The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from general and transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model adapted for the fashion industry. We demonstrate the effectiveness of the representations learned by FashionCLIP with extensive tests across a variety of tasks, datasets and generalization probes. We argue that adaptations of large pre-trained models such as CLIP offer new perspectives in terms of scalability and sustainability for certain types of players in the industry. Finally, we detail the costs and environmental impact of training, and release the model weights and code as open source contribution to the community.

Chia, P., Attanasio, G., Bianchi, F., Terragni, S., Magalhães, A., Goncalves, D., et al. (2022). Contrastive language and vision learning of general fashion concepts. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-23052-9].

Contrastive language and vision learning of general fashion concepts

Bianchi F.;Terragni S.;
2022

Abstract

The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from general and transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model adapted for the fashion industry. We demonstrate the effectiveness of the representations learned by FashionCLIP with extensive tests across a variety of tasks, datasets and generalization probes. We argue that adaptations of large pre-trained models such as CLIP offer new perspectives in terms of scalability and sustainability for certain types of players in the industry. Finally, we detail the costs and environmental impact of training, and release the model weights and code as open source contribution to the community.
Articolo in rivista - Articolo scientifico
Generalization, Psychological; Language; Natural Language Processing; Spatial Learning
English
8-nov-2022
2022
12
1
18958
open
Chia, P., Attanasio, G., Bianchi, F., Terragni, S., Magalhães, A., Goncalves, D., et al. (2022). Contrastive language and vision learning of general fashion concepts. SCIENTIFIC REPORTS, 12(1) [10.1038/s41598-022-23052-9].
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--1828169061.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/528018
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 6
Social impact