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Abstract

We prove hp-optimal error estimates for the original discontinuous Galerkin (DG) method
when approximating solutions to first-order hyperbolic problems with constant convection
fields in the L2 and DG norms. The main theoretical tools used in the analysis are novel
hp-optimal approximation properties of the special projector introduced in [Cockburn, Dong,
Guzmán, SINUM, 2008]. We assess the theoretical findings on some test cases.
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1 Introduction

The discontinuous Galerkin (DG) method was first introduced in [21] for the approximation of
solutions to the neutron transport equation, i.e., a first-order linear hyperbolic problem. This
method, which we shall refer to as the original DG method, was later analysed in [18]; advances
on the convergence of the scheme were given in [15]. The convergence rates in the L2 norm of the
h-version of the method proven therein are suboptimal by half an order; this was also apparent
from the numerical experiments in [20]. On special classes of meshes, optimal convergence for the
h-version was established in [8].

Fewer results are available for the p- and hp-versions of the method. In [13], hp error estimates
were derived for a streamline diffusion version of the discontinuous Galerkin method on fairly
general quadrilateral meshes. Shortly after, in [14], for the original method and linear polynomial
convection fields, p convergence was shown suboptimal by half a order for the convection-diffusion
case, but optimal for the linear hyperbolic case; for more general vector fields, suboptimality by
one order and a half was discussed as well. The main theoretical tools in this reference are hp
optimal approximation properties of the L2 projector on the boundary of tensor product elements.
More recently [11] and again for tensor product elements, such a suboptimality was reduced to half
an order only for a special class of convective fields.

This paper aims at extending even more the knowledge on the convergence analysis of the
hp-discontinuous Galerkin (hp-DG) for first order hyperbolic problems in the following aspects:
for constant convection fields,

• we prove hp-optimal convergence of the method in the L2 norm, thus generalizing the results
in [8] to the p-version of the method;

• we prove hp-optimal convergence of the method in the DG norm also on special simplicial
meshes as in [8], thus generalizing the results in [13] to the case of simplicial meshes.

To this aim, we analyse the hp approximation properties of the Cockburn-Dong-Guzmán (hence-
forth denoted by CDG) projector introduced in [9]. In particular, we generalise the one dimensional
results in [22, Lemmas 3.5 and 3.6] to simplices in two and three dimensions.
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lorenzo.mascotto@unimib.it; IMATI-CNR, 27100, Pavia, Italy; Fakultät für Mathematik, Universität Wien, 1090
Vienna, Austria, lorenzo.mascotto@univie.ac.at

1

ar
X

iv
:2

31
0.

13
56

4v
4 

 [
m

at
h.

N
A

] 
 8

 J
ul

 2
02

4



A possible reason why the simplicial mesh case was not contemplated in [13, 14] is that hp-
optimal convergence estimates for the trace of the polynomial L2-projection operator on simplices,
crucial in the analysis of the CDG projector properties were derived later [7, 19].

Notation. Let D be a Lipschitz domain in Rd, d = 1, 2, and 3, with boundary ∂D. The space
of Lebesgue measurable and square integrable functions over D is L2(D). The Sobolev space of
positive integer order s is Hs(D). We also write L2(D) = H0(D). We endow Hs(D) with the
inner product, seminorm, and norm

(·, ·)s,D, |·|s,D, ∥·∥s,D.

Interpolation theory is used to construct Sobolev spaces of positive noninteger order; duality is
used to define negative order Sobolev spaces.

The trace theorem is valid for Hs(D), 1/2 < s < 3/2. In particular, given s in the above range

and g in Hs− 1
2 (Γg), being Γg any subset of ∂D with nonzero measure in ∂D, we are allowed to

define the space
Hs

g (D,Γg) := {v ∈ Hs(D,ΓD) | v|ΓD
= g}.

The space of polynomials of nonnegative degree p over D is Pp(D).

The continuous problem. Given Ω a Lipschitz domain in Rd, d = 1, 2, 3, with boundary Γ,
consider β in Rd and c in L∞(Ω). We introduce the inflow part Γ− of the boundary of Ω as follows:
given nΓ(x) the outward normal to Γ at x,

Γ− := {x ∈ ∂Ω | β · nΓ(x) < 0}.

The characteristic part Γ0 is analogously defined as

Γ0 := {x ∈ ∂Ω | β · nΓ(x) = 0}.

The outflow part Γ+ of Γ is given by Γ \ (Γ− ∪ Γ0). We are interested in the approximation of
solutions to convection-reaction problems: given g in L2(Γ−),

find u such that

β · ∇u+ c u = f in Ω

u = g on Γ−.

(1)

Introduce the graph space
V := {v ∈ L2(Ω) | β · ∇v ∈ L2(Ω)},

which we endow with the graph norm

∥v∥2V := ∥v∥20,Ω + ∥β · ∇v∥20,Ω. (2)

We can define a trace operator from the graph space onto the space

L2(|β · nΓ|,Γ) := {v measurable on Γ | (|β · nΓ|v, v)0,Γ < ∞}.

Let
Vg := {v ∈ V | g is the trace of v and belongs to L2(|β · nΓ|,Γ)}. (3)

We introduce the bilinear form on Vg × L2(Ω) as

b(u, v) = (β · ∇u, v)0,Ω + (c u, v)0,Ω.

The weak formulation of problem (1) reads{
find u ∈ Vg such that

b(u, v) = (f, v)0,Ω ∀v ∈ L2(Ω).
(4)

Henceforth, we assume that there exists a positive constant c0 such that

c := c− 1

2
∇ · β ≥ c0. (5)

Problem (4) is well posed with respect to the graph norm in (2); see, e.g., [3].
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Structure of the paper. In Section 2, we introduce admissible simplicial meshes in the sense
of [8] and recall the original DG method from [21]. The main technical result of the paper, i.e.,
hp approximation properties of the CDG projector are derived in Section 3 in one, two, and three
dimensions. Such estimates are used to derive hp-optimal convergence of the method in the L2

norm in Section 4; there, we also show hp-optimal convergence of the method in a DG norm.
We assess the theoretical results with several numerical experiments in Section 5 and draw some
conclusions in Section 6.

2 Admissible meshes and the method

We introduce admissible simplicial meshes for the forthcoming analysis, and define associated
Sobolev and polynomial broken spaces in Section 2.1, and recall the original DG method for
problem (4) in Section 2.2.

2.1 Admissible simplicial meshes

We follow [8, Section 1] and introduce admissible simplicial meshes that are instrumental in deriving
the main result of the paper; see Section 3 below.

