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Contrastive language and vision 
learning of general fashion 
concepts
Patrick John Chia 1*, Giuseppe Attanasio 2, Federico Bianchi 3, Silvia Terragni 4,7, 
Ana Rita Magalhães 5, Diogo Goncalves 5, Ciro Greco 6 & Jacopo Tagliabue 6

The steady rise of online shopping goes hand in hand with the development of increasingly complex 
ML and NLP models. While most use cases are cast as specialized supervised learning problems, 
we argue that practitioners would greatly benefit from general and transferable representations of 
products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, 
a CLIP-like model adapted for the fashion industry. We demonstrate the effectiveness of the 
representations learned by FashionCLIP with extensive tests across a variety of tasks, datasets and 
generalization probes. We argue that adaptations of large pre-trained models such as CLIP offer new 
perspectives in terms of scalability and sustainability for certain types of players in the industry. 
Finally, we detail the costs and environmental impact of training, and release the model weights and 
code as open source contribution to the community.

Generalization and scalability in machine learning.  The extraordinary growth of online retail—as of 
2020, 4 trillion dollars per year1—has profoundly impacted the fashion industry, with 1 out of 4 transactions now 
happening online2. The combination of large amounts of data and a variety of use cases has made e-commerce 
fertile for cutting-edge machine learning (ML) models, with Natural Language Processing (NLP) involved in 
recommendations3–5, information retrieval (IR)6, product classification7 and many other use cases8–10.

However, as the community starts to address the huge operational costs of training and developing models11, 
it is becoming clear that the value of ML innovations has been mostly captured by a few players12. Where the rest 
of the retail industry is making concrete efforts to adapt promptly, companies offering ML products as a service 
recently gained traction, creating a new multi-billion dollar market13–16. The need for ML capabilities that can be 
applied across entire industries and verticals raises the stakes for an age-old question in ML: can we build models 
that can be reused on different tasks and datasets?

While generalization is a theoretical virtue, real-world models often succeed by (over)fitting to a specific 
dataset and task17,18. In practice, generalization has been considered both hard to achieve and economically 
undesirable for large-scale use cases. In this context, the advent of large-scale, self-supervised models such 
as Contrastive Language-Image Pre-training (CLIP)17 is particularly interesting both from a theoretical and a 
practical point of view. Building upon large pre-trained models to learn general concepts in specific verticals/
industries (e.g., Fashion, Electronics, DIY, etc.) may provide a new and sustainable way to bring the benefits of 
ML capabilities to a broader set of practitioners, especially outside of large tech companies. The idea would be 
to fine-tune general foundational models19 to learn concepts that are specific to a domain (e.g., fashion), but 
general enough to be applicable to all the use cases within that domain.

In this work, we show through extensive testing and open-source code that multi-modal training can be suc-
cessfully used to learn general concepts in a specific domain, namely fashion. In fact, we will argue that it is not 
only technically possible, but also economically viable, and practically advantageous, since moving away from 
the traditional setting where single supervised models are trained specifically per use case reduces annotation 
and maintenance costs while providing solutions transferable across tasks.

Self‑supervised contrastive learning of fashion concepts.  Contrastive learning has recently become 
a predominant approach to learn meaningful representations of concepts in ML. The learning framework builds 
on the idea that semantically related concepts (e.g., two pictures of the same object from different viewpoints) 
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should have similar representations, while unrelated ones should be dissimilar. Initially devised for self-super-
vised image representation learning20,21, contrastive learning has recently been applied to language as well22,23. 
Recent work has used contrastive training to bridge different modalities, e.g., vision and language24,25, audio 
and language26,27, or a combination of the three28,29. These models learn concept representations from different 
modalities (e.g., a textual excerpt such as “a dog running on a field” and a picture depicting the scene) and opti-
mize them to be close in a shared latent space. Crucially, the typical pipeline is self-supervised: since no manual 
annotation is involved (e.g., in the previous example, one can gather image-text pairs from the web), human 
intervention is limited to deciding which pre-training task shall be used.

CLIP17 is a vision-language multi-modal neural network trained via CL to associate vision concepts with 
text. The model comprises a vision and text encoder, each followed by a linear layer to project the image and text 
representations to the same latent space. CLIP is trained to position images and matching descriptions (e.g. an 
image of a red shirt and its description “a red shirt”) close together in the vector space (see Fig. 1 for an example). 
When trained on 400 million<image, text> pairs collected from the internet, CLIP has demonstrated competi-
tive zero-shot or few-shot transfer to downstream tasks such as OCR and fine-grained object classification17.

