Extracting longitudinal modes of weak bosons in LHC processes is essential to understand the electroweak-symmetry-breaking mechanism. To that end, we propose a general method, based on wide neural networks, to properly model longitudinal-boson signals and hence enable the event-by-event tagging of longitudinal bosons. It combines experimentally accessible kinematic information and genuine theoretical inputs provided by amplitudes in perturbation theory. As an application we consider the production of a Z boson in association with a jet at the LHC, both at leading order and in the presence of parton-shower effects. The devised neural networks are able to extract reliably the longitudinal contribution to the unpolarised process. The proposed method is very general and can be systematically extended to other processes and problems.
Grossi, M., Incudini, M., Pellen, M., Pelliccioli, G. (2023). Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 83(8) [10.1140/epjc/s10052-023-11931-y].
Amplitude-assisted tagging of longitudinally polarised bosons using wide neural networks
Pelliccioli G.
2023
Abstract
Extracting longitudinal modes of weak bosons in LHC processes is essential to understand the electroweak-symmetry-breaking mechanism. To that end, we propose a general method, based on wide neural networks, to properly model longitudinal-boson signals and hence enable the event-by-event tagging of longitudinal bosons. It combines experimentally accessible kinematic information and genuine theoretical inputs provided by amplitudes in perturbation theory. As an application we consider the production of a Z boson in association with a jet at the LHC, both at leading order and in the presence of parton-shower effects. The devised neural networks are able to extract reliably the longitudinal contribution to the unpolarised process. The proposed method is very general and can be systematically extended to other processes and problems.File | Dimensione | Formato | |
---|---|---|---|
Grossi-2023-European Physical Journal C-VoR.pdf
accesso aperto
Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.