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Abstract Extracting longitudinal modes of weak bosons
in LHC processes is essential to understand the electroweak-
symmetry-breaking mechanism. To that end, we propose a
general method, based on wide neural networks, to prop-
erly model longitudinal-boson signals and hence enable the
event-by-event tagging of longitudinal bosons. It combines
experimentally accessible kinematic information and gen-
uine theoretical inputs provided by amplitudes in perturba-
tion theory. As an application we consider the production of
a Z boson in association with a jet at the LHC, both at lead-
ing order and in the presence of parton-shower effects. The
devised neural networks are able to extract reliably the longi-
tudinal contribution to the unpolarised process. The proposed
method is very general and can be systematically extended
to other processes and problems.
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1 Introduction

Accessing the polarisation of electroweak (EW) bosons
at high-energy colliders is crucial to gain insights in the
electroweak-symmetry-breaking mechanism (EWSB), whose
nature is currently explained by the Higgs mechanism [1–3].
By means of the EWSB, the W and Z bosons are given a
mass and a longitudinal-polarisation state. Therefore, any
deviation in the production of longitudinal bosons in scat-
tering processes would suggest the presence of new-physics
effects, implying a different realisation of the EWSB com-
pared to the Standard Model (SM) one.

The investigation of polarised-boson signals in LHC pro-
cesses is becoming an important part of the analysis pro-
gramme of the ATLAS and CMS collaborations with Run-2
data, as shown in recent measurements of di-boson produc-
tion and vector-boson scattering (VBS) [4–7]. The increase
in statistics of Run-3 and the High-Luminosity phase will
drastically improve the precision of current analyses and give
access to polarised signals in complex multi-boson processes
[8–10].

The analysis paradigm for the measurement of polarisa-
tions of EW bosons with Run-1 data at 7/8 TeV was the eval-
uation of angular coefficients of the boson decay rate, which
are related to the polarisation fractions. The extraction of
angular coefficients in LHC processes was proposed in sem-
inal phenomenological works [11–13] and applied in exper-
imental analyses of W+j [14,15] and Z+j [16,17] events, as
well as of top-quark decays [18–20]. Owing to its simplic-
ity, this strategy has been further investigated and extended in
more recent phenomenological studies [21–28]. However, its
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application is limited [11–13,25,26,29] to inclusive decays
(i.e. without selections on single decay products of bosons)
and to two-body decays [i.e. without radiative corrections to
the decay (e.g. EW corrections)].

More recently, a different approach was proposed [29]
to interpret LHC Run-2 data in terms of polarisations of
EW bosons, relying on the direct simulation of intermedi-
ate polarised bosons in Monte Carlo codes. This method has
been automated and applied to several processes at leading
order [29–32] and extended to higher-order EW and QCD
corrections [33–39]. The existing results in the literature in
this direction concern vector-boson scattering (VBS) [29–
32], inclusive di-boson [33–36,38–40], Higgs-boson decays
[41–43] and W+j production [37]. The great advantage of
this approach is that, upon subtraction of backgrounds, LHC
signal events can be fitted with polarised templates in order
to extract polarisation fractions in a differential way from the
LHC data, accounting properly for interference effects and
spin correlations. This has become the new analysis paradigm
with Run-2 data, as demonstrated by the pioneering measure-
ments performed by ATLAS and CMS in di-boson inclusive
production [4,6,7] and VBS [5].

A number of recent studies have been carried out targeting
the polarisation extraction in the presence of hadronic decays
of the weak bosons [40,44–48], both with the polarised-
template method and with machine-learning techniques. The
usage of machine learning was also proposed to extract polar-
isation fractions in VBS, starting from the kinematic structure
of the events [45,49–53].

Independently of the specific approach that may be used
for the interpretation, the polarisation state of an unstable
particle, like EW bosons, is not directly accessible in the
detectors. Therefore, the information about it can only be
reconstructed (in a probabilistic way) from the stable decay
products. In other words, the polarisation of EW bosons is
a pseudo-observable. On the other hand, from a theoretical
perspective, the whole information regarding the fundamen-
tal quantum field theory and therefore the polarisation prop-
erties is encoded in the amplitude. Therefore, accessing the
amplitude of scattering processes at experiments would give
the maximal information possible, i.e. the maximal predictive
power. However, in a realistic experimental environment only
the momenta of the visible final states can be reconstructed.
This means that the momenta of the initial states as well as
their parton type, both needed for the exact evaluation of the
amplitude, is a priori unknown. As explained in the rest of
the article, machine learning (ML) can actually be used to
approximate well the amplitudes based only on the partial
information available experimentally.

It is worth pointing out that in this article we exclusively
refer to amplitudes and not matrix elements, which are actu-
ally equivalent for our purposes. Our method, though close

in spirit, should not to be confused with the matrix-element
method [54,55] and the optimal-observable method [56–58].

The article is organised as follows. In Sect. 2 we explain
the difficulties in tagging longitudinal bosons and propose a
solution based on wide neural networks and amplitudes. A
concrete application of the proposed method to Z + j at the
LHC is then detailed and discussed in Sect. 3. In Sect. 4 we
draw the conclusions of our work.

2 Tagging longitudinal bosons

2.1 Definition of the problem

A generic (unpolarised) amplitude featuring a resonant gauge
boson decaying into a lepton-neutrino pair can be written as
follows (in the unitary gauge),

M = MP
μ

i

k2 − M2
V + i�V MV

(
−gμν + kμkν

M2
V

)
MD

ν ,

(1)

where MP and MD describe the production and decay part
of the amplitude, respectively. The quantities MV and �V

represent the gauge-boson mass and width, respectively. In
particular, the tensor part of the propagator can be cast into
the following form,

−gμν + kμkν

M2 =
4∑

λ=1

ε
μ
λ (k)εν∗

λ (k), (2)

where the {εμ
λ (k)} represent polarisation vectors of the mas-

sive gauge boson. The sum runs over four polarisation states,
namely the three physical states and a fourth one, whose
structure depends on the EW-gauge choice, and is thus is
unphysical.1 Throughout the article, we use the labels L, +,
and − for the longitudinal, right-handed, and left-handed
states, respectively. Notice that the polarisation vectors are
defined in such a way that they are transverse w.r.t. the boson
four momentum, but do not transform as Lorentz covariants,
therefore they must be defined in a specific Lorentz frame.
Also, we would like to emphasise that the definition of the
polarisation of the massive gauge bosons is only meaningful
when gauge bosons are on the mass shell or when the resonant
contributions are treated in the narrow-width [59,60] or pole
approximation [61–66]. The reason for this is to guarantee
gauge invariance.

