We prove -optimal error estimates for the original discontinuous Galerkin (DG) method when approximating solutions to first-order hyperbolic problems with constant convection fields in the and DG norms. The main theoretical tools used in the analysis are novel -optimal approximation properties of the special projector introduced in Cockburn et al. (2008, Optimal convergence of the original DG method for the transportreaction equation on special meshes. SIAM J. Numer. Anal., 46:1250-1265). We assess the theoretical findings on some test cases.

Dong, Z., Mascotto, L. (2024). hp-optimal convergence of the original DG method for linear hyperbolic problems on special simplicial meshes. IMA JOURNAL OF NUMERICAL ANALYSIS [10.1093/imanum/drae051].

hp-optimal convergence of the original DG method for linear hyperbolic problems on special simplicial meshes

Mascotto, L
2024

Abstract

We prove -optimal error estimates for the original discontinuous Galerkin (DG) method when approximating solutions to first-order hyperbolic problems with constant convection fields in the and DG norms. The main theoretical tools used in the analysis are novel -optimal approximation properties of the special projector introduced in Cockburn et al. (2008, Optimal convergence of the original DG method for the transportreaction equation on special meshes. SIAM J. Numer. Anal., 46:1250-1265). We assess the theoretical findings on some test cases.
Articolo in rivista - Articolo scientifico
discontinuous Galerkin; optimal convergence; linear hyperbolic problems; a priori error estimation; p-version
English
31-ago-2024
2024
partially_open
Dong, Z., Mascotto, L. (2024). hp-optimal convergence of the original DG method for linear hyperbolic problems on special simplicial meshes. IMA JOURNAL OF NUMERICAL ANALYSIS [10.1093/imanum/drae051].
File in questo prodotto:
File Dimensione Formato  
Dong-Mascotto-2024-IMA Journal of Numerical Analysis-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 824.4 kB
Formato Adobe PDF
824.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Dong-Mascotto-2024-Arxiv-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/506399
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact