Computational complexity is a quantum information concept that recently has found applications in the holographic understanding of the black hole interior. We consider quantum computational complexity for n qubits using Nielsen's geometrical approach. In the definition of complexity there is a big amount of arbitrariness due to the choice of the penalty factors, which parametrizes the cost of the elementary computational gates. In order to reproduce desired features in holography, such as ergodicity and exponential maximal complexity for large number of qubits n, negative curvatures are required. With the simplest choice of penalties, this is achieved at the price of singular sectional curvatures in the large n limit. We investigate a choice of penalties in which we can obtain negative curvatures in a smooth way. We also analyze the relation between operator and state complexities, framing the discussion with the language of Riemannian submersions. This provides a direct relation between geodesics and curvatures in the unitaries and the states spaces, which we also exploit to give a closed-form expression for the metric on the states in terms of the one for the operators. Finally, we study conjugate points for a large number of qubits in the unitary space and we provide a strong indication that maximal complexity scales exponentially with the number of qubits in a certain regime of the penalties space.

Auzzi, R., Baiguera, S., Bruno De Luca, G., Legramandi, A., Nardelli, G., Zenoni, N. (2021). Geometry of quantum complexity. PHYSICAL REVIEW D, 103(10) [10.1103/PhysRevD.103.106021].

Geometry of quantum complexity

Baiguera, S.;Bruno De Luca, G.;Legramandi, A.;
2021

Abstract

Computational complexity is a quantum information concept that recently has found applications in the holographic understanding of the black hole interior. We consider quantum computational complexity for n qubits using Nielsen's geometrical approach. In the definition of complexity there is a big amount of arbitrariness due to the choice of the penalty factors, which parametrizes the cost of the elementary computational gates. In order to reproduce desired features in holography, such as ergodicity and exponential maximal complexity for large number of qubits n, negative curvatures are required. With the simplest choice of penalties, this is achieved at the price of singular sectional curvatures in the large n limit. We investigate a choice of penalties in which we can obtain negative curvatures in a smooth way. We also analyze the relation between operator and state complexities, framing the discussion with the language of Riemannian submersions. This provides a direct relation between geodesics and curvatures in the unitaries and the states spaces, which we also exploit to give a closed-form expression for the metric on the states in terms of the one for the operators. Finally, we study conjugate points for a large number of qubits in the unitary space and we provide a strong indication that maximal complexity scales exponentially with the number of qubits in a certain regime of the penalties space.
Articolo in rivista - Articolo scientifico
Computational complexity, quantum information
English
2021
103
10
106021
open
Auzzi, R., Baiguera, S., Bruno De Luca, G., Legramandi, A., Nardelli, G., Zenoni, N. (2021). Geometry of quantum complexity. PHYSICAL REVIEW D, 103(10) [10.1103/PhysRevD.103.106021].
File in questo prodotto:
File Dimensione Formato  
Auzzi-2021-Physical Review D-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Auzzi-2021-Arxiv-Preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/487760
Citazioni
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
Social impact