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Computational complexity is a quantum information concept that recently has found applications in the
holographic understanding of the black hole interior. We consider quantum computational complexity for n
qubits using Nielsen’s geometrical approach. In the definition of complexity there is a big amount of
arbitrariness due to the choice of the penalty factors, which parametrizes the cost of the elementary
computational gates. In order to reproduce desired features in holography, such as ergodicity and
exponential maximal complexity for large number of qubits n, negative curvatures are required. With the
simplest choice of penalties, this is achieved at the price of singular sectional curvatures in the large » limit.
We investigate a choice of penalties in which we can obtain negative curvatures in a smooth way. We also
analyze the relation between operator and state complexities, framing the discussion with the language of
Riemannian submersions. This provides a direct relation between geodesics and curvatures in the unitaries
and the states spaces, which we also exploit to give a closed-form expression for the metric on the states in
terms of the one for the operators. Finally, we study conjugate points for a large number of qubits in the
unitary space and we provide a strong indication that maximal complexity scales exponentially with the

number of qubits in a certain regime of the penalties space.
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I. INTRODUCTION

An important problem in theoretical quantum computa-
tion is to determine the best quantum circuit to implement a
desired unitary transformation. In general, this might be a
challenging question. Moreover, it would be nice to have
better theoretical tools to prove if a quantum computation
problem has or not an efficient solution. The concept of
quantum computational complexity has been introduced to
answer these questions. Complexity itself is defined in a
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rather heuristic way as the minimal number of computa-
tional gates required to build a given unitary operator with
some tolerance. In order to improve the quantitative
understanding, a geometrical approach to computational
complexity in quantum mechanics was introduced in [1]
and further studied in [2-5]. The basic idea is to introduce a
Riemannian metric in the space of unitary operators acting
on a given number of qubits, which quantifies how hard it is
to implement a given quantum computational task. The
distance induced by the metric in the space of unitary
operators is used as a measure of the complexity of the
quantum operation.

An additional motivation to study complexity arises from
the desire of understanding the physics of the black hole
interior [6-10]. Quantum information theory already pro-
vided us with many insights along the road to understand
quantum aspects of gravity. This is especially powerful in
the framework of AdS/CFT. The concept of entanglement
entropy has a natural dual in terms of area of extremal
surfaces [11]. Recently, such a geometric realization of
entanglement led us to a better understanding of the Page
curve [12] for an evaporating black hole, see, e.g., [13—15].

Published by the American Physical Society
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It is natural to conjecture that other features of holo-
graphic spacetime are encoded in other quantum informa-
tion quantities, such as complexity. In the context of
AdS/CFT correspondence, the growth of computational
complexity was proposed as the boundary dual of the
growth of the size of the Einstein-Rosen bridge connecting
the left and the right sides of an eternal black hole in anti—
de Sitter spacetime. Two main holographic duals for
complexity were proposed:

(i) The complexity = volume conjecture relates com-

plexity to the volume of an extremal slice anchored
to the boundary [6-8];

(i) The complexity = action conjecture relates com-
plexity to the action computed in the Wheeler-
DeWitt patch [16,17].

Holographic complexity was recently studied in a large
variety of settings, see, e.g., [18-25]. Another promi-
sing generalization is provided by subregion complexity
[26-39]. The appropriate notion of complexity in quantum
field theory, dual to these holographic quantities, is still an
open problem. One of the most promising and challenging
approaches is to generalize Nielsen’s geometric method to
quantum field theory, see, e.g., [40-53].

A conjecture about the generic time evolution of com-
plexity has been proposed in [9]. In this picture, at early
times complexity grows linearly for a period that is
exponential in the number of qubits n. This initial phase
is called the complexity ramp. At time ¢ & e” it reaches its
maximum value and then it flattens for a very long time
t e, doubly exponential in 7 (this is called the complex-
ity plateau). After this very long time, quantum recurrence
can bring back the system to subexponential values with
non-negligible probability. This picture, if confirmed,
would give us interesting insights on the quantum history
of black holes. For instance, white holes could be thought
of as the gravity duals of a phase of decreasing complexity
due to quantum recurrence.

The geometrical approach by Nielsen is an interesting
direction to put the definition of complexity on firmer
grounds. There is an important order zero property that
complexity must satisfy in order to fit the expectations in
[9]: in the limit of large number of qubits n, the maximal
complexity should scale exponentially with n.