More formally, CLIP is a multi-modal model that makes use of an image ( Iθ I ) and a text ( TθT ) encoder. Both 
encoders are deep neural networks that map raw representations (i.e., an image and a text) to a 512-dimensional 
dense vector (e.g, given an image i, Iθ I (i) ∈ R

512 ). During training, N pairs of matching images and texts < i, t > 
are selected (e.g., as in Fig. 1, the image of a red shirt and the description “a red shirt”), encoded using Iθ I and 
TθT , L2-normalized, and compared pairwise. CLIP minimizes cross-entropy loss such that Īθ I (ij) · T̄θT (tk) for 
j, k = 1, ..,N is highest when the caption is paired with the correct image ( j = k ), and low otherwise ( j  = k ), 
where Īθ I (·) / T̄θ I (·) are the L2-normalized outputs of the image and text encoders. We summarize the optimiza-
tion objective for CLIP in Eq. (1) and (2).

Here, θ I and θT are the learnable parameters of the image and text encoder neural networks, and the (·) operator 
represents the dot product. The first addition operand of Equation 1 is the cross-entropy on the image axis, while 
the second addition operand is on the text axis.

Recently, industry practitioners have begun to recognize the importance and utility of contrastive pre-training 
for their target domain, with several works presenting successful downstream applications starting from the 
CLIP model30. In fashion, the multi-modal nature of CLIP has been found helpful in recent discriminative31,32 
models, which have been developed under the standard paradigm of task-specific, supervised models. In the 
generative setup, CLIP often complements a larger framework: for example, CLIP is used to learn linguistically 
grounded codebooks in Variational Auto Encoders33 or to guide image synthesis and manipulation in diffusion 
generative models.34,35 While interesting for grounding (see below Fig. 8), the target use case (image generation) 
and more narrow focus (single task, single dataset) are not readily comparable to FashionCLIP, but instead 
suggest a possible complementary application in generative use cases. However, no recent CLIP application has 
been developed to produce industry-wide representations across multiple use cases and datasets. In other words, 
CLIP has been used only as a pre-trained model, with no attempt to overcome single-task supervised models’ 
operational and conceptual problems.
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Ī
θI (ij′

)·T̄
θT

(tk)







(2)θ I∗, θT∗ = argmin
θ I ,θT

L (θ I , θT )

Figure 1.   Two-dimensional representation of images and text in FashionCLIP vector space before and after 
training. Images and their corresponding textual descriptions are embedded closer to each other in the latent 
vector space after training.
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In this work, we introduce FashionCLIP, a CLIP-based model explicitly trained and tested to produce 
general product representations for fashion concepts. We train FashionCLIP on a large, high-quality novel 
fashion dataset: as discussed in the next section, our goal is to establish whether such fine-tuning is sufficient to 
produce product representations that are transferable in a zero-shot fashion to entirely new datasets.

Research question and methodology.  Standard supervised models for vertical-specific applications 
such as fashion are costly to train and operate, providing a large barrier to entry for SaaS providers and smaller 
players12. For example, a product classification model might be trained on < product description, category > 
pairs derived from catalog data36 while optimizing for classification accuracy: if the labels change, or the model 
is deployed on a different catalog, accuracy would drop. It is important to note that moving to CLIP-based archi-
tectures, such as CMA-CLIP37, does not ipso facto solve the problem: if CLIP is used as a per-task model, it will 
raise the same scalability issues as traditional supervised methods.

After training FashionCLIP, we set out to answer a broader, and potentially more impactful question: 
given the right dataset and fine-tuning procedure, can we learn multi-modal concepts that are general enough 
for the entire fashion domain? We proceed with a mixture of quantitative benchmarks – inspired both by exist-
ing literature and problems known to be important in the industry – and qualitative probes to answer it: since 
obtaining general concepts is our goal, it is important to verify that FashionCLIP does not only learn a 
dataset (e.g., an “Armani collection”), but genuine transferable concepts, such as “skirt”, “sleeves”, etc. Taking 
inspiration from CLIP, our two initial benchmarks will test how FashionCLIP goes from text to image, and 
vice versa (see Fig. 2): 

1.	 Text to image Product search is one of the main channels of interactions and revenues between a shop 
and its users, accounting on average for 30% to 60% of the total online revenues38,39. Historically, product 
search has been performed chiefly with textual features by first matching queries and product descriptions 
in an index40–42 and then re-ranking the candidate results43. However, there are good reasons to believe that 
including visual features can bring significant improvements since images are often the most curated aspect 
of the catalog. In contrast, text quality varies throughout verticals, languages, and specific product feeds. Our 
extensive tests show that FashionCLIP learns fashion concepts, and successfully applies them to unseen 
products and incomplete or ambiguous descriptions.