1 It is important to notice that this unphysical contribution always can-
cels out against Goldstone-boson contributions at any order in pertur-
bation theory.
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The amplitude in Eq. (1), including both production and
decay parts, can therefore be written as,

M =
∑
λ

Mλ, λ = L,+,− , (3)

where Mλ is the amplitude with a polarised intermediate
gauge boson (with state λ),

Mλ = [MP
μ ε

μ
λ (k)

] i

k2 − M2
V + i�V MV

[
εν∗
λ (k)MD

ν

]
. (4)

Hence, squaring the unpolarised amplitude leads to

|M|2 =
∑
λ

|Mλ|2 +
∑
λ�=λ′

M∗
λMλ′ , λ, λ′ = L,+,−, (5)

where the first sum represents the incoherent sum over
polarised squared amplitudes, while the second one includes
all interference terms. For phenomenological purposes it is
convenient [30] to define a transverse (T) contribution as the
coherent sum of the left- and right-handed contributions to
the squared amplitude,

|MT|2 = |M+|2 + |M−|2 + 2 Re
(M∗+M−

)
, (6)

leading to a simpler structure of Eq. (5),

|M|2 = |ML|2 + |MT|2 + 2 Re
(M∗

LM+
) + 2 Re

(M∗
LM−

)
. (7)

The term |ML|2 defines the longitudinally polarised squared
amplitude which is the focus of the present work. Note that
the interference terms of Eq. (5) [or of Eq. (7)] are in general
non vanishing and can take either positive or negative values.

Hence, the fully differential unpolarised and longitudinal
cross sections schematically read,

dσunp = 1

F
|M|2 d�, dσL = 1

F
|ML|2 d�, (8)

where the flux factor and phase-space measure are denoted
by F and d�, respectively. The differential longitudinal frac-
tion in a generic observable O, that is ought to be extracted
experimentally, is therefore defined as,

fL(O) = dσL

dO
/

dσunp

dO . (9)

Problem The main challenge is to extract the longitudinal
fraction experimentally for arbitrary observables, i.e. in a
fully differential way. In other words, we would like to answer
the question: how can we infer on an event-by-event basis the
probability for an LHC event to be longitudinally polarised?
In what follows, we will address exactly this problem.

As briefly mentioned in Sect. 1, a number of methods have
been proposed in past and recent years to address the issue
of longitudinal-event tagging. In the rest of this section, we
review some of them.

For the interpretation of LHC Run-1 data, the angular-
coefficient method was typically applied with polarisation-
extraction purposes. It relies on the functional structure of
the tree-level decay rate of EW bosons, that can be written
as follows [11,12],

d3σ

d cos θ∗ dφ∗ dO
= dσ

dO
3

16π

[
1 + cos2 θ∗ + A0

1 − 3 cos2 θ∗

2

+A4 cos θ∗ + 2A1 cos θ∗ sin θ∗ cos φ∗

+ 2A6 cos θ∗ sin θ∗ sin φ∗ + A3 sin θ∗ cos φ∗

+A5 sin θ∗ sin φ∗

+ 1

2
A2 sin2 θ∗ cos 2φ∗ + A7 sin2 θ∗ sin 2φ∗

]
, (10)

where θ∗ and φ∗ are the polar and azimuthal decay angle
of a decay lepton in the decayed-boson rest frame, calcu-
lated w.r.t. the boson trajectory in a certain Lorentz frame
(the one where polarisation states are defined). The coeffi-
cients {A0, . . . , A7}, which are functions of the observable
O (independent of decay angles), are related to polarisa-
tion fractions fL and f± via linear combinations. Project-
ing Eq. (10) onto suitable spherical harmonics of rank 2,
the polarisation fractions can be then easily extracted. This
strategy is valid for a single boson, in the absence of radiative
corrections to the decay, and in a fully inclusive decay-phase-
space measure, i.e. without any cut on individual decay prod-
ucts. Applying the projections in the presence of transverse-
momentum and/or rapidity cuts on decay products, as done
in many experimental analyses, may give results that are
far from describing the polarisation structure of a process
[12,13,22,26,29]. Extensions of the method to account for
multi-boson spin correlations [23,24,27,67] are also limited
due to similar reasons.

The extraction of angular coefficients from decay rates can
also be applied differentially in any LHC observables, provid-
ing a way to reweight unpolarised LHC events according to
polarisation fractions and therefore split the events into lon-
gitudinal and transverse samples. This approximate method
has been applied for Run-1 V + j events [14–17] but was
proven to fail in certain kinematic regimes, especially due to
the wrong assumption that polarisation fractions are the same
in the presence and absence of decay-product selections [30].

The most prominent way to extract polarised signals out of
Run-2 LHC data is the so-called polarised-template method.
Building on a theoretically sound definition of polarised
signals at amplitude level [29] that can be systematically
extended to higher orders in perturbation theory [33–39],
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the method relies on separate templates for each physical
polarisation state and for the interference terms. Upon a pre-
vious subtraction of reducible and irreducible backgrounds,
the (unpolarised) signal events are simultaneously fitted with
fully independent polarised templates. This can be applied
differentially to any LHC observable. In practice, these fits
are restricted to those observables that are thought to be
the most sensitive to discriminate between longitudinal and
transverse modes. This does not guarantee that the polarisa-
tion information is fully exploited from the available data. In
addition, the fitting procedure requires quite intensive theo-
retical calculations that only recently achieved (N)NLO accu-
racy [33–39]. To be of any use, such calculations should be
performed in a fiducial phase-space volume which is exactly
the one used in the experimental analysis, a task that can turn
out to be far from trivial.

The idea of using ML methods to facilitate the extraction
of polarisation fractions has been already explored in the liter-
ature. It has been applied in the case of EW bosons produced
in VBS and inclusive di-boson production, both with leptonic
[45,49–53] and hadronic decays [45,46]. The proposed ML
approaches typically rely on kinematic observables approx-
imating decay angles in the case of leptonic decays of W
bosons, and on jet-substructure observables to treat hadronic
decays, with the aim of performing an event-by-event clas-
sification, possibly accounting for new-physics effects that
may distort the underlying dynamics.

The method we propose to tag longitudinal bosons lies
somehow at the intersection amongst the aforementioned
methods, complementing accessible kinematic information
of LHC events with a genuine theoretical input given by
amplitudes describing the process dynamics.

As a last remark before detailing our strategy, we stress
that the polarisation structure of a process is model depen-
dent, owing to possibly different dynamics at production and
decay level. The advantage of the solution we present in the
following is that the model dependence is uniquely encoded
in the amplitudes.

2.2 A machine-learning-based solution

Equation (9) implies that at the phase-space–point level, the
polarisation fraction is equal to the ratio of the longitudinally
polarised squared amplitude over the unpolarised one,

rL = |ML|2
|M|2 . (11)

This statement is exact at leading order (LO) in perturbation
theory for each partonic channel occurring in the process.
It means that computing rL for a given process requires the
knowledge of the full kinematics as well as of the flavours of
the partonic-process external particles.

Considering an unpolarised event sample, this ratio can
be computed for each event separately. One can therefore
tag each event as longitudinally polarised or not by sampling
on the value of rL. From the unpolarised event sample, one
can therefore obtain a longitudinally polarised sample. This
procedure is completely equivalent to generating a longitudi-
nal sample from scratch. It follows that the fully differential
knowledge of rL allows for the assessment of longitudinal
polarisation on a even-by-event basis. We note that while
Eq. (5) does not guarantee this ratio to be comprised between
0 and 1, in practice it is and allows a straightforward sampling
without requiring to determine the minimum and maximum
of rL beforehand.

As mentioned above, this procedure is exact at LO accu-
racy. It can actually be extended to a LO sample with parton-
shower (PS) corrections using a similar procedure. Consid-
ering an unpolarised sample at LO + PS accuracy, one can
compute rL with the original event (before showering) and
tag the event after showering based on the value of rL. Again,
this procedure is equivalent to generate a longitudinal sample
at LO + PS accuracy from scratch.2

Key concept Given the possibility to evaluate rL, one can
tag events as longitudinally polarised. While doable theoret-
ically, this is unfortunately not possible experimentally as
the evaluation of rL at the event level requires the knowl-
edge of all momenta and flavours of the initial and final par-
tons, an information which is not available experimentally.
Instead, what is available experimentally is the knowledge
of the final-state momenta which constitutes therefore only
a partial information. The central idea is therefore to bypass
this lack of information by using a neural network (NN) to
obtain an approximate value of rL called r̃L which in turn
depends only on the experimental information available. In
other words, the NN is trained to mimic rL with an incomplete
information. Later, we show that this method is applicable in
practice.

It implies, therefore, that one can use r̃L to tag experimen-
tal events as longitudinal. The longitudinal fraction extracted
in this way can then be compared against theoretical predic-
tions. If rL is computed within the SM, an agreement between
the theoretical predictions and the extracted value of the frac-
tion indicates that the data is compatible with SM expecta-
tions. On the other hand, a disagreement would be the sign
of a failure of the SM to describe the physics at hand. The
procedure can be applied not only to the SM but also to any
UV-complete model as well as to rather model-independent
frameworks like simplified models or effective-field theories.

2 Note that instead of Eq. (11), we have also considered a variation of
it, namely: rD,L = ∣∣MD,L

∣∣2
/ |MD|2, where the subscript D denotes

the decay of the gauge bosons. It turned out that this variable is not
sufficient to reproduce the full longitudinal fraction.
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The method we propose does not require any fitting pro-
cedure. It is by definition multi-dimensional and therefore
ensures that all possible information available experimentally
is used. It is also very flexible with respect to the phase-space
requirements. In fact, if the training is done in an inclusive
phase space, the trained model can be used in any fiducial
volume that is more restrictive.

In summary, the key idea of our approach is to relate the
tagging of LHC events to a single theoretically clean quantity,
using machine learning to cope with incomplete information.

3 Application: Z+jet

In order to illustrate the newly devised method, we apply it to
the extraction of the longitudinal polarisation of a Z boson in
Z+ j production at the LHC. We would like to emphasis that,
in spite of possibly different input features for the training of
the NN for a different process, our method is fully general
and can be applied to any process featuring one or several Z
or W boson(s). The process we consider is,

pp → j + Z(→ μ+μ−) + X. (12)

While providing a non-trivial test-bed, this reaction is par-
ticularly suited for polarisation studies as it has a very high
cross section and allows for the full reconstruction of the final
state.

Note that the production of a muon-antimuon pair is medi-
ated by a photon and a Z boson. However, since we aim at
extracting the polarisation of an intermediate Z boson, the
photon contribution is regarded as an irreducible background
to be subtracted before any polarisation analysis [36,40].
In the presence of a cut on the lepton-pair invariant mass
around the Z pole mass, the photon background (as well as
the photon-Z interference) is typically small. In the setups
considered here (see Sect. 3.1), this irreducible background
is at the level of 1%, estimated from a comparison between
the Z-mediated signal of Eq. (12) and the full off-shell cal-
culation of pp → j + μ+μ−.

Since we are interested in polarised signals, we choose
to define polarisation vectors in the Lorentz frame where
the Z boson and the jet are back to back, which coincides
(at LO) with the partonic centre-of-mass frame. This ref-
erence frame is the one where the 2 → 2 scattering hap-
pens and can be entirely reconstructed up to experimental
uncertainties. Therefore, this choice is well motivated both
from a theoretical and from an experimental viewpoint. We
stress that any polarisation extraction from simulated events
or experimental data is frame dependent. This means that,
although the general strategy we propose can be applied to
any polarisation-frame definition, the application considered
here depends on the specific choice of the polarisation frame.

In practice, the rL quantity defined in Eq. (11) takes different
values when computed for the same phase-space point but
for different polarisation-frame choices, therefore the NN-
training stage is tailored to the specific choice of polarisation
frame.

3.1 Input parameters and event selections

In this section, we list the input SM parameters used for the
numerical computations and the event selections considered
for the phenomenological analysis.

The simulations are performed at a centre-of-mass energy
of

√
s = 13.6 TeV for proton–proton collisions at the LHC.

The parton distribution functionNNPDF31_nlo_as_0118
[68] has been utilised thanks to Lhapdf [69]. The renormal-
isation and factorisation scales are fixed to

μR = μF = MZ. (13)

The EW coupling is fixed through the Gμ scheme [65,70] is
used for the electroweak coupling as

α =
√

2

π
GμM

2
W

(
1 − M2

W

M2
Z

)
with

Gμ = 1.16639 × 10−5 GeV−2 . (14)

The following masses and widths have been taken,

MZ = 91.188 GeV, �Z = 2.49877 GeV,

MW = 80.419 GeV, �W = 2.09291 GeV.
(15)

The masses or widths of all other particles do not play a role
in this process or have been set to zero. Note that these param-
eters are essentially the default ones in MG5_aMC@NLO [71].

A number of different event selections are used in this
work. The first one, which we label generation-level, is char-
acterised by a transverse-momentum and rapidity cut on the
leading jet, as well as an invariant-mass cut on the charged-
lepton pair,

pT,j > 10 GeV, |yj| < 5, and

76 GeV < Mμ+μ− < 106 GeV. (16)

With this setup we have generated the initial parton-
level event samples for both unpolarised and longitudinally
polarised Z bosons.

The second selection, labeled inclusive, used for some of
the phenomenological results with and without PS effects,
is characterised by slightly more restrictive cuts, in order to
avoid biasing the PS application, namely,

pT,j > 20 GeV, |yj| < 4, and

81 GeV < Mμ+μ− < 101 GeV. (17)
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Notice that both the generation-level and inclusive setups
avoid any additional cut on the Z-boson decay products,
making the selections not realistic in a collider environment.
However, it enables to be as inclusive as possible for the
training of NNs, ensuring that any realistic selection will be
enclosed in the phase-space region.

Finally, the third selection, which we dub fiducial, is then
used to mimic a realistic setup at the LHC. In addition to the
cuts in Eq. (17), transverse-momentum and rapidity cuts are
applied on the charged leptons,

pT,μ± > 20 GeV and |yμ±| < 2.7. (18)

3.2 Tools

For the generation of longitudinal and unpolarised parton-
level events, we have used version 2.7.3 of MG5_aMC@NLO

[32], which enables to select intermediate-resonance helic-
ity states in the narrow-width approximation [60]. As a val-
idation of the longitudinal signal, we have compared the
MG5_aMC@NLO results against those obtained with the pri-
vate Monte Carlo framework MoCaNLO, that uses the pole-
approximation approach detailed in Refs. [33,34,36,40,72].
Good agreement has been found.

In order to compute PS effects, we have used version
8.244 of the Pythia8 program [73] with standard settings.
The space-like and time-like shower have been applied with
both QCD and QED effects. For what concerns QED effects,
we veto further photon splittings into fermion pairs in the
shower. Note that we have not included multi-parton inter-
actions and hadronisation effects. The reason is to keep this
example, while non-trivial, as simple as possible. We argue
that including these extra effects could simply be included
upon performing a new training of the NN. The principle of
the ML technique we propose would not be hampered by
different scale choices, matching and PS settings that may
be needed especially when including higher-order effects.

Finally, in order to compute rL for the various partonic
channels, we have used the matrix-element providerRecola
1 [74,75]3.

To obtain an approximate value r̃L, a machine learning
approach was employed, utilising a feed-forward NN. The
model is built from the dataset characterised by the following
12 input features, namely the four momenta of the (leading)
jet, the antimuon, and the muon:

Ej, px,j, py,j, pz,j, Eμ+ , px,μ+ , py,μ+ , pz,μ+ ,

Eμ− , px,μ− , py,μ− , pz,μ− , (19)

3 We used the most recent Recola 1 release (version 1.4.3) which
supports helicity selections for intermediate resonances at tree and one-
loop level. Further documentation on the usage of polarisation-related
subroutines can be found at https://recola.gitlab.io/recola2/api/polsel.
html#polsel.

along with the quantity rL defined in Eq. (11), representing
the continuous label.

The dataset used for training and testing containes
286,073 and 285,187 elements, respectively. As part of the
data-preparation process, the dataset has been standardised
according to a general procedure where each feature is nor-
malised, with the subtraction of the average value of the fea-
ture and divided by its standard deviation. This approach is
more suited than a min-max normalisation, due to its lower
sensitivity to outliers. The architecture of the NN is wide,
and this represents a crucial aspect of the proposed tech-
nique. Four hidden layers, consisting of 1000 nodes each,
were employed. The mathematical representation of this NN
involves a series of transformations. The input x has a dimen-
sionality of R12×1. The subsequent layers, indexed as i rang-
ing from 0 to 4, were computed using the formula,

z(0)(x;W ) = x,

z(i+1)(x;W ) = Wi+1σ(z(i)(x;W )) + bi+1,

y(x;W ) = z(5)(x;W ). (20)

The weights are represented by W = (W1,W2,W3,W4,W5,

b1, b2, b3, b4, b5), whereW1 ∈ R
1000×12, whileW2,W3,W4 ∈

R
1000×1000, andW5 ∈ R

1×1000. Additionally,b1, b2, b3, b4 ∈
R

1000×1, and b5 ∈ R
1×1000. The activation function used was

the Rectified Linear Unit (ReLU) [77], defined as σ(x) =
max{0, x}. The structure of this NN is depicted in Fig. 1.

The design of the machine learning model in this study
follows the principles outlined in Ref. [78]. According to the
theory presented, the effectiveness of a NN is influenced by
the dynamics of its training process. It suggests that NNs with
a “deep and narrow” architecture exhibit chaotic dynamics
during training, while those with a “shallow and wide” archi-
tecture are easier to train. In the asymptotic case, infinitely
wide NNs possess a convex loss landscape, enabling the opti-
mal solution to be found through gradient descent. However,
such models essentially become linear, losing the non-linear
expressivity of the original network and potentially limit-
ing its representational capacity. Therefore, a compromise
must be made between the ease of training and the network’s
expressivity. In our experiments, we achieved satisfactory
performance by employing a wide NN with a width-to-depth
ratio of 200. Such a choice has been made by empirical exper-
imentation and refinement.

The training of the NN model was performed using the
RMSprop algorithm [79], an adaptive learning rate optimi-
sation method specifically designed for mini-batch learning.
The algorithm’s parameters were set as follows: learning rate
η = 0.001, smoothing constant α = 0.99, weight decay of
0, and momentum of 0. The training process spanned 1000
epochs, with batches of size 500. The code implementing the
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Fig. 1 Structure of the neural
network. Picture adapted from
Ref. [76]

model was developed in Python 3, making use of the PyTorch
library [80].

3.3 Results

The key quantity in this application is the ratio rL defined
in Eq. (11). It encodes the whole information on the
longitudinal-polarisation dynamics, relatively to the polar-
isation balance in the unpolarised process. As such, it deter-
mines the shape and normalisation of the kinematic distri-
butions for the longitudinal signal. It is therefore a multi-
dimensional function with as many dimensions as the num-
ber of random variables needed to generate the momenta of
the full final state. As explained above, this ratio is actually
different for each partonic channel. It means that in order
to evaluate it on an event-by-event basis, one does not only
need the full kinematic but also the knowledge of the par-
tonic channel. In order to have a feeling about the structure
of rL, we show in Fig. 2 the differential distribution in rL

for unpolarised events, in the generation-level setup. We also
show, for comparison purposes, the distribution in the corre-
sponding rT and rint ratios, that are respectively defined as,

rT = |MT|2
|M|2 and rint = 2 Re (M∗

LMT)

|M|2 = 1 − rL − rT.