Let Th be a simplicial mesh of the domain Ω and Fh be its set of (d − 1)-dimensional facets.
We distinguish the facets in Fh into internal and boundary facets; the former are those F not
contained in ∂Ω. The union of the interior facets of Th is Γin

h .
With each element T of Th we associate its diameter hT and its outward unit vector nT , which

is defined almost everywhere on ∂T . The set of (d− 1)-dimensional facets of T is FT . With each
facet F in Fh we associate its diameter hF and a unit normal vector nF , which is pointing outward Ω
if F is a boundary facet. We only consider meshes Th that are σ shape-regular i.e., any element T
of Th is star-shaped with respect to a ball of radius larger than or equal to hTσ. We associate with
each mesh Th piecewise differential operators by adding a subscript h, for instance ∇h denotes the
piecewise gradient.

We distinguish the facets in FT into outflow, inflow, and characteristics (with respect to β)
facets, depending on whether they satisfy either of the two following properties:

nT |F · β > 0, nT |F · β < 0, nT |F · β = 0.

The union of the outflow and inflow facets is ΓT
out and ΓT

in, respectively.
We require that each element T of Th satisfy the two following properties:

(A1) T has only one outflow facet, which we denote by F+
T ;

(A2) each interior facet F that is an inflow facet for T is included in the outflow facet for another
simplex in the mesh.

The second assumption above implies that Th can be nonconforming, i.e., hanging facets are
allowed. Meshes satisfying the above properties can be always constructed; see, e.g., [8, Appendix].

The focus of the paper is on p-optimal estimates; therefore, we pick quasi-uniform meshes and
denote the mesh size of Th by h.

Given p in N and s in R+, we associate with a mesh Th as in Section 2.1 the spaces

Pp(Th) := {qp ∈ L2(Ω) | qp|T ∈ Pp(T ) ∀T ∈ Th}

and
Hs(Th) := {v ∈ L2(Ω) | v|T ∈ Hs(T ) ∀T ∈ Th}.

Differential operators defined piecewise over Th are denoted with the same symbol of the original
operator with an extra subcript h; for instance, the broken gradient is ∇h.

Given an interior facet F , we denote by T+ and T− the two elements of Th such that F is an
outflow and inflow facet for T+ and T−, respectively. Given vh in Pp(Th) and x in the face F , we
write

v±h (x) = lim
δ↓0

vh(x± δβ).
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We introduce the jump operator [[·]] : H1(Th) → L2(Γin
h ) given by [[vh]] |F := v+h −v−h for all internal

edges F .
Given a boundary facet F , we denote by T the only element of Th such that F belongs to FT .

Since every function vh in Pp(Th) is single valued on boundary facets, for all x in the face F , we
write vh(x) = vhT (x), where T is the only element of Th such that F belongs to FT .

Henceforth, given two positive quantities a and b, we write a ≲ b is there exists a positive
constant c possibly depending on the shape-regularity parameter σ only, such that a ≤ c b. If a ≲ b
and b ≲ a at once, we write a ≈ b.

2.2 The original DG method

Consider the space Vh given by Pp(Th). The original [21] DG method for (4) reads{
find uh ∈ Vh such that

B(uh, vh) = (f, vh)0,Ω − (g,nΓ · β vh)0,Γ− ∀vh ∈ Vh.
(6)

where

B(uh, vh) := (β · ∇huh + c uh, vh)0,Ω −
∑
T∈Th

([[uh]] ,nT · β v+h )0,ΓT
in
− (uh,nΓ · β vh)0,Γ− .

The solution uh can be computed starting at the inflow boundary Γ−; solving local problems derived
from (6) on the elements abutting Γ−; transmitting the solution to the neighbouring elements in
the β direction through upwind.

An equivalent alternative formulation used, e.g., in [8] is derived using an integration by parts
and the fact that β is a constant field. Notably, an integration by parts implies that the bilinear
form B(·, ·) can be rewritten as

B(uh, vh) = −(uh,β · ∇hvh)0,Ω+
∑
T∈Th

(u−
h ,nT · β [[vh]])0,ΓT

in\Γ−
+(c uh, vh)0,Ω + (uh,nΓ · β vh)0,Γ+ . (7)

Method (6) is well posed and coincides with that introduced in [21] and analysed in [18]. A priori
estimates with respect to the data are derived in [13, Lemma 2.4 and Section 5]. Previous results
requiring stronger assumptions on c are given, e.g., in [15].

Proposition 2.1. Let c be given in (5). The following bound holds true:

c∥uh∥20,Ω +
∑
T∈Th

∥∥∥|nT · β| 12 [[uh]]
∥∥∥2
0,ΓT

in

+
∥∥∥|nΓ · β| 12uh

∥∥∥2
0,Γ

≤ c−1∥f∥0,Ω + 2∥g∥20,Γ−
.

All constants appearing in the stability estimates of Proposition 2.1 are explicit, and inde-
pendent of h and p. This is essential to derive the optimal error estimates in Section 4 below.
Former stability results display stability estimates that are suboptimal in the polynomial degree;
see, e.g., [15, Theorem 2.1].

Method (6) is consistent. The following Galerkin orthogonality property follows: given u and uh

the solutions to (4) and (6),

B(u− uh, vh) = 0 ∀vh ∈ Vh. (8)

In particular, the bilinear form B(·, ·) is also well defined on Vg × Vh, where Vg is defined in (3).

Remark 1. The case of nonconstant β is considered in [10]. Further assumptions on the advection
field are needed. The presentation of this manuscript might be generalised to a similar setting at
the price of extra technicalities.

3 The CDG projector and its approximation properties

We recall some notation and technical results from the theory of orthogonal polynomials in Sec-
tion 3.1; we define of the Cockburn-Dong-Guzmán (CDG) projector and state the main result in
Section 3.2; we prove p-optimal approximation properties of the CDG operator in one, two, and
three dimensions in Sections 3.3, 3.4, and 3.5, respectively; in Section 3.6 we prove trace-type
estimates for the CDG projectors.
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3.1 Preliminary results

We recall hp approximation properties of the L2 projector on a simplex T in the L2 norm on
the boundary of T . This result traces back to [7, Theorem 2.1] and [19, Theorem 1.1]. Let Π0

p :
L2(T ) → Pp(T ) denote the L2 projector defined as

(v −Π0
pv, qp)0,T = 0 ∀qp ∈ Pp(T ). (9)

Lemma 3.1. Under the notation of Section 2.1, there exists a positive C independent of σ and d
such that ∥∥u−Π0

pu
∥∥
0,F+

T

≤ C

(
hT

p

) 1
2

|u|1,T ∀u ∈ H1(T ).

As a consequence, for a possibly larger constant C and k positive, we also have

∥∥u−Π0
pu

∥∥
0,F+

T

≤ C

(
hT

p

)k+ 1
2

∥u∥k+1,T ∀u ∈ Hk+1(T ).

In the one dimensional case, the norm on the right-hand side of the last inequality is in fact a
seminorm.

As we are interested in deriving estimates explicit in the polynomial degree and the estimates
explicit in the element size are already known from [9], we shall prove approximation properties
on reference elements.

Set Î := [−1, 1] the reference interval. We recall some properties of orthogonal polynomials; see,

e.g., [23]. Let {Lj}+∞
j=0 be the L2 orthogonal set of the Legendre polynomials over Î satisfying [23,

Corollary 3.6, α = 0, β = 0]

(Li, Lj)0,Î =
2

2j + 1
δi,j ∀i, j ∈ N0. (10)

Given Γ(·) the Gamma function, further let {Jℓ
j }

+∞
j=0, ℓ > −1, be the weighted-L2 orthogonal set

of Jacobi polynomials over Î satisfying [23, Corollary 3.6, α = ℓ, β = 0]

((1− x)ℓJℓ
i , J

ℓ
j )0,Î =

2ℓ+1

2j + ℓ+ 1

Γ(j + ℓ+ 1)Γ(ℓ+ 1)

Γ(ℓ+ 1)Γ(j + ℓ+ 1)
δj,ℓ =

2ℓ+1

2j + ℓ+ 1
δj,ℓ ∀i, j ∈ N0. (11)

3.2 The CDG projector and the main result

The CDG operator was introduced for the analysis of superconvergent DGmethods for second-order
elliptic problems in [9]. It can be defined for simplices in any dimensions satisfying assumptions
(A1)–(A2). In particular, recall that F+

T is the only outflow facet of T .

The CDG operator Pp : H
1
2+ε(T ) → Pp(T ) is defined as

(v − Ppv, q
T
p−1)0,T = 0 ∀qTp−1 ∈ Pp−1(T ), (12a)

(v − Ppv, q
F+

T
p )0,F+

T
= 0 ∀qF

+
T

p ∈ Pp(F
+
T ). (12b)

In [9], the following error estimate was proven for sufficiently smooth functions:

∥v − Ppv∥0,T ≤ C hp+1|v|p+1,Ω.

The constant C above depends on σ and the polynomial degree p. The remainder of the section is
devoted to carefully detail the dependence on p. Namely, we shall prove the following result.

Theorem 3.2. Let the assumptions (A1) and (A2) be valid, T be in Th, and Π0
p be the operator

in (9). Then, there exist a positive constant C independent of h and p, such that, for any v in
Hk+1(T ), k positive, we have

∥v − Ppv∥0,T≤ C
hmin(p,k)+1

pk+1
∥v∥k+1,T .

5



3.3 The 1D case

We prove Theorem 3.2 in the case of one dimensional simplices, i.e., on intervals. This was already
done in [22, Lemmas 3.5 and 3.6]. However, we deem that reviewing the main steps from [22]
is beneficial for the understanding of the extension to the two and three dimensional cases in
Sections 3.4 and 3.5 below, respectively.

Without loss of generality, we pick T = Î and assume −1 to be the outflow facet. In 1D, the
operator Pp is defined imposing orthogonality up to order p−1 over Î and imposing that Ppv(−1) =
v(−1); this last condition replaces the orthogonality on the outflow facet.

The proof of optimal p-convergence can be split in the following steps:

1. we write Ppv as a combination of Legendre polynomials and compute the corresponding
coefficients; up to order p − 1, the coefficients are the same as those of the expansion of v;
the coefficient of order p is given by a tail of the other Legendre coefficients;

2. we relate such a tail to the coefficients of v minus its L2 projection on the triangle restricted
to the outflow facet;

3. we deduce the assertion using trace error estimates as in Lemma 3.1.

Step 1: writing Ppv with respect to the Legendre basis and with explicit coefficients.

Given v in L2(Î), we consider its expansion with respect to Legendre polynomials

v(x) =

+∞∑
j=0

vj Lj(x).

Consider also the truncated expansion up to order p given by

Ppv(x) =

p∑
j=0

v̂j Lj(x).

The orthogonality condition (12a) with respect to polynomials of degree p− 1 gives

Ppv(x) =

p−1∑
j=0

vj Lj(x) + v̂p Lp(x).

The last coefficient is given imposing the condition v(−1) = Ppv(−1). More precisely, since Lj(−1) =
(−1)j for all j in N, we write

v(−1) =

+∞∑
j=0

(−1)jvj , Ppv(−1) =

p−1∑
j=0

(−1)jvj + (−1)pv̂p.

We deduce

(−1)pv̂p =

+∞∑
j=p

vj(−1)j ,

whence we get

Ppv(x) =

p−1∑
j=0

vj Lj(x)+
(+∞∑
j=p

(−1)j−pvj

)
Lp(x). (13)
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Given Π0
p the L2 projection as in (9), we arrive at

(v − Ppv)(x) =

+∞∑
j=p

vj Lj(x)−
(+∞∑
j=p

(−1)j−pvj

)
Lp(x)

=

+∞∑
j=p+1

vj Lj(x) + vpLp(x)− vpLp(x)−
( +∞∑
j=p+1

(−1)j−pvj

)
Lp(x)

=

+∞∑
j=p+1

vj Lj(x)−
( +∞∑
j=p+1

(−1)j−pvj

)
Lp(x)

= (v −Π0
pv)(x)− (−1)−p

( +∞∑
j=p+1

(−1)jvj

)
Lp(x).

(14)

Step 2: relate the tail of the Legendre coefficients to the trace of v−Π0
pv on the outflow

facet. Observe that

(v −Π0
pv)(x) =

+∞∑
j=p+1

vjLj(x), (v −Π0
pv)(−1) =

+∞∑
j=p+1

vjLj(−1) =

+∞∑
j=p+1

(−1)jvj . (15)

Combining (14) and (15) gives

(v − Ppv)(x) = (v −Π0
pv)(x)− (−1)p[(v −Π0

pv)(−1)]Lp(x)

Recall from (10) that

∥Lp∥20,Î =
2

2p+ 1
. (16)

We deduce

∥v − Ppv∥20,Î ≤
∥∥v −Π0

pv
∥∥2
0,Î

+ |(v −Π0
pv)(−1)|2 2

2p+ 1
.

Step 3: deduce the desired bound using Lemma 3.1. The 1D version of Lemma 3.1 reads

|(v −Π0
pv)(−1)|2 ≲ (p+ 1)−1|v|21,Î .

Combining the two equations above yields

∥v − Ppv∥0,Î ≲
∥∥v −Π0

pv
∥∥
0,Î

+ (p+ 1)−1|v|1,Î .

The assertion follows noting that Pp and Π0
p preserve polynomials of maximum degree p and

standard polynomial approximation results.

3.4 The 2D case

We prove Theorem 3.2 in two dimensions. Compared to the 1D case in Section 3.3, the role
of orthogonal basis functions is now played by tensor product Jacobi polynomials (with different
weights) collapsed on the triangle via the Duffy transformation; in other words, we use Koornwinder
polynomials following the construction in [4, 7]; see also [12,17].

First, we introduce a reference 2D simplex T :

T̂ :=

{(
z
1− y

2
, y

)
∈ R2

∣∣∣∣ (z, y) ∈ [−1, 1]2
}
. (17)

The reference triangle T̂ corresponds to the reference square Q̂ := [−1, 1]2 collapsed under the
Duffy transformation

(z, y) ∈ Q̂ =⇒
(
z
1− y

2
, y

)
.

7



This particular choice of T̂ is convenient for our purposes, as we shall analyse the approximation
properties of Pp assuming that F+

T̂
is the segment [−1, 1]× {−1}.

We introduce the orthogonal polynomial basis (known as Koornwinder polynomial basis [17])

over T̂ given by

Φj,ℓ(x, y) := Lj

(
2x

1− y

)
J2j+1
ℓ (y)

(
1− y

2

)j

∀j, ℓ ∈ N. (18)

This is an orthogonal basis over T̂ . In fact, using the Duffy transformation, we have∫
T̂

Φi,j(x, y)Φk,ℓ(x, y)dx dy =

(∫ 1

−1

Li(z)Lk(z) dz

)(∫ 1

−1

J2i+1
j (y)J2k+1

ℓ (y)

(
1− y

2

)i+k+1

dy

)
.

If i ̸= k, the above inner product is zero. Thus, without loss of generality, we can assume i = k.
Using (11), we write∫

T̂

Φi,j(x, y)Φi,ℓ(x, y)dx dy =

(∫ 1

−1

Li(z)Li(z) dz

)(∫ 1

−1

J2i+1
j (y)J2i+1

ℓ (y)

(
1− y

2

)2i+1

dy

)

=
2

2i+ 1
2−2j−1 22j+2

2ℓ+ 2j + 2
δj,ℓ =

2

2i+ 1
2−2j−1 22j+1

j + ℓ+ 1
δj,ℓ =

2

2i+ 1

1

j + ℓ+ 1
δj,ℓ.

(19)

With this at hand, we extend the results in Section 3.3 to 2D simplices. Henceforth, let v denote
a sufficiently regular function over T̂ .

Step 1: writing Ppv with respect to the Koornwinder basis and with explicit coeffi-
cients. We expand v with respect to the Koornwinder basis in (18):

v(x, y) =

+∞∑
j+ℓ=0

vj,ℓΦj,ℓ(x, y). (20)

In what follows, the indices appearing under the summation symbol are always taken nonnegative;
moreover, we set vj,ℓ equal to 0 if j or ℓ are negative.

Since Ppv belongs to Pp(T̂ ), we expand it with respect to the Koornwinder basis:

Ppv(x, y) =

p∑
j+ℓ=0

v̂j,ℓΦj,ℓ(x, y).

By the orthogonality property (12a), we readily get

Ppv(x, y) =

p−1∑
j+ℓ=0

vj,ℓΦj,ℓ(x, y) +
∑

j+ℓ=p

v̂j,ℓΦj,ℓ(x, y).

The coefficients corresponding to the Koornwinder’s polynomials of order p are found using the
facet orthogonality condition (12b) on the facet F+

T̂
. Notably, we impose the identity

∫
F+

T̂

[ ∞∑
j+ℓ=p+1

vj,ℓΦj,ℓ(x,−1) +
∑

j+ℓ=p

(vj,ℓ − v̂j,ℓ)Φj,ℓ(x,−1)
]
Lk(x) dx = 0 ∀k = 0, . . . , p.

Using (18) and the fact that J2i+1
ℓ (−1) = (−1)ℓ, this identity can be rewritten as∑

j+ℓ=p

∫
F+

T̂

(vj,ℓ − v̂j,ℓ)(−1)p−jLj(x)Lk(x)dx

+

+∞∑
p̃=p+1

∑
j+ℓ=p̃

∫
F+

T̂

vj,ℓ(−1)p̃−jLj(x)Lk(x)dx = 0 ∀k = 0, . . . , p.

8



Further using (16) and the orthogonality property (10) of the Legendre polynomials, we end up
with

(−1)p−k 2

2k + 1
[vk,p−k − v̂k,p−k] +

+∞∑
p̃=p+1

(−1)p̃−k 2

2k + 1
vk,p̃−k = 0 ∀k = 0, . . . , p.

In other words, the order p coefficients of Ppv are given by

(−1)p−kv̂k,p−k =

+∞∑
p̃=p

(−1)p̃−kvk,p̃−k ∀k = 0, . . . , p.

This is the 2D counterpart of (13). For completeness, we collect the above identities and arrive at

Ppv(x, y) =

p−1∑
j+ℓ=0

vj,ℓΦj,ℓ(x, y) +
∑

j+ℓ=p

(+∞∑
p̃=p

(−1)p̃−pvj,p̃−j

)
Φj,ℓ(x, y).

As in the 1D case, we deduce

(v − Ppv)(x, y) =

+∞∑
j+ℓ=p

vj,p−jΦj,ℓ(x, y)−
∑

j+ℓ=p

(

+∞∑
p̃=p

(−1)p̃−pvj,p̃−j)Φj,ℓ(x, y)

=

+∞∑
j+ℓ=p+1

vj,p−jΦj,ℓ(x, y)−
∑

j+ℓ=p

(

+∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j)Φj,ℓ(x, y)

= (v −Π0
pv)(x, y)−

∑
j+ℓ=p

(

+∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j)Φj,ℓ(x, y).

(21)

Step 2: relate the tail of the Koornwinder coefficients to the trace of v − Π0
pv on the

outflow facet. Using that J2j+1
ℓ (−1) = (−1)ℓ for all ℓ and j in N, we write explicitly the trace

of v −Π0
pv on F+

T̂
:

(v −Π0
pv)(x, y) =

+∞∑
j+ℓ=p+1

vj,ℓΦj,ℓ(x, y), (v −Π0
pv)(x,−1) =

+∞∑
j+ℓ=p+1

(−1)ℓvj,ℓLj(x).

