ≤ G and let

H = Sn × (Sn)n × 1 ≤ N ≤ G,

where (Sn)n = Sn−1 is the stabilizer of the point n in Sn . We consider the action of
G on the set � of right cosets of H . As H is core-free in G, we may view G as a
permutation group on �. We claim that M(G,�) = {3, n}.

Set ω = H ∈ � and observe that Gω = H . We can partition G into three N cosets,
namely G = N ∪σN ∪σ 2N . This partition, in turn, partitions � into three N -orbits:

� = ωN ∪ ωσN ∪ ωσ 2N .

If x = (x1, x2, x3) ∈ N and y = (y1, y2, y3) ∈ N , we have

Gω = Sn × (Sn)n × 1, (1)

Gωσ x = 1 × Sn × (Sn)nx3 ,

G
ωσ2 y = (Sn)ny1 × 1 × Sn .

It follows that

Gω ∩ Gωσ x ∩ G
ωσ2 y = 1,

and so, for every choice of x, y ∈ N , {ω,ωσ x , ωσ 2 y} is a minimal base for the action
of G on �. Therefore, 3 ∈ M(G,�).

We now construct a minimal base of cardinality n. First, we again take {ω,ωσ x }
for some x ∈ N , so that the pointwise stabilizer of this subset is

Gω ∩ Gωσ x = 1 × (Sn)n × 1. (2)

If we choose a point from ωσ 2N , then we find again a minimal base of cardinality 3.
So, we are forced to choose the remaining points only from the first two N -orbits. But
if we choose a point from the second N -orbit, say ωσ y for y ∈ N , from (1) and (2),
we obtain

Gω ∩ Gωσ x ∩ Gωσ y = Gω ∩ Gωσ x .

123



Journal of Algebraic Combinatorics (2024) 60:569–587 585

Therefore, we need to take points only from the first N -orbit. For y ∈ N , we have

Gωy = Sn × (Sn)ny2 × 1,

and so

Gω ∩ Gωσ x ∩ Gωy = 1 × (Sn)n,ny2 × 1.

In this way, we need n − 1 points of the form ωy to reach the identity, and so we have
constructed a minimal base of cardinality n. Therefore, n ∈ M(G,�).

Given that we have exhausted our options for selecting orbits to form the basis
points, we can deduce that there are no other cardinalities for a minimal base in G.
Consequently, M(G,�) is contained in {3, n}, marking the conclusion of our proof.

�	

In a very similar way, we can also prove the following proposition.

Proposition 4.2 Let X = {2, n}, with n > 3. Then, there exists a transitive group G
on � withM(G,�) = X.

Proof Take G = SnwrC2 acting on the right cosets of

H = (Sn)n × 1 ≤ G.

We skip the proof, as it mirrors the steps taken in proving Proposition 4.1. �	

This process cannot be repeated to produce other transitive permutation groups G
on � with |M(G,�)| = 2. Indeed, with the same argument as in Proposition 4.1 it is
possible to prove the following proposition.

Proposition 4.3 Let n > 4 and let G = SnwrC4 acting on the set � of right cosets of
H = Sn × Sn × Sn−1 × 1 ≤ G. Then M(G,�) = {4, n, 2n − 2}.

5 The setM(G,Ä) for primitive groups

Other than computational evidence, there is no additional confirmation that the set
M(G,�) forms an interval for primitive groups G. Nevertheless, we hold a belief in
a certain level of regularity within primitive groups, prompting us to propose Conjec-
ture 1.5. Despite this, we do not dare to conjecture that, for each interval X of natural
numbers, not containing 1, there exists a primitive groupG on�with X = M(G,�).
We leave this as yet another conjecture: we phrase it in terms of irredundant bases.

Conjecture 5.1 There exists an interval X of positive integers, not containing 1, such
that no primitive permutation group G on � satisfies X = I(G,�).
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As a partial evidence of this conjecture, we consider the symmetric group Sn in its
natural action on the set �k of k-subset of {1, . . . , n} with 1 ≤ k ≤ n

2 . Indeed, we
prove that there exist no n, k, with k ≤ n/2, such that

I(Sn,�k) = {3, 4, . . . , 12}.

The base size of this action has been recently obtained in two independents works,
[3] and [8]. In particular, in our example, we will use Table 1 from [8] to read off
b(Sn,�k). Note that, before these two papers, some partial results about b(Sn,�k)

were given by Halasi in [6]. Indeed, if n ≥ k2, then

b(Sn,�k) =
⌈
2(n − 1)

k + 1

⌉
.

On the other side, in [5, Theorem 1.1], it is proved that

I (Sn,�k) =
{
n − 1, if gcd(n, k) = 1

n − 2, otherwise.

We study two cases. Firstly, suppose that gcd(n, k) = 1. Then,

12 = I (Sn,�k) = n − 1,

and so n = 13. However, from [8, Table 1], we deduce

b(S13,�1) = 12,

b(S13,�2) = 8,

b(S13,�3) = 6,

b(S13,�4) = 5,

b(S13,�5) = 5,

b(S13,�6) = 4.

Suppose now that gcd(n, k) > 1. Then

12 = I (Sn,�k) = n − 2,

and so n = 14. In this case, from [8, Table 1], we deduce

b(S14,�2) = 9,

b(S14,�4) = 6,

b(S14,�6) = 5,

b(S14,�7) = 4.
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This shows that the interval {3, . . . , 12} does not arise as I (Sn,�k) for some n, k.
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