(21)

From Eq. (21) and Fig. 2, it is clear that, since all amplitudes
are complex numbers, the interference term can take negative
values, and both rL and rT can exceed the unit. Owing to a
peak at 1, the rT distribution in Fig. 2 suggests that in the
considered process the transverse-polarisation component is
way larger than the longitudinal one. This is a well-known

Fig. 2 Distributions in the rL, rT and rint quantities defined in Eqs. (11)
and (21), all normalised to the unpolarised total cross section. The
generation-level setup is understood

result in the SM [11,12]. It also shows that the proposed
method is particularly efficient as it can make full use of this
discriminating power.

rL-reweighting/tagging The first key observation that we
have made above is that unpolarised event samples can
be reweighted/tagged4 using rL to obtain longitudinally

4 In the following, we use indistinguishably reweighting and tagging
unless otherwise stated. In the reweighting approach, the event weights
rL (or r̃L) are directly used to compute longitudinal distributions. In
the tagging approach, thes longitudinal sample is extracted from the
unpolarised one by means a one-dimensional sampling according to
rL (or r̃L) weights. The selected events are then used to compute the
longitudinal distributions. Notice that the two methods are equivalent
within statistical uncertainties.
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Fig. 3 Longitudinal reweighting of unpolarised events with rL
(orange) compared to MC-truth longitudinal events (red) at LO (solid)
and LO + PS (dashed). Absolute differential cross sections are shown
in the top panel, ratios of reweighted results over MC-truth ones are

shown in the bottom panel. The following observables are considered:
cosine of the angular separation between the antimuon and the leading
jet (left), leading-jet transverse momentum (right). The inclusive setup
is understood here

polarised samples. This statement does not only hold at LO
but also when including PS effects, thanks to the factorisa-
tion of the radiative corrections as implemented in a PS, i.e.
adding multiple QCD and QED radiations in the collinear
approximation at leading-logarithmic accuracy. This can be
seen in Fig. 3, where two differential distributions are shown
at LO and LO + PS accuracy. The distributions obtained
with the rL-reweighting reproduce very well those obtained
with longitudinal events generated with the Monte Carlo (MC
truth). This confirms that a longitudinally polarised sample
can be obtained by simply reweighting an unpolarised one
with rL factors. In addition, one can observe that while the
PS corrections are sizeable (boh in the overall normalisa-
tion and in the distribution shapes), the statement about the
reweighting is equally true in the presence of PS corrections.
From the results of Table 1, it can also be appreciated how the
rL-reweighting performs well both in inclusive setups and in
the presence of more exclusive selection cuts.The differential
results analogous to those of Fig. 3 but in the fiducial setup
(not shown here) also highlight an almost perfect behaviour
of the reweighting method as in the inclusive setup.

Leading order Turning the problem around, the results
detailed in the previous paragraph imply that experimental
data (here idealised by LO + PS unpolarised events) can be
used to extract polarisation fraction provided that rL is known
and can be computed on an event-by-event basis. Actually,
rL cannot be computed from experimental data, which do not
give access to the full kinematic dependence (including the
initial state) and to the flavour of all external particles. To

Table 1 Longitudinal-polarisation fraction determined from MC-truth
longitudinal events and from rL-reweighting of unpolarised events, in
the inclusive and fiducial setups. Monte Carlo uncertainties on the frac-
tions are shown in parentheses

Accuracy MC truth rL-reweighting

Inclusive setup

LO 0.1704(4) 0.1703(3)

LO + PS 0.1722(4) 0.1725(3)

Fiducial setup

LO 0.1879(6) 0.1883(6)

LO + PS 0.1889(6) 0.1894(6)

bypass this issue, one can use NNs to obtain an approxima-
tion r̃L of the true ratio, based on an incomplete information,
namely the one available experimentally which consists in
the visible final-state momenta. Along this line, the first step
is therefore to check if one can obtain a good approxima-
tion of rL at LO by training a NN in a supervised setting, as
described above, with rL as input label and the final-sate jet
momentum and lepton momenta as incomplete information
for the training features.

In Table 2 and Figs. 4 and 5, two different NNs, predict-
ing r̃L factors as approximations of the rL ones, are com-
pared against the true Monte Carlo results, both at the level
of polarisation fractions and at the level of differential cross
sections. The first network (labeled NN1, purple curves in
plots) underwent training for 106 epochs, employing a batch
size of 100 and a learning rate of 10−4. The second network
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Table 2 Longitudinal-polarisation fractions at LO determined from
Monte Carlo-truth longitudinal events (MC) and from reweighting of
unpolarised events with NN-predicted r̃L (NN), in the inclusive and

fiducial setups. Monte Carlo uncertainties on the fractions are shown
in parentheses. The NN-predicted fractions are assigned Monte–Carlo-
like uncertainties according to the number of events at testing level

Setup MC NN 1 NN 1/MC (%) NN 2 NN 2/MC (%)

Inclusive 0.1704(4) 0.1705(5) 100.1 0.1649(5) 96.8

Fiducial 0.1879(6) 0.1904(8) 101.3 0.1812(8) 96.4

Fig. 4 Longitudinal reweighting of unpolarised events with r̃L pre-
dicted by two different NN models (olive and purple curves) compared
to MC-truth longitudinal events (red curve) at LO. Absolute differ-
ential cross sections are shown in the top panel, ratios of reweighted

results over MC-truth ones are shown in the bottom panel. The fol-
lowing observables are considered: cosine of the angular separation
between the antimuon and the leading jet (left), leading-jet transverse
momentum (right). The inclusive setup is understood

(labeled NN2, olive curves in plots) was trained for 2 × 103

epochs, using a batch size of 500 and the same learning rate.
The generation-level events were used for the training.

The results of Table 2 show a good performance of the
NN1 model in reproducing the polarisation fractions both at
inclusive and fiducial level with sub-per-cent accuracy. The
NN2 model underestimates the longitudinal fraction by 3–
4%.

In Figs. 4 and 5, the cosine of the angular difference
between the positive lepton and the jet as well as the trans-
verse momentum of the jet are shown. The two figures differ
in their phase-space regions: Fig. 4 is for the inclusive setup
while Fig. 5 is for the fiducial one. One observes that the
first NN is reproducing better the true result. In general, the
agreement is at the per-cent level for the phenomenologically
relevant part of the phase space and therefore good enough
for our purpose. Also, it is worth pointing out that in sup-
pressed regions of phase space where the statistics is low,
the agreement degrades substantially. The limited statistics
used for the training stage in this suppressed region does not
constrain strongly enough the NN model, leading therefore

to a systematic error in the NN-model prediction for r̃L. For
example, above 150 GeV for the transverse momentum of
the jet in Fig. 5, the agreement is worth than 20%. This is
nonetheless not an issue given that this region is suppressed
by two orders of magnitude, meaning that it contributes to
about 1% to the cross section and therefore introduces only
a per-mille error or less in total.

Finally, we note that the results for the inclusive and fidu-
cial setups are equally good. The only difference that one
can notice is that the fiducial results suffer from larger fluc-
tuations. This can be attributed to the lower statistics used in
the fiducial case (≈ 220k events), owing to more restrictive
selections that cut away more than half of unpolarised events
used in the inclusive setup (≈ 480k events).

Parton-shower effects Overall, the above results prove that
the method is reliable also in typical experimental regions.
Nonetheless, this is a simplified version of the problem as
this exercise was performed at LO meaning for events of
identical multiplicity. A more realistic description of the data
necessarily requires PS corrections. Indeed LHC events are
typically affected by several effects such as multi-particle
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Fig. 5 Same structure as Fig. 4. The fiducial setup is understood

interactions, beam remnants, hadronisation, extra QCD and
QED radiations etc. These phenomena are well described by
multi-purpose PS programs like Pythia [73]. In our case,
we have included QCD and QED radiations but other effects
could equally be included.

In order to account for PS effects in our method, one can
try to use the previous NN trained with LO events and apply
it to events modeled with PS corrections. The results of this
procedure are shown in Fig. 6 for the cosine of the angular
separation between the antimuon and the leading jet, and for
the leading-jet transverse momentum. Notice that in this case,
we have only included effects from QCD PS, avoiding further
photon radiations. From the plots, it is rather clear that this
approach is failing. The reason for this is that the PS generates
more QCD radiations leading to a sizeable distortion of the
event kinematics. In fact, comparing Fig. 6 with the fixed-
order results in Fig. 3, one observes that applying the NN
trained with LO events to LO + PS events tends to reproduce
the LO distribution shapes rather than the LO + PS ones.

As shown previously, one can apply a reweighting of the
unpolarised sample and then apply the PS procedure or vicev-
ersa in order to obtain a longitudinally polarised sample with
PS effects. This also means that for each showered event one
can compute rL with the original LO momenta before PS
and therefore associate a meaningful rL to each showered
event. One can therefore train a new NN with the original rL

(computed before showering) along with the momenta after
showering. Given that showered events possess more than
one jet, only the four momentum of the jet with the largest
transverse momentum is provided as a feature for the NN-
model training.

In order to tackle this problem, we adopted the following
training strategy. First, a wide neural network (labeled NNws)
is trained using a warm-start initialisation [81]. Utilising the
warm-start approach in training NNs involves initialising the
model with weights from a previously trained model. This
strategy potentially accelerates convergence, enhances per-
formance, and reduces the need for extensive data, creating
an efficient framework for model training. From a physics
intuition, in the generation chain that starts with LO pro-
cess and move to LO + PS, this step does not represents a
completely new learning task rather it is a perturbation of
the original process. It follows that the procedure involved
utilising the configuration of the network previously trained
on the LO events and starting the training with the LO + PS
events from its optimal configuration in terms of architecture
of the NN and its relative weights. This procedure, which is
well-known in other machine-learning applications, has not
been yet fully exploited in high-energy physics. Skipping a
complete NN architecture optimisation procedure is advan-
tageous because of the faster identification of the best model
and of the computational-resource saving. For the sake of
comparison, a second general NN (labeled NNnows) is built
from scratch, looking for the best depth-to-width ratio with
a randomly chosen initial configuration.

The results provided by these two models are reported in
Table 3 and Figs. 7 and 8 (green curves for NNws, blue curves
for NNno ws). As one can see from both integrated and differ-
ential results that the NN with warm start is outperforms the
one built from scratch. From the results, it is clear that the
warm start has beneficial effects on the NNs. Firstly, it biases
the training towards solving a similar task, allowing the net-
work to adjust its parameters to the new data, which limits the

123



Eur. Phys. J. C (2023) 83 :759 Page 11 of 19 759

Fig. 6 Longitudinal reweighting of unpolarised LO + PS events with
r̃L from the NN model trained with LO events (olive curve), compared
to MC-truth longitudinal events (red curve) at LO + PS (QCD shower
only). Absolute differential cross sections are shown in the top panel,

ratios of reweighted results over MC-truth ones are shown in the bottom
panel. The following observables are considered: cosine of the angular
separation between the antimuon and the leading jet (left), leading-jet
transverse momentum (right). The inclusive setup is understood

Table 3 Longitudinal-polarisation fractions at LO + PS determined
from Monte Carlo-truth longitudinal events (MC) and from reweighting
of unpolarised events with NN-predicted r̃L (NN), in the inclusive and

fiducial setups. Monte Carlo uncertainties on the fractions are shown in
parentheses. The NN-predicted fractions are assigned Monte-Carlo-like
uncertainties according to the number of events at testing level

Setup MC NN ws NN ws/MC (%) NN no ws NN no ws/MC (%)

Inclusive 0.1722(4) 0.1705(3) 99.0 0.1646(3) 95.6

Fiducial 0.1889(6) 0.1853(5) 98.1 0.1791(5) 94.8

search space and leads to faster convergence. Additionally, as
the problem becomes easier to solve, the quality of the solu-
tion improves. From a physics viewpoint, the good behaviour
of the NNws implies that the LO step is actually of crucial
importance to be able to use this method in an experimen-
tal analysis. In particular, the results are per-cent accurate at
the level of polarisation fractions, which is good enough for
the level of precision of this study. Considering differential
observables, Fig. 7 refers to the inclusive case while Fig. 8
refers to the fiducial case. The same conclusions as at fixed
order hold, namely that the limited statistics do play a role
in the accuracy of the method, as can be observed in the far
tails of the transverse-momentum distribution in Fig. 8 or
in other phase-space regions which are the least populated
ones. Nonetheless, at 100 GeV in the transverse-momentum
distribution of the leading jet, a 10-20% mismodelling can
be observed. These effects cannot be solely attributed to the
statistics but should be considered as a systematic error of
the NN. This mismodelling might originate from PS effect
as shown in Fig. 3 where the region around 100 GeV marks
a quantitative change in the PS corrections. This could also

be interpreted as a limitation of the NN model to capture all
features. Nonetheless, these 10-20% discrepancies appears
in bins that are suppressed by almost two orders of magni-
tude and therefore they are not physically significant when
integrating over the whole transverse-momentum spectrum.
Hence, the method proposed here is still per-cent accurate.

Event tagging with r̃L As already discussed in Sect. 2.2, the
probabilistic interpretation of rL leads to the expectation that
the r̃L predicted by the NN models is positive. However, the
NN models have no physics insights about this constraint and
r̃L is not always positive.

It turns out that at LO + PS level, the NNs are able to predict
positive r̃L for more than 99% of the event, both in the inclu-
sive and in the fiducial setup. Interestingly, at fixed order, the
performances are worse, with positive longitudinal weights
predicted for only roughly 95% of the events. The events for
which the NN predicts negative weights give a harder pT,j1
spectrum compared to the events with positive r̃L, highlight-
ing that in order to improve the accuracy of the NN also in
boosted regimes, a dedicated training with boosted events is
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Fig. 7 Longitudinal reweighting of unpolarised events with r̃L from
two different NN models (blue and green curves) compared to MC-
truth longitudinal events (red curve) at LO + PS (both QCD and QED
showers included). Absolute differential cross sections are shown in the

top panel, ratios of reweighted results over MC-truth ones are shown
in the bottom panel. The following observables are considered: cosine
of the angle between the antimuon and the leading jet (left), transverse
momentum of the leading jet (right). The inclusive setup is understood

Fig. 8 Same structure as Fig. 7. The fiducial setup is understood

needed. We checked that discarding the events with negative
r̃L, in spite of a partial improvement in the reproduction of
the transverse-momentum shapes, overestimates by several
per-cent the overall longitudinal fraction.

A viable strategy could be to include a suppression func-
tion for negative r̃L at the level of the last layer of the NN
models, as a small step toward physics-informed approaches.
These ones have already been applied for classification tasks
in particle physics, where enforcing symmetries conserva-

tion for transformations under the Lorentz group, provides
a much more physically interpretable model [82]. However,
there is no guarantee of improved accuracy in the NN. In our
specific case, enforcing the positivity of the label actually
worsens the overall performance. This is due to the intro-
duction of constraints complicating the landscape of the loss
function, resulting in more challenging geometries with mul-
tiple local minima. As a result, training becomes less effec-
tive, leading to poorer predictions from the model. We have
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Table 4 Longitudinal-polarisation fractions at LO + PS determined
from MC-truth longitudinal events (MC) and sampling (NN-sampl) of
unpolarised events according to r̃L predicted with the NNws model, in
the inclusive and fiducial setups. Monte Carlo uncertainties on the frac-
tions are shown in parentheses. The NN-predicted fractions are assigned
Monte–Carlo-like uncertainties according to the number of events at
testing level

Setup MC NN ws-sampl NN ws-sampl/MC (%)

Inclusive 0.1722(4) 0.1716(5) 99.7

Fiducial 0.1889(6) 0.1850(8) 97.9

refrained from investigating this aspect further, as the LO +
PS results are satisfactory for the present application.

So far we have indistinguishably used the expression
reweighting and tagging. However, while the reweighting
strategy can be applied also in the presence of negative
weights, the event tagging is not well defined anymore in
that case. In other terms, performing a longitudinal tagging
according to the NN predictions is not possible for events
with negative r̃L. While at LO accuracy this means throwing
away 5% of the events, at LO + PS accuracy, which is the
most important case as it mimics the experimental environ-
ment, less than a per cent of the events have to be thrown
away, which is good enough for our purposes.

To illustrate the applicability of the method, we show final
results for the event tagging, which turns out to be equivalent
to the reweighting ones, at LO + PS accuracy. In Table 4, the
polarisation fractions obtained with tagging are compared
to the MC-truth ones. As expected, these results are good
and almost equivalent to the reweigthing results provided in
Table 3, since only very few events have a negative r̃L. Notice
that for this comparison we have only considered the NN
that employs the warm-start approach (NNws). The results
are equally good at the differential level, as can be observed
in Figs. 9 and 10 for the inclusive and fiducial setup, respec-
tively. In particular, in these plots, the MC-truth longitudi-
nal distributions are compared with those obtained reweight-
ing and tagging according to r̃L. Both are equivalent up to
statistical fluctuations. This finally demonstrates that using
r̃L with experimental inputs enables an actual longitudinal-
polarisation tagging on an event-by-event basis.

3.4 Discussion

With this non-trivial LHC application detailed in Sect. 3, we
have shown that one can assert the polarisation fraction on an
event-by-event basis using amplitude information by revert-
ing to machine learning. The method is per-cent accurate and
particularly versatile. In this section we discuss limitations of

the methods as well as possible extensions, generalisations,
and further applications.

Validity of the method In the present example the train-
ing phase has been performed on events spanning a very
inclusive sample. The trained models have then be used on
a reduced phase-space as for typical experimental analyses.
This ensures that the method is used in its region of validity.
We therefore recommend to always perform the training on a
more inclusive phase-space than the one actually used in the
analysis. If this is not the case, it is not guaranteed that the
method will still work as the network has not been trained
(and thus validated) in the whole region considered at testing
level. While it is not excluded that the NN can perform some
extrapolation outside its training region, this has to be care-
fully verified. In particular, using the extrapolation power of
the NN might require a different NN and a potentially a ded-
icated study on out-of-support extrapolation problem into a
problem of within-support generalization.

While the specific application considered in this work con-
cerns pp → Z+j at the LHC, the general idea of training a NN
with experimentally accessible kinematic information and
squared polarised amplitudes can be applied to any single-
or multi-boson process at colliders. We stress that in order
to apply this strategy to another process, a new NN has to
be constructed, relying on the corresponding input features
that depend on the experimental signature. For example, for
processes with final-state neutrinos, whose momenta cannot
be fully reconstructed, the input feature would be the missing
transverse momentum instead of the complete momenta of
the neutrinos.

Error propagation As formulated here, the method would
provide a numerical value corresponding to the experimentally-
extracted fraction that can be compared against theoretical
predictions. Nonetheless this extracted value has uncertainty
of different sources: the accuracy of the theory prediction it
relies on, the limited statistics of the training data set, and
the experimental accuracy (both statistical and systematic)
of the data.