The orthogonality property (10) of the Legendre polynomials over Î := [−1, 1] and (16), we write

∥∥v −Π0
pv
∥∥2
0,F+

T̂

=

+∞∑
j=0

∥Lj∥20,Î
( +∞∑

ℓ=max(p+1−j,0)

(−1)ℓvj,ℓ

)2

=

+∞∑
j=0

2

2j + 1

( +∞∑
ℓ=max(p+1−j,0)

(−1)ℓvj,ℓ

)2

.

Next, we focus on the second term on the right-hand side of (21). Using (19), we can write∥∥∥∥∥∥
∑

j+ℓ=p

( +∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j

)
Φj,ℓ

∥∥∥∥∥∥
2

0,T̂

=
∑

j+ℓ=p

( +∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j

)2∥Φj,ℓ∥20,T̂

=
∑

j+ℓ=p

( +∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j

)2 2

2j + 1

1

j + ℓ+ 1
=

1

p+ 1

p∑
j=0

2

2j + 1

( +∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j

)2
≤ 1

p+ 1

+∞∑
j=0

2

2j + 1

( +∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j

)2
=

1

p+ 1

∥∥v −Π0
pv
∥∥2
0,F+

T̂

.

(22)

The last identity follows from the fact that the quantity in the parenthesis is squared and the only
relevant fact is the alternating sign of the (−1)p̃−p term.
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Step 3: deduce the desired bound using Lemma 3.1. Combining the above inequality
with (21) and using the 2D version of Lemma 3.1, we deduce

∥v − Ppv∥0,T̂ ≤
∥∥v −Π0

p

∥∥
0,T̂

+ (p+ 1)−
1
2

∥∥v −Π0
pv
∥∥
0,F+

T̂

≲
∥∥v −Π0

p

∥∥
0,T̂

+ (p+ 1)−1|v|1,T̂ .

The assertion follows noting that Pp and Π0
p preserve polynomials of maximum degree p and

standard polynomial approximation results.

3.5 The 3D case

We prove Theorem 3.2 in three dimensions. Compared to the 1D and 2D cases of Sections 3.3
and 3.4, the role of orthogonal basis functions is now played by tensor product Jacobi polynomials
(of different orders) collapsed on the tetrahedron using the 3D Duffy transformation; in other
words, we use 3D Koornwinder polynomials following the construction in [7, 16,24].

Introduce the reference cube Q̂ = [−1, 1]3 and the reference tetrahedron T̂ of vertices

(−1,−1,−1); (1,−1,−1); (0, 1,−1); (0, 0, 1).

We denote the lower face of T̂ by F+

T̂
; it coincides with the reference triangle in Section 3.4 at z = 1.

We consider the 3D Duffy transformation D : Q̂ → T̂ that maps each (z1, z2, z3) = z in Q̂

into (x1, x2, x3) = x in T̂ as follows:

x1 = z1
1− z2

2

1− z3
2

, x2 = z2
1− z3

2
, x3 = z3.

The Jacobian of the transformation is

det

 1−z2
2

1−z3
2 0 0

− 1
2z1

1−z3
2

1−z3
2 0

− 1
2z1

1−z2
2 − z2

2 1

 =
1− z2

2

(
1− z3

2

)2

.

We also compute the formal inverse D−1 of the transformation D:

z3 = x3, z2 = x2
2

1− z3
=

2x2

1− x3
, z1 = x1

4

(1− z2)(1− z3)
=

4x1

1− 2x2 − x3
.

We introduce the following L2-orthogonal basis over T̂ : given a multi-index j = (j1, j2, j3) in N3,

Φj(x) = Lj1

(
4x1

1− 2x2 − x3

)
J2j1+1
j2

(
2x2

1− x3

)(
1− 2x2 − x3

2(1− x3)

)j1

J2j1+2j2+2
j3

(x3)

(
1− x3

2

)j1+j2

.

We only check the norm of the above Koornwinder polynomials. Transforming T̂ into Q̂ by D−1

and recalling (11), we deduce∫
T̂

Φj(x)Φj(x)dx

=

∫
Q̂

Lj1(z1)
2J2j1+1

j2
(z2)

2

(
1− z2

2

)2j2+1

J2j1+2j2+2
j3

(z3)
2

(
1− z3

2

)2j1+2j2+2

dz

=

∫
Î

Lj1(z1)
2 dz1

∫
Î

J2j1+1
j2

(z2)
2

(
1− z2

2

)2j2+1

dz2

∫
Î

J2j1+2j2+2
j3

(z3)
2

(
1− z3

2

)2j1+2j2+2

dz3

=
2

2j1 + 1

2

2j1 + 2j2 + 2

2

2j1 + 2j2 + 2j3 + 3
∀j = (j1, j2, j3) ∈ N3.

(23)

Next, we prove p-optimal approximation properties in the L2 norm of the operator Pp given as
in (12) with the role of outflow face played by the facet F+

T̂
.
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Step 1: writing Ppv with respect to the 3D version Koornwinder basis and with explicit
coefficients. Consider the following expansion of v:

v(x) =

+∞∑
|j|=0

vjΦj(x).

In what follows, the indices appearing under the summation symbol are always taken nonnegative;
|j| stands for j1 + j2 + j3; vj is set to 0 if any of the indices j1, j2, and j3 is negative.

Using (12a), we realise that

v(x) =

p−1∑
|j|=0

vjΦj(x) +
∑
|j|=p

v̂jΦj(x),

where the coefficients v̂j, |j| = p are to be determined using (12b).
First, we write the trace of any polynomial basis function on F+

T̂
, i.e., we impose the passage

through x3 = −1:

Φj(x)|F+

T̂

= Lj1

(
2x1

1− x2

)
J2j1+1
j2

(x2)

(
1− x2

2

)j1

(−1)j3 .

Let Ψℓ1,ℓ2 be the 2D Koornwinder basis in (18) on the reference triangle F+

T̂
. We impose (12b):

∑
|j|=p

∫
F+

T̂

[vj − v̂j](−1)j3Lj1

(
2x1

1− x2

)
Lj2(x2)

(
1− x2

2

)j1

Ψℓ1,ℓ2(x1, x2)dx1dx2

+

+∞∑
p̃=p+1

∑
|j|=p̃

∫
F+

T̂

vj(−1)j3Lj1

(
2x1

1− x2

)
Lj2(x2)

(
1− x2

2

)j1

Ψℓ1,ℓ2(x1, x2)dx1dx2 = 0

∀ℓ1, ℓ2 such that ℓ1 + ℓ2 ≤ p.

We rewrite the above relation as∑
|j|=p

∫
F+

T̂

[vj − v̂j](−1)j3Ψj1,j2(x1, x2)Ψℓ1,ℓ2(x1, x2)dx1dx2

+

+∞∑
p̃=p+1

∑
|j|=p̃

∫
F+

T̂

vj(−1)j3Ψj1,j2(x1, x2)Ψℓ1,ℓ2(x1, x2)dx1dx2 = 0 ∀ℓ1, ℓ2 such that ℓ1 + ℓ2 ≤ p.

Using the orthogonality property (19) of the Koornwinder polynomials in 2D, we deduce

(−1)p−ℓ1−ℓ2
2

2ℓ1 + 1

1

ℓ1 + ℓ2 + 1
(vℓ1,ℓ2,p−ℓ1−ℓ2 − v̂ℓ1,ℓ2,p−ℓ1−ℓ2)

+

+∞∑
p̃=p+1

(−1)p̃−(ℓ1+ℓ2)
2

2ℓ1 + 1

1

ℓ1 + ℓ2 + 1
vℓ1,ℓ2,p̃−ℓ1−ℓ2 = 0 ∀ℓ1, ℓ2 such that ℓ1 + ℓ2 ≤ p.

In other words, we have

v̂ℓ1,ℓ2,p−ℓ1−ℓ2 =

+∞∑
p̃=p

(−1)p̃−pvℓ1,ℓ2,p̃−ℓ1−ℓ2 ∀ℓ1, ℓ2 such that ℓ1 + ℓ2 ≤ p.

This provides us with the representation

Ppv(x) =

p−1∑
|j|=0

vjΦj(x) +
∑
|j|=p

(+∞∑
p̃=p

(−1)p̃−pvj1,j2,p̃−j1−j2

)
Φj(x).
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We get

(v − Ppv)(x) =

+∞∑
|j|=p

vj1,j2,p−j1−j2Φj(x)−
∑
|j|=p

(+∞∑
p̃=p

(−1)p̃−pvj1,j2,p̃−j1−j2

)
Φj(x)

=

+∞∑
|j|=p+1

vj1,j2,p−j1−j2Φj(x)−
∑
|j|=p

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)
Φj(x)

= (v −Π0
pv)(x)−

∑
|j|=p

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)
Φj(x).

(24)

Step 2: relate the tail of the 3D version Koornwinder coefficients to the trace of v−Π0
pv

on the outflow facet. The restriction of v −Π0
pv on the outflow facet F+

T̂
reads

(v − Ppv)(x)|F+

T̂

=

+∞∑
|j|=p+1

vjLj1

(
2x1

1− x2

)
J2j1+1
j2

(x2)

(
1− x2

2

)j1

(−1)j3

=

+∞∑
|j|=p+1

vjΨj1,j2(x)(−1)j3 .

We take the L2 norm on both sides over F+

T̂
, use the orthogonality property (19) of Koornwinder

polynomials over F+

T̂
, and get, for j̃ equal to max(p+ 1− (j1 + j2), 0),

∥v − Ppv∥0,F+

T̂

=

+∞∑
j1+j2=0

∥Ψj1,j2∥
2

0,F+

T̂

( ∑
j3=j̃

(−1)j3vj

)2
=

+∞∑
j1+j2=0

2

2j2 + 1

1

j1 + j2 + 1

( ∑
j3=j̃

(−1)j3vj

)2
.

We show a bound on the L2 norm over T̂ of the second term on the right-hand side of (24) in
terms of the L2 norm of v − Ppv on F+

T̂
. To this aim, we use (23):∥∥∥∥∥∥

∑
|j|=p

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)
Φj(x)

∥∥∥∥∥∥
2

0,T̂

=
∑
|j|=p

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)2∥Φj∥20,T̂

=
∑
|j|=p

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)2 2

2j1 + 1

1

j1 + j2 + 1

1

j1 + j2 + j3 + 1

=
1

p+ 1

p∑
j1+j2=0

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)2 2

2j1 + 1

1

j1 + j2 + 1

≤ 1

p+ 1

+∞∑
j1+j2=0

( +∞∑
p̃=p+1

(−1)p̃−pvj1,j2,p̃−j1−j2

)2 2

2j1 + 1

1

j1 + j2 + 1
=

1

p+ 1

∥∥v −Π0
pv
∥∥2
0,F+

T̂

.

Step 3: deduce the desired bound using optimal trace error estimates. Combining the
above inequality with (21) and using the 3D version of Lemma 3.1, we deduce

∥v − Ppv∥0,T̂ ≤
∥∥v −Π0

p

∥∥
0,T̂

+ (p+ 1)−
1
2

∥∥v −Π0
pv
∥∥
0,F+

T̂

≲
∥∥v −Π0

p

∥∥
0,T̂

+ (p+ 1)−1|v|1,T̂ .

The assertion follows noting that Pp and Π0
p preserve polynomials of maximum degree p and

standard polynomial approximation results.

3.6 Trace-type estimates for the CDG operator

The CDG operator satisfies hp-optimal approximation properties in the L2 norm; see Theorem 3.2.
Here, we investigate hp-optimal approximation properties in the L2 norm on the boundary of a
simplex T , i.e., the counterpart of Lemma 3.1 for the projector Pp.
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To this aim, we show separate bounds on the facets. First, we consider the case of the (unique)
outflow facet F+

T . By (12b) and Lemma 3.1, we get

∥v − Ppv∥0,F+
T
≤

∥∥v −Π0
pv
∥∥
0,F+

T

≲

(
hT

p

) 1
2

|v|1,T ∀v ∈ H1(T ).

Approximation properties on the inflow facets are more elaborated and are discussed in the next
result.

Proposition 3.3. Let the assumptions (A1) and (A2) be valid, T be in Th, F−
T be any of the

inflow facets of T , and Π0
p be the operator in (9). Then, there exist positive constants C1 and C2

independent of h and p such that, for every v in Hk+1(T ), k positive, the following estimate holds
true:

∥v − Ppv∥0,F−
T

≤ C1

∥∥v −Π0
pv
∥∥
0,∂T

≤ C2
hmin(p,k)+ 1

2

pk+
1
2

∥v∥k+1,T . (25)

Proof. The proof of the 1D case is fairly simple. The two and three dimensional cases are more
elaborated; we provide details for the 2D case, as the 3D case can be dealt with similarly. Through-
out, we employ the notation of Sections 3.2–3.5. We prove the assertion on the reference simplex T̂ ;
the general statement follows from a scaling argument.

Proof of (25) in 1D. Here T̂ = [−1, 1]. From (14), (15), and Lj(1) = 1 for all j in N, we deduce

|(v − Ppv)(1)| ≤ |(v −Π0
pv)(−1)|+ |(v −Π0

pv)(1)|.

The assertion follows from Lemma 3.1.