2.	 Image to text Product classification is the task of predicting a product category given its meta-data. Clas-
sification (even for CLIP-based models, such as CMA-CLIP) is cast as a supervised learning problem where 
one extracts golden labels from the catalog itself or collects them through crowd-sourcing7,44. Generalizing 
classification to arbitrary labels without constant retraining is again crucial for making ML feasible across 
numerous players in the fashion industry: transferable concepts help with the interoperability of overlapping, 
and yet different, fashion taxonomies45, a challenge increasingly recognized as central by both practitioners 
and commentators46 (this includes the case of catalogs in less represented languages, for which an English 
classification is still desirable). Our extensive tests show that FashionCLIP zero-shot capabilities, based 
on learned associations between vision and textual concepts, allow for quick classification of products in 
target classes of interest, irrespective of the specific labeling schemes of individual suppliers.

We also perform specific probing to understand whether the concepts learned by the model are robust and (some-
how) aligned with human semantic intuitions, as opposed to picking up spurious correlations in the dataset47: 

1.	 Grounding. We probe FashionCLIP for grounding capabilities through localization maps and apply them to 
the task of zero-shot semantic segmentation for fashion concepts (e.g., sleeve length, texture patterns) and 
attributes (e.g., laced shoes, glittered shirts).

2.	 Compositionality. We propose a novel way to probe whether the model can go from semantic segmentation to 
inferential abilities by composing such concepts to generate new linguistic expressions. We do that through 
the device of “improbable object”, where a linguistic expression is meant to describe an odd combination of 
concepts that have never been observed before (e.g., a pair of shoes with handles).

Figure 2.   Schematic overview of multi-modal retrieval (left) and zero-shot classification tasks (right).
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We summarize our contributions as follows: 

1.	 while other researchers have independently developed CLIP-based solutions for individual fashion prob-
lems, FashionCLIP is the first explicit attempt to produce general multi-modal concepts for industry: the 
breadth and nature of our testing methodology make FashionCLIP appealing as a general fashion model, 
applicable to situations where supervised systems are not practical or viable. Our model is trained on over 
700k < image, text > pairs from the inventory of Farfetch, one of the largest fashion luxury retailers in the 
world, and is shown to be useful in important use cases in a vast global market;

2.	 we evaluate FashionCLIP in various tasks, showing that fine-tuning helps capture domain-specific con-
cepts and generalizes them in zero-shot scenarios; we supplement quantitative tests with qualitative analyses 
and offer insights into how concepts grounded in a visual space unlock linguistic generalization. These results 
would not be possible without the flexibility provided by natural language as a supervision signal and the 
domain-specific accuracy achieved through fine-tuning;

3.	 we transparently report training time, costs, and emissions. We additionally release to the community, under 
an open-source license, training code, a demo app, and plug-and-play checkpoints to help leverage our find-
ings while facilitating ROI considerations48,49; the large and unique dataset is also scheduled to be released 
directly by Farfetch. Taken together, FashionCLIP artifacts (model, demo, data) are a foundational toolkit 
for practitioners in the space and a template for other verticalized CLIP models (https://github.com/patrick-
johncyh/fashion-clip).

We believe that our methods and results are interesting not just for the fashion industry but broadly speaking 
for the ever-expanding industry of online retail, as our artifacts, use cases and benchmarks might serve as a 
blueprint for other vertical-specific applications of large multi-modal models. Finally, adding to the industry 
significance of the work, the evaluation in  “Grounding and Compositionality” section is new in the context of 
CLIP-like models, and we believe it may be of independent interest for future work in NLP. As a matter of fact, 
showcasing a practical thread connecting generalization and latent space interpretation to industrial scalability 
may be the most interesting contribution of FashionCLIP.

Results
In this section, we detail the performance of FashionCLIP over a range of tasks, demonstrating the efficacy 
of domain adaptation and the applicability of CLIP-like models to fashion. Details on the training and on the 
evaluation are available in the “Methods” Section. We leverage a variety of in-domain and out of domain datasets, 
with varying degrees of similarity: TEST is the test set from Farfetch containing 20k products; HOUT-C is the 
dataset containing a category which we excluded from training; HOUT-B is the dataset containing two brands 
which were excluded from training; STLE is a merchandising dataset from Farfetch; KAGL is a subset of50, where 
each product has a white background image, a caption, and a category; F-MNIST51 contains 10, 000 gray-scale 
images from 10 product classes; DEEP52 contains 4000 product images that are non-standardized (i.e., contain 
humans) from 50 categories. An overview of image and textual data offered by Farfetch (TEST, HOUT-C, 
HOUT-B, STLE), KAGL, F-MNIST and DEEP can be found in Fig. 3. Our extensive benchmarks and evaluations 
answer two research questions quantitatively: can domain-specific knowledge improve CLIP understanding of 
an industry (Fig. 5) and, if yes, does that knowledge translate across different use cases and datasets?

Multi‑modal retrieval.  The Multi-modal Retrieval task is described as follows: given a textual descrip-
tion and a set of images, we ask the model to find the image related to that description. For example, a product 
retrieval task entails matching a product description (e.g., “a red polo for men”) and a photo of it in a catalog.

Multi-modal retrieval is possible due to the optimization objective of FashionCLIP which aligns the 
language and image latent spaces (see Fig. 1). We test FashionCLIP on multi-modal retrieval to assess the 
benefits of domain-specific fine-tuning on real-world product search.

Our benchmark takes as input a product description from the catalog’s test set and asks models to rank 
product images corresponding to the caption—the gold standard is the image associated with the product. We 
extract the ranking using embedding similarities: FashionCLIP performs the dot product between the input 
caption embedding and each image vector embedding obtained via T̄θT (·) and Īθ I (·) respectively and returns a 
rank based on descending order. We use HITS@553 (Hit Rate @ k = 5 ) and MRR54 (Mean Recirpocal Rank) as 
our metrics. Table 1 compares FashionCLIP against non-domain specific CLIP on different heldout test sets 
and shows how fine-tuning significantly improves the understanding of our target domain.

We also perform extensive qualitative tests comparing FashionCLIP with the production search engine 
presently employed in the catalog. Fig. 4 shows a case of particular interest for product search: in this example, 
visual concepts do not belong to the fashion domain and are not available in the caption. The first comparison 
(left) shows that FashionCLIP can recover the concept of tiger when prompted with “t-shirt with tiger”; for 
the same query, the search engine retrieves items matching the category, unable to interpret tiger based solely 
on text. The second comparison (right) shows that FashionCLIP can interpret a cat from a stylized, partially 
occluded drawing. In contrast, the search engine fails to generalize beyond the captions explicitly containing the 
string “cat”. Finally, visualizing the learnt embeddings (Fig. 5) also helps to build an intuition of FashionCLIP’s 
better conceptual resolution when it comes to the target domain.

Zero‑shot classification.  We replicate CLIP’s original zero-shot classification setup17, which allows us to 
quantitatively assess the transferability of FashionCLIP’s fine-tuned representations to different data distribu-
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Figure 3.   Sample of data from various datasets used. We observe a range of distributions on both the image and 
textual modalities. For the image modality, we see a range from “Low resolution, B &W” to “High resolution, 
In-the-Wild”. For the textual modality, Farfetch offers the best “textual resolution”, while DEEP also has very 
fashion specific terminology. The KAGL, F-MNIST, and DEEP datasets are publicly available. For more details 
regarding the data, see the Data Availability Section.

Figure 4.   Retrieval with non-fashion concepts. Sample results for “t-shirt with tiger” and “t-shirt with cat” from 
FashionCLIP (green) vs Farfetch production search engine (red).

Table 1.   Comparing FashionCLIP (F-CLIP) vs CLIP on the multi-modal retrieval task. Best performing 
models are in bold.

Model Dataset HITS@5 MRR

F-CLIP
TEST

0.66 0.50

CLIP 0.28 0.21

F-CLIP
HOUT-C

0.62 0.47

CLIP 0.33 0.23

F-CLIP
HOUT-B

0.58 0.41

CLIP 0.31 0.22
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Table 2.   Comparing the performance of FashionCLIP (F-CLIP) on product classification task over 
several datasets (F1 is weighted macro F1). Best performing models are in bold.

Model Dataset F1

F-CLIP
TEST

0.39

CLIP 0.31

F-CLIP
KAGL

0.67

CLIP 0.63

F-CLIP
F-MNIST

0.71

CLIP 0.66

F-CLIP
DEEP

0.47

CLIP 0.45

Table 3.   LINEAR classification performance relative to zero-shot on F-CLIP (F1 is weighted macro F1).