Usually, the theoretical uncertainty on the prediction is
assessed by means of scale variations of the factorisation
and renormalisation scale. The envelop of the values of rL

extracted for different scale combinations would then pro-
vide the theory uncertainty associated to rL. This quantity
being a ratio of squared amplitudes, we expect the correlated
scale uncertainties to be rather small, owing to cancellations
between the numerator (longitudinal matrix element) and the
denominator (unpolarised).

The uncertainty related to the finite size of the training
sample can be inferred by performing the training with dif-
ferent sample sizes or by performing error propagation in the
NN. The same applies to the experimental error associated to
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Fig. 9 Longitudinal reweighting (solid green) and tagging (dashed
green) of unpolarised events with r̃L predicted by the NNws model
compared to MC-truth longitudinal events (solid red) at LO + PS (both
QCD and QED showers included). Absolute differential cross sections
are shown in top panels, ratios over MC-truth ones are shown in bottom

panels. The following observables are considered: cosine of the angle
between the antimuon and the leading jet (top left), rapidity separation
between the antimuon and the leading jet (top right), tranverse momen-
tum of the antimuon (bottom left), transverse momentum of the leading
jet (bottom right). The inclusive setup is understood

the reconstructed event kinematics, and it can be estimated
by repeating the method using pseudo-data.

It is important to consider that NNs are complex models,
and training them using stochastic gradient descent over a
non-convex landscape does not guarantee optimal parameter
quality upon convergence. In contrast, linear and kernel mod-
els can be trained more efficiently due to their convex and
low-dimensional loss landscapes, albeit resulting in simpler
predictors. The non-linearity of NNs allows them to learn
new and more effective representations of the data, a process
known as feature learning [78]. This feature learning effect

makes NNs more powerful but also presents challenges in
their training process. In our approach, we have opted for
wide NNs that strike a balance between linear and nonlin-
ear models. While infinite-width NNs are equivalent to linear
models and enjoy convex optimization landscapes [83], wide
networks with finite width exhibit a slightly more challenging
training landscape. Nevertheless, training wide NNs remains
effective, with the difficulty of the landscape increasing as
the depth-to-width ratio grows. Considering all these aspects
related to the complexity behavior of ML models, we refrain
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Fig. 10 Same structure as Fig. 9. The fiducial setup is understood

from assigning any intrinsic uncertainty to the predicted out-
put.

Model independence As already mentioned, the polarisa-
tion of weak bosons is a pseudo-observable and its extrac-
tion necessarily understands some degree of model depen-
dence. In the method we propose, the model dependence is
encoded into the rL function. In the present work, the SM is
considered: it means that events are tagged according to SM
expectations and the longitudinal fractions extracted should
be compared against the one of theoretical predictions within
the SM. Such a model dependence is impossible to avoid. In
fact, even a simplified version of rL relying only on the boson-
decay matrix elements still depends on the polarisation frac-
tions determined by the model-specific production mecha-
nism. However, since the method proposed in this work is

model agnostic, the same procedure can be performed with
more general models, i.e. simplified models or effective field
theories, or even with UV-finite theories.

Extension to higher orders In the present work, we have
restricted our analysis to LO + PS accuracy. Nonetheless, it is
in principle possible to extend this to higher orders in pertur-
bation theory, at least for QCD corrections to processes with
leptonically decaying bosons. If one can produce a sample
of unweighted events at a given order in perturbation theory,
the presented method can be extended.

Having unweighted events at fixed order implies having
events with different jet multiplicity (depending on the order
considered). It means that for each multiplicity i = 0, 1, . . .,
the exact r iL can be computed using loop and/or tree ampli-
tudes depending on the accuracy of the sample. As ratios,
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they should actually be free of infrared singularities if QCD
dependencies factorise from the polarisation effects. As in
the presented application, the NN can learn a single approx-
imate r̃L based on the experimental input available and in
particular by feeding only the leading jet(s) in the transverse
momentum. Adding PS or further corrections can then be
achieved as shown in the previous sections.

We stress that we have not explicitly tested this method
with higher orders and therefore that if ones wants to use
this proposal, it should be carefully checked first. In partic-
ular, the main assumption here is that QCD corrections and
polarisation effects factorise to a large extend (as PS and
polarisation effects). This implies that the inclusion of EW
corrections would probably requires a more refined analysis
given that they are known not to factorise.

Generalisation to other problems As highlighted several
times, the key aspect of the method is to encode the whole
physics problem in one single ratio (in the present appli-
cation rL) which can be approximately reconstructed using
incomplete information thanks to NN methods. It therefore
implies that the method can be applied to any physics prob-
lem that can be cast in this form. The only requirement being
that the key quantity is bounded as it is the case for ratios
of amplitudes. It also means that appropriate problems for
this method are the extraction of a signal over a background
which is very common in experimental particle physics.

4 Conclusions

The polarisation of heavy gauge bosons encodes the intricate
structure of the electroweak sector of the Standard Model.
The theoretical study and the experimental extraction of
such pseudo-observables is thus of prime importance for the
present and upcoming physics programme of the LHC. It is
therefore key to combine our theoretical understanding to
make use of all the information available in experimental
data in order to probe the structure of the Standard Model at
the deepest.

In this work, we have designed an original method to
extract polarisation fractions using the maximal informa-
tion encoded in the amplitude thanks to the versatility of
neural networks. The key feature is that all information is
encapsulated in a single number which can be computed on
a event-by-event basis. In particular, the neural network is
able to construct a particularly good approximation of this
quantity which can then be evaluated with incomplete infor-
mation, namely the one available in experiments. This num-
ber allows to assert whether an event is most likely longi-
tudinally polarised or not. In this way, all information i.e.
the fully differential information is exploited and not only
the information contained in one or several observables as

it is the case for other methods. It also means that no fitting
procedure is required. Another advantage is that the theory
dependence is clearly identified as it is only encoded in the
amplitude. Finally, the amplitude considered can be the one
of arbitrary-general or -specific models of quantum field the-
ory.

To illustrate the method, we have applied it to the extrac-
tion of the longitudinal polarisation of a Z boson in the
hadronic process pp → Z + j, in the leptonic decay channel
at the LHC. We have demonstrated that the idea is working
with a per-cent accuracy by reverting to the sequential train-
ing of a neural network. In particular, when being used in
actual experimental analyses, the closure tests that we have
presented here should be carried out to ensure the correctness
of the results.

Finally, we point out that the method we have developed
is very general. It can therefore be applied to other prob-
lems and/or generalised. In particular, the method seems to
be particularly appropriate for the extraction of signals over
irreducible or even reducible background.
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