Proof of (25) in 2D. Here, T̂ is as in (17). Recall expansion (20) with the caveat that coefficients
related to negative indices are set to zero.

Introduce

R :=
∑

j+ℓ=p

(

+∞∑
p̃=p+1

(−1)p̃−pvj,p̃−j)Φj,ℓ(x, y)

and
Ĉp := max

j+ℓ=p
∥Φj,ℓ(x, y)∥0,F−

T̂

.

We have

∥R∥20,F−
T̂

≲
∑

j+ℓ=p

|
+∞∑

p̃=p+1

(−1)p̃−pvj,p̃−j |2∥Φj,ℓ(x, y)∥20,F−
T̂

≤ Ĉ2
p

∑
j+ℓ=p

|
+∞∑

p̃=p+1

(−1)p̃−pvj,p̃−j |2,

whence we deduce

∥R∥20,F−
T̂

≲ Ĉ2
p

∑
j+ℓ=p

|
+∞∑

p̃=p+1

(−1)p̃−pvj,p̃−j |2
2

2j + 1

2j + 1

2

≤ Ĉ2
p

2p+ 1

2

∑
j+ℓ=p

|
+∞∑

p̃=p+1

(−1)p̃−pvj,p̃−j |2
2

2j + 1
.

We proceed as in (22) and arrive at

∥R∥20,F−
T̂

≲ Ĉ2
p

2p+ 1

2

∑
j+ℓ=p

|
+∞∑

p̃=p+1

(−1)p̃−pvj,p̃−j |2
2

2j + 1
≤ Ĉ2

p

2p+ 1

2

∥∥v −Π0
pv
∥∥2
0,F+

T̂

.

Combining (21) with the inequality above yields

∥v − Ppv∥0,F−
T̂

≤
∥∥v −Π0

pv
∥∥
0,F−

T̂

+ ∥R∥0,F−
T̂

≲
∥∥v −Π0

pv
∥∥
0,F−

T̂

+ Ĉpp
1
2

∥∥v −Π0
pv
∥∥
0,F+

T̂

. (26)
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If we were able to prove that Ĉp ≲ p−
1
2 , then the assertion would follow from Lemma 3.1 and (26).

In fact, we would write

∥v − Ppv∥0,F−
T̂

≤
∥∥v −Π0

pv
∥∥
0,F−

T̂

+ ∥R∥0,F−
T̂

≲
∥∥v −Π0

pv
∥∥
0,F−

T̂

+
∥∥v −Π0

pv
∥∥
0,F+

T̂

.

We are left with showing Ĉp ≲ p−
1
2 . For the sake of presentation, we fix F−

T̂
to be the inflow facet

of T̂ with negative x coordinates. If this is the case, then a direct application of definition (18)
gives

Φj,ℓ|F−
T̂

= (−1)jJ2j+1
ℓ (y)

(
1− y

2

)j

.

Taking into account the Jacobian of the transformation mapping the facet F−
T̂

into the “vertical”

facet {−1} × [−1, 1] and recalling (11), we deduce

∥Φj,ℓ∥20,F−
T̂

=

∫ 1

−1

[
J2j+1
ℓ (y)

]2 (1− y

2

)2j+1

=
22j+2

2j + 1 + 2ℓ+ 1

1

22j+1
=

1

1 + j + ℓ
.

Since we are considering couples (j, ℓ) such that j + ℓ = p, we arrive at

∥Φj,ℓ∥20,F−
T̂

=
1

p+ 1
,

i.e., Ĉp ≲ p−
1
2 .

4 A priori analysis

We prove hp-optimal a priori error estimates for method (6). The proof is essentially the hp-
version of that of [8, Theorem 2.2]. We report here the details for three reasons: for the sake
of completeness; since we are interested in hp-optimal a priori bounds; because we have different
assumptions, namely we require (5) for well posedness of the method, but we have no restrictions
on the mesh size h as for instance required in [15].

Theorem 4.1. Let Th be a shape-regular, quasi uniform mesh satisfying the assumptions (A1)–
(A2), and u and uh be the solutions to (4) and (6). If (5) holds true and u belongs to Hk+1(Ω),
k positive, then there exists a positive constant C independent of h and p but possibly depending
on σ such that

∥u− uh∥0,Ω ≤ C
hmin(k,p)+1

pk+1
∥u∥k+1,Ω.

Proof. Introduce
eh := uh − Ppu.

The rewriting of the bilinear form in (7) and the Galerkin orthogonality (8) imply

B(eh, vh) = B(u− Ppu, vh) =

3∑
j=1

Tj ,

where

T1 := −(u− Ppu,β · ∇hvh)0,Ω,

T2 :=
∑
T∈Th

((u− Ppu)
−,nT · β [[vh]])0,ΓT

in
+

∑
T∈Th

(u− Ppu,nT · β vh)0,∂T∩Γ+ ,

T3 := (c(u− Ppu), vh)0,Ω.

The term T1 vanishes due to (12a).
As for the term T2, some manipulations imply

T2 = −
∑
T∈Th

(u− Ppu,nT · β [[vh]])0,ΓT
out

+
∑
T∈Th

(u− Ppu,nT · β vh)0,∂T∩Γ+
.
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The last identity is a consequence of the definition of outflow facets. Recalling (12b), also T2

vanishes. We end up with

B(eh, vh) = (c(u− Ppu), vh)0,Ω.

This means that eh solves method (6) with data f and g given by c(u− Ppu) and 0, respectively.
This identity and the stability estimate in Proposition 2.1 imply

∥eh∥0,Ω ≲ ∥c(u− Ppu)∥0,Ω.

The triangle inequality and the above bound entail

∥u− uh∥0,Ω ≤ ∥u− Ppu∥0,Ω + ∥u− uh∥0,Ω ≲ ∥u− Ppu∥0,Ω + ∥c(u− Ppu)∥0,Ω.

The assertion follows using Theorem 3.2.

We also prove hp-optimal convergence for method (6) in the full DG norm

|||vh|||2DG :=
∑
T∈Th

(
∥c vh∥20,T +

∥∥∥|nT · β|
1
2 v−h

∥∥∥2
0,ΓT

in∩Γ−
+
∥∥∥|nT · β|

1
2 v+h

∥∥∥2
0,ΓT

out∩Γ+

+
∥∥∥|nT · β|

1
2 [[vh]]

∥∥∥2
0,ΓT

in\Γ−

)
.

Theorem 4.2. Let Th be a shape-regular, quasi uniform mesh satisfying the assumptions (A1)–
(A2), and u and uh be the solutions to (4) and (6). If (5) holds true and u belongs to Hk+1(Ω),
k positive, then there exists a positive constant C independent of h and p but possibly depending
on σ such that

|||u− uh|||DG ≤ C
hmin(k,p)+ 1

2

pk+
1
2

∥u∥k+1,Ω.

Proof. This is the simplicial version of [13, Theorem 3.7]. As in the proof of that result, given η :=
u−Π0

pu, it is possible to show that

|||u− uh|||DG

≲ (
∑
T∈Th

∥η∥20,T )
1
2 +

( ∑
T∈Th

(∥∥∥|nT · β|
1
2 η+

∥∥∥2
0,ΓT

out∩Γ+

+
∥∥∥|nT · β|

1
2 η+

∥∥∥2
0,ΓT

in∩Γ−

+
∥∥∥|nT · β|

1
2 η−

∥∥∥2
0,ΓT

out\Γ−
+
∥∥∥|nT · β|

1
2 η+

∥∥∥2
0,ΓT

out\Γ−

)) 1
2
=: A+B.

The hidden constant above is independent of h and p.
The term A is dealt with using standard hp Babuška-Suri type approximation properties of

the L2 projection in the L2 norm; see, e.g., [1, Lemma 4.5]. The term B is dealt with using
approximation properties of the L2 projection in the boundary L2 norm as discussed in Lemma 3.1.

Theorems 4.1 and 4.2 improve the current state of the art of the literature along different directions:

• [8, Theorem 2.2] shows h-optimal convergence in the L2 norm; here, we provide full explicit
track of the p-convergence;

• [13, Theorem 3.7] and [14, Theorem 5.1] display hp-optimal convergence in the full DG
norm on Cartesian-type meshes; here, we show optimal hp-optimal convergence in the full
DG norm on special simplicial meshes and also improved convergence (on simplicial meshes)
in the L2 norm.

The theoretical limitations of Theorems 4.1 and 4.2 are the use

• of the special meshes in Section 2.1 from [8];

• of assumption (5).

In Section 5 below, we investigate whether the two limitations above can be overcome in practice
or are necessary condition for the hp-optimality.
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Remark 2. Following the proof of Theorem 4.2, it is possible to derive hp-optimal convergence of
DG methods on simplicial meshes for diffusion-advection-reaction problems as in [14]. In words,
one needs to care also of an interior penalty discontinuous discretization of a diffusion term; the
error of the method is then estimated from above by the distance in a DG type norm between
the exact solution and its L2 projection. Such a quantity is then estimated optimally using the
Babuška-Suri type approximation properties of the L2 projection in the L2 norm (using [1]), in
the H1 seminorm (using [5]), and in the L2 norm on the boundary (using Lemma 3.1).

5 Numerical experiments

We assess the convergence rates of method (6) in the L2 and full DG norms proven in Theorems 4.1
and 4.2. We focus on the p-version of the method in two dimensions, fix two triangular meshes of 50
and 32 triangles partitioning the square domain Ω := (−1, 1)2, see Figure 1, and use polynomial
degrees p from 1 to 40. Standard composite Gaussian quadrature is employed throughout. We
pick an L2 orthonormal basis over simplices as that constructed in [16].

We consider two test cases. The first one involves a constant convection field such that assump-
tion (5) holds true and the meshes satisfy the construction in Section 2.1. Instead, a second test
case is devoted to check the performance of the scheme even if the convection field and the meshes
do not satisfy the assumptions needed in the analysis of Sections 3 and 4.

Figure 1: Left-panel : mesh consisting of 50 triangles. Right-panel : mesh consisting of 32 triangles.

Test case 1. As in [6, Section 5.2], we consider the convection field β = (1, 1), the reaction
coefficient c = 1, and the exact solution, for given positive α,

u(x, y) =

{
cos(πy/2) in (−1, 0]× (−1, 1)

cos(πy/2) + xα in (0, 1)× (−1, 1).
(27)

The right-hand side f is computed accordingly. The two meshes in Figure 1 are such that each
element has only one outflow facet for the given convection field β.

The solution u belongs to H1/2+α−ϵ(Ω) for any positive and arbitrarily small ϵ. The singularity
is located in the interior of a mesh cell for the mesh in Figure 1 (left-panel) and at the interface of
several cell elements for the mesh in Figure 1 (right-panel).

We report the results in Figure 2 and 3 for the 50 and 32 triangles cases, respectively. We
pick α = 0.5, 1.5, and 2.5.

The convergence rate of the DG scheme under p refinement in the L2-norm error is of order
O(p−(1/2+α)), which is optimal. The convergence rate in the DG norm is also of orderO(p−(1/2+α)),
i.e., we observe convergence rates better than those proven in theory.

For the case of 32 triangular elements, the singularity lies at the interface of several mesh cell
elements. Therefore, the usual doubling of the convergence takes place, see, e.g., [2], and the
convergence rate is O(p−2α) in both norms.
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Figure 2: p-version for the case of constant convection field β. We consider the exact solution u in (27) and fix
the triangular mesh with 50 elements as in Figure 1 so as the mesh assumptions in Section 2.1 are satisfied. The
singularity lies in the interior of a cell element. Left-panel : L2 norm error. Right-panel : DG norm error.

Test case 2. As in [14, Example 1], we consider the convection field β = (2 − y2, 2 − x), the
reaction coefficient c = 1+(1+x)(1+y2), and the exact solution given by u in (27). The right-hand
side f is computed accordingly. The two meshes in Figure 1 do not satisfy the mesh assumptions
in Section 2.1 for the given convection field β. The regularity of the exact solution u is already
discussed in Test case 1.

We report the results in Figure 4 and 5 for the 50 and 32 triangles cases, respectively. We
pick α = 0.5, 1.5, and 2.5.

We observe convergence rates as those for the constant convection field case. This is in accor-
dance with the numerical observation in [14, Example 1].

In both test cases, the use of an orthonormal basis implies that the condition number remains
moderate, whence the convergence rates do not deteriorate for high p.

6 Conclusions

We analyzed p-optimal approximation properties of the CDG operator in the L2 norm and the L2

norm of the trace on simplices with only one outflow facet in 1D, 2D, and 3D. These results are
instrumental in deriving p-optimal error estimates for the original DG method on special simplicial
meshes. Numerical experiments validate the predicted convergence rates measured in the L2 norm
also for convection fields and meshes not satisfying the assumptions used in our proofs; convergence
rates are observed for the error measured in the full DG norm that are better than those proven
in theory.
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Figure 5: p-version for the case of variable convection field β. We consider the exact solution u in (27) and fix
the triangular mesh with 32 elements as in Figure 1. The mesh assumptions in Section 2.1 are not satisfied. The
singularity lies at the interface of several cell elements. Left-panel : L2 norm error. Right-panel : DG norm error.
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