Dataset F-CLIP LINEAR �F1

TESTS 0.746 0.900 + 0.154

KAGLS 0.764 0.881 + 0.117

DEEPS 0.411 0.444 + 0.033

F− MNISTS 0.781 0.602 − 0.179

Table 4.   F1 macro on STLE; Prior classifies using empirical class probabilities. Best performing models are 
in bold.

Model Man Woman

Prior 0.24 0.20

F-CLIP 0.36 0.27

CLIP 0.33 0.17

Figure 5.   Comparison of F-CLIP and CLIP Image Space T-SNE projection. We observe better clustering 
(0.115 vs 0.0745 silhouette score58) in F-CLIP for categories such as Shirts, Skirts and Dresses, where the 
products form a denser cluster with less overlap between categories, suggesting that the F-CLIP latent space is 
better tuned for fashion concepts.
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tions from the same vertical (i.e. Fashion). The model generates one image embedding for the product image, 
and k text embeddings, one for each of the labels in the classification scheme (e.g., “shoes”, “shirt”). The pre-
dicted label is the one that is closer (measured via dot product) to the image in the model’s vector space. We use 
weighted macro F155 as the performance metric. Table 2 summarizes the results of different SOTA benchmarks. 
On all the tested benchmarks, FashionCLIP is superior to CLIP, a result which suggests that domain-specific 
fine-tuning is indeed useful in-domain and that it generalizes to other, completely unseen datasets.

Furthermore, we set out to investigate the “cheating hypothesis” on our domain-specific model, i.e., the 
hypothesis that supervised models do not generalize as well as CLIP because they fit spurious features unique 
to each dataset. We freeze the image encoder from FashionCLIP and fine-tune a linear classifier, LINEAR, 
over the embeddings generated on a subset of categories (47) from the validation set from Farfetch. We run 
benchmarks on TESTS , KAGLS , F-MNISTS and DEEPS , sub-sampled versions of the respective datasets. Where 
labels are different, we adapt LINEAR to the labels by pooling the scores from relevant classes. We compare this 
to zero-shot performance, using the original labels to generate the text embeddings.

Table 3 reports our findings, which are partially similar to those from CLIP17. Given that F-MNIST is very 
different from TEST—comparable, for example, to CIFAR-10056 vs. ImageNet57—the decrease in performance 
may be an indication of cheating. However, LINEAR performs well on the other datasets, with the biggest gain for 
KAGL, whose product image most resembles those in TEST (i.e., high-resolution items on a white background). 
Compared to the original setting17, one may argue that the supervised model has an easier job in our case: much 
fewer categories ( 101 vs. 103) and relatively homogeneous items, F-MNIST aside.

While we leave the investigation of fashion classification in more ecological settings as future work, our 
results contain actionable insights for real-world deployments. In particular, supervised classifiers still require 
a good deal of manual intervention even for similar datasets, and they are utterly unusable on neighboring yet 
different problems. Table 4 reports performance on STLE divided by Man- and Woman-related items. Products 
in the dataset still come from Farfetch, but labels are manually assigned by merchandisers and are orthogonal 
to the taxonomy (classic, streetwear, edgy vs. shoes, hats, bags). The versatility afforded by language supervision 
allows zero-shot models to tackle the challenge by simple prompt engineering (“an item in classic style”); in 
contrast, supervised models would require a new training and evaluation pipeline. As emphasized above, learn-
ing general fashion concepts is the main motivation behind this work: while specific, supervised pipelines may 
still be the best choice for specific problems, they are no longer the only viable option in multi-tasks scenarios 
thanks to the advent of large-scale models such as FashionCLIP. Although no single answer can fit all the 
use cases, we wish to encourage data-driven decision-making by charting all the options and providing cost and 
performance assessments.

Grounding and compositionality.  As argued in the Introduction, given that we are interested in estab-
lishing a connection between generality and scalability through large multi-modal models, it is important to fur-
ther evaluate the quality of the learned representations. While the question of whether FashionCLIP learns 
fashion has been addressed quantitatively above, we are also interested in evaluating the model from a broader 
theoretical perspective of language understanding, offering a glimpse of the extent of FashionCLIP’s “true” 
generalization capabilities, ala “infinite use of finite means”59.

The literature on language compositionality spans centuries: limiting ourselves only to recent work, grounding 
has been explored in connection with efficient learning60,61, and “true understanding”62,63. Using combinatorial 
principles to test generalization abilities is a known strategy in toy world64,65: we exploit insights from our target 
domain to operationalize similar principles on real-world objects.

In this section, we provide evidence of semantic grounding in FashionCLIP and build on that to offer 
a preliminary investigation of its compositional abilities. Our analysis starts from two lessons from previous 
research. First, localization maps66,67 are an effective way to probe the model for referential knowledge68 (we bor-
row here the referential/inferential distinction from the classic work by Marconi 69) and visually grounded lexical 
knowledge. Second, from a linguistic point of view most search queries in fashion have the form of Noun Phrases 
(NPs)—e.g. “armani dress”. Therefore, the semantics of NP can be considered a good real-world generalization9,70 
for studying FashionCLIP compositional and inferential abilities.

Grounding.  We probe FashionCLIP for evidence of referential knowledge and investigate its grounding 
capabilities by utilizing localization maps. We further apply localization maps to the task of zero-shot fashion 
parsing—a crucial open problem in the industry 71.

Localization maps are obtained by repeatedly occluding different parts of the image. We then encode each 
occluded version and measure its distance from the target text in the contrastive space. Intuitively, the farther 
the image is pushed away by the occlusion, the stronger the linkage was between the removed visual concept and 
the text and, in turn, the higher its score on the map. Fashion parsing is a specific case of semantic segmentation 
where bounding box annotations contain clothing items. We extract bounding box annotations (as an approxi-
mation of fine-grained segmentation) from localization maps by finding the minimum bounding rectangle of 
highly activated areas.

As shown in Figs. 6 and 8, features such as “high heels”, “ankle strap”, “long sleeves” are well represented in 
FashionCLIP; the model also seems to be very aware of brands, in more or less explicit form. FashionCLIP 
picks up the abstract logo on sneakers (Fig. 6), as well as showing (similar to CLIP) good OCR capabilities, when 
recognizing a logo as an explicit text string. Fig. 7 shows zero-shot bounding box annotations of some samples 
in the previously unseen ModaNet72 dataset. While it is unlikely that zero-shot models could replace specialized 
segmentation training, we believe that models such as FashionCLIP could provide a cheap way to generate 
probabilistic labels for weak supervision pipelines.
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Compositionality.  Given the preliminary evidence that isolated concepts reliably map onto visual regions, our 
working hypothesis is that FashionCLIP should exhibit true inferential abilities by composing such concepts 
to generate new NPs.

We build on domain knowledge, previous literature52 and Farfetch’s inventory to probe the model for knowl-
edge of brands (e.g. “nike”), features (“high heels”), and drawings (“keyboard”), manually verifying the text-to-
region mapping for each of these concepts via localization maps. Given that these single concepts are grounded 

Figure 6.   Grounded lexical knowledge. Maps are easy-to-use probes into the model fashion knowledge. Left to 
right: localization map for “long sleeves” on a red polo; sneakers and the map for “Nike”, a phone cover and the 
map for “Palm Angels”; the same phone cover and map, when the logo is written with an out-of-distribution 
font in a new spot.

Backpack

Straw hat

Figure 7.   Item bounding-box detection. Localization maps can be easily extended to provide zero-shot 
bounding boxes for items of interest.Green bounding boxes show the predicted locations for fashion concepts 
“Backpack” (left) and “Straw hat” (right). Images above are taken from the publicly available Unsplash Lite 
Dataset 1.2.0: FashionCLIP was tested extensively on ModaNet - please reach out to authors for links to those 
images.

Figure 8.   Grounding and compositionality. Localization maps for a product retrieved with the query “ankle 
strap sandals with high heels”: left-to-right, the product, “ankle strap”, “sandals”, “high heels”).
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in regions (Fig. 8), we could leverage this knowledge to generate new images and NPs systematically. Crucially, 
we can assign a defined semantics to a new brand + object NP that describes an “improbable object” that has 
never been seen before (Fig. 9). Improbable objects vary: they may portray odd combinations of concepts, such 
as a Nike long dress, a surreal item, sneakers with handles, or an unlikely extension of existing fashion items, such 
as the keyboard pochette (which generalizes the theme first found in J. Mugatu’s keyboard tie). A new NP such as 
“nike dress” would require the visual region corresponding to the word dress to contain the visual region of the 
logo corresponding to the word nike.

We supplement our analysis by re-purposing our classification and retrieval pipeline: in the classification task, 
FashionCLIP achieves an accuracy of 0.74 when asked to pick the improbable label out of a set of credible 
distractors. The following are examples of test cases:

•	 target: NIKE DRESS (as seen in Fig. 9), labels: Nike dress, an Armani dress, a shirt, the flag of Italy, a Gucci 
dress, a Nike t-shirt;

•	 target: BLACK SHOES WITH RED HEEL, labels: black shoes with red heel, black shoes, red shoes with red 
heel, red shoes with black heel, red shoes, fuchsia shoes, the flag of Italy, sneakers, black sneakers, a bag.

•	 target: RED SHOES WITH BLACK HEEL (as seen in Fig. 9), labels: black shoes with red heel, black shoes, 
red shoes with red heel, red shoes with black heel, red shoes, fuchsia shoes, the flag of Italy, sneakers, black 
sneakers, a bag.

For the retrieval task, we add the new images to TEST, and use the NPs as queries: out of 20k products, the 
model’s top choice is correct half the time (HITS@1 = 0.53 ), a percentage that quickly rises to 0.82 with k = 5 
(as a comparison, CLIP scored HITS@1 = 0.51 and HITS@5 = 0.73).

While a full-fledged investigation of compositional abilities is beyond the scope of this contribution, Fash-
ionCLIP inferences on improbable products suggest the presence of some degree of compositionality: impor-
tant fashion concepts are “identifiable” in the latent space and can be singled out and re-combined into unseen 
concepts, exhibiting on a small scale the creative generalization we usually associate with symbolic systems73. In 
addition, the ability to distinguish “red shoes with black heel” from “black shoes with red heel” implies knowledge 
beyond a bag-of-words semantics74.

Recent research suggests that CLIP’s compositional capabilities are limited.75. As shown by our results, 
restricted domains allow for direct manipulation, without the risk of confounding; indeed, restricted domains 
may be easier to explore but further investigation is needed to confirm compositional capabilities. Furthermore, 
as suggested by the use of the MASKClip objective introduced in the ARMANI model33, adding explicit visual 
segmentation may induce better discrimination for certain fashion concepts. While more costly losses are an 
interesting area at the intersection of grounding and compositionality, given both the narrow generative focus 
and the magnitude of the improvements in the original paper33, their conclusions cannot be readily applied 
to FashionCLIP. We look forward to performing future research combining insights from generative and 
discriminative use cases.

Discussion
FashionCLIP is a domain-adaptation of CLIP, motivated by central use cases in fashion71: differently from 
task-specific supervised methods, FashionCLIP does not need a specialized architecture, labeling, and tun-
ing. We extensively verified the flexibility afforded by language supervision, and investigated FashionCLIP’s 
semantic capabilities on new tasks. Our focus on a specific industry allows not just practical gains but also opens 
up theoretical possibilities by constraining the domain, which is still large, but also easy to manipulate. By pro-
viding quantitative and qualitative evidence that contrastive learning, coupled with a large and diverse dataset, 
can indeed produce general multi-model industry concepts, we connect theoretical virtues with significant 
practical gains, and open new possibilities for scaling the horizontal deployment of machine learning systems 
in an effective way.

As a truly general system, FashionCLIP concepts could be used for many more tasks: for example, multi-
modal representations can be features in downstream systems, or directly used for zero-shot recommendations 
in item-to-item scenarios76; classification over arbitrary labels could be used as a fast and scalable labeling 
mechanism, supporting probabilistic labeling77 or data generation for multi-modal IR models78. While leaving 

Figure 9.   Improbable products. By combining fashion features, brands, and items in new ways, we obtain 
visually realistic products with clear, zero-shot compositional semantics. From left to right: “Nike long dress”, 
“converse with handles”, “red shoes with black high heel”, “keyboard pochette”.
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this (and many other themes) to future iterations, we do believe this work—with its artifacts and methodol-
ogy—to be a first, rounded assessment of the great potential of general, transferable, multi-modal concepts for 
digital commerce.

The authors are aware of the risks of multi-modal CLIP-like models in production associated with their lim-
ited robustness, as well as general issues with biases in large language models pre-trained at scale. In particular, 
we acknowledge that the risk of adversarial attacks on multi-modal models is an area of active research80,81. To 
the limits of our knowledge, we have no reason to believe that FashionCLIP introduces any additional risk 
when compared to the original CLIP. As with the original model, it should be noted that FashionCLIP appears 
to be susceptible to “typographical attacks” (Fig. 10). No datasets used for training or testing contain PII and/
or other sensitive user data.

Methods
Training dataset.  Farfetch made available for the first time an English dataset comprising over 800 k fash-
ion products, with more than 3k brands across dozens of object types. Compared to other large fashion data-
sets, our dataset is significantly more complete than DeepFashion52, which lacks detailed text descriptions, and 
even larger than CM-Fashion33, which has been collected without any direct involvement by Farfetch. Items are 
organized in hierarchical trees, producing a three-layer taxonomy: for example, trees could be something like 
Clothing> Dresses> Day Dresses or Clothing> Coats> Parkas, for a total of 800+ trees. As input for the image 
encoder, we use the standard product image, which is a picture of the item over a white background, with 
no humans (images follow a specific set of rules regarding the placement of the item, lights of the photo, etc., 
designed to highlight the item’s features); as for the text, Farfetch has two types of text, highlight (e.g., “stripes”, 
“long sleeves”, “Armani”) and a short description (“80s styled t-shirt”). See Fig. 3 for an example.

We create a training, validation, and test set from the catalog by random sampling products. Our final training 
and validation sets comprise 700 k and 50 k products respectively from 188 categories.

Training pipeline.  We apply fine-tuning starting from the pre-trained CLIP with the following parameters: 
we use Adam Optimizer with betas in (0.9, 0.98), epsilon of 1e−6 and weight decay equal to 0.2 and three differ-
ent learning rates [1e−4, 1e−5, 1e−6]. We train the models for 4 epochs, evaluate every 500 steps and select the 
model with the lowest validation loss for each configuration (Table 5, model selected in bold). In our preliminary 
tests, the model with the lowest validation loss overall did not generalize the best in the zero-shot setting. This 
poses an interesting question, left for future work, of how to fine-tune these large pre-trained models without 
losing in generalization. The pipeline has been implemented with Metaflow82, with training executed remotely 
on cloud GPUs; experiment tracking was provided by Comet83.

Testing datasets.  We prepare the following datasets for testing purposes and to further gauge the potential 
impact of the model in production at scale. TEST is the test set from Farfetch containing 20k products; HOUT-
C is the dataset containing a category which we excluded from training (Performance Tops), for a total of 1.5k 
items; HOUT-B is the dataset containing two brands which were excluded from training, for a total of 1.7k 
items; STLE is a merchandising dataset from Farfetch, completely independent from the catalog, that classi-
fies 7749 items across 6 styles for gender women and 4 styles for gender men; example of styles are Classic and 

Figure 10.   Typographical attack. FashionCLIP correctly identifies the object to the left as an “apple”, but 
misclassifies the one to the right as “nike air”, as the text acts as a confounder79.

Table 5.   Comparing training time, performance, costs, and carbon emission on variants of the 
FashionCLIP architecture on the Farfetch catalog. Cost is calculated with the AWS pricing for a p3.2xlarge; 
estimations were conducted using the Machine Learning Impact calculator84. Model used for testing in bold.

LR Loss Time(m) USD kgCO2  eq

1e−4 16.0 618 31$ 0.77

1e−5 1.73 617 31$ 0.77

1e−6 2.83 621 31$ 0.78
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Streetwear and each item may belong to more than one style; KAGL is a subset of50, where each product has 
a white background image, a caption, and a category, for a total of 9990 items over 62 categories; F-MNIST51 
contains 10, 000 gray-scale images from 10 product classes, with pixel intensity inverted to obtain images with 
white background (note that these images have a size of 24 × 24 thus showing much less details than the images 
on which the models have been trained on). DEEP52 contains 4000 product images that are non-standardized 
(i.e contains humans) from 50 categories.

Training FashionCLIP.  We re-purpose the CLIP main architecture17, which we describe briefly in the 
Introduction for the sake of completeness. In the end, we obtain a multi-modal space where images and texts are 
jointly projected and learned: if training has been successful, we expect that, for example, the textual embedding 
for the string “red long dress” is actually similar (as measured by the dot product) to the image embeddings of 
red dresses. Table 5 shows training time, performance, and costs.

Data availability
The KAGL, F-MNIST, and DEEP datasets are publicly available. The Farfetch dataset is scheduled to be released 
in the near future. As part of the ongoing mission to help the retail space leverage the latest A.I. techniques and 
to promote multidisciplinary research in data science across industries, Farfetch is working to finalize the release 
of the dataset used in this study under a research-friendly license. Please check https://​github.​com/​Farfe​tch for 
updates on the data release, and reach out to the authors for preliminary inquiries.
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