A full understanding of complexity is still an open
problem already in quantum mechanics. In particular, there
are many ways to define geometric computational com-
plexity. Riemannian geometry is just a possibility. It could
be that Finsler geometry is more appropriate to investigate
complexity, both for quantum computer science [1] and in
the holographic case [47]. Even in the more traditional
paradigm of Riemannian geometry, there is a lot of
ambiguity in defining complexity. Part of it comes from
the choice of the penalty factors for the Hermitian gen-
erators of the unitary transformations, which implement the
physical concept that some operations can be harder than

others to perform in a quantum circuit. The simplest
possibility would be to choose a uniform penalty factor,
independent of the number of qubits entangled by the given
quantum operation. However this brings to a maximal
allowed complexity which does not scale exponentially
with the number of qubits [1] and so it does not match our
expectations. It was suggested in [1] that Finsler metrics
with uniform penalty factors or Riemannian metrics with
nonuniform penalties may instead give an exponential
complexity in some regions of the parameter space.

An interesting toy model for many desired features of
complexity geometry was proposed in [54], considering
geodesics in a compact two-dimensional space with neg-
ative curvature. In particular, it was argued that negative
curvature gives an interesting crossover between L? norm
at small distances and an effective L' norm at large
distances. This allows us to remain in the framework of
Riemannian geometry, which is easier to deal with com-
pared to Finsler geometry.

Another desirable property of complexity metric is the
ergodicity of geodesics, which is important to apply
thermodynamical arguments to complexity evolution
[55-57]. Ergodicity in this context refers to the general
idea that the trajectory of a generic state along a geodesic
will eventually visit all the allowed portions of the unitary
space. There are classical mathematical results (see, e.g.,
[58]) showing that the geodesic flow on a manifold with all
negative sectional curvatures is ergodic. The complexity
metric with uniform penalty factors is positively curved in
all the directions and does not have an ergodic geodesic
flow. The introduction of nonuniform penalty factors can
make some of the sectional curvatures negative [5], but not
all of them. If the negative contribution dominates, we
expect that the geodesic motion is still ergodic.

Let us denote with w, which we will refer to as the
weight, the number of qubits that are simultaneously
entangled by a given generator. In [5], the following choice
of penalty factors was studied in detail for systems of n
qubits:

gw) =1, w <2,

qg(w) = gq, w > 2.

(1.1)

In order to get negative scalar curvature, a penalty factor g
of order 4" is needed. This brings to a singular limit where
the negative scalar curvature is dominated by a few negative
sectional curvatures that diverge in the large n limit. The
penalty choice in (1.1) was called draconian in [55]. It was
argued that this choice is not appropriate to reproduce black
hole properties such as scrambling time and switchback
effect [59].

For this reason, in [55], a less drastic choice of penalty
factors was advocated. In this paper we will study a variant
of this choice:
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gw) = a1, (1.2)

where a > 1 is a constant. We will call the choice (1.2)
progressive penalties. In order to understand complexity
geometry in an analytic way, we will propose a large a limit
in which complexity geometry might be studied order by
order in the expansion parameter a~!. The leading order
sectional curvatures scale as a®. We find closed form for all
the curvatures up to the next-to-leading order a!.

As recently emphasized in [60], two different but
strongly related definitions of complexity can be consid-
ered for quantum systems:

(i) Unitary complexity quantifies how hard it is to build
some unitary operators. It was physically motivated
by the problem of quantum circuit computational
complexity [1-5].

(if) State complexity quantifies how hard it is to build a
unitary transformation that transforms the reference
state to the target state [6—8,10]. This is the most
natural way to apply the notion of complexity to
holography.

For n qubits, the unitary complexity metric is defined on the
group manifold SU(2") and it is a homogeneous but not
isotropic metric. In particular, homogeneity tells us that
scalar quantities (such as curvature) are constant. The state
complexity metric instead is defined on CP?"~! and it is
neither isotropic nor homogeneus. The number of dimen-
sions is smaller than in the unitary metric, but the geometrical
structure is more complicated, because this space is not
homogeneous and the scalar curvature is not constant. In this
paper we point out that the relation between unitary and states
complexity is a particular case of Riemannian submersion
[61]. For this reason, geodesics on the state space are deter-
mined by just projecting a class of geodesics on the unitary
space, the horizontal ones [62]. Moreover, the curvatures in
the state space can be obtained from the curvatures in the
unitary space by O’Neill’s formula [61].

Complexity is determined (both in unitary and state
spaces) as the length of the shortest geodesic which
connects two given points. Given a geodesic starting from
an initial point P, there exists another point along the
geodesic where it begins to fail to be the minimal one. This
is called the cut point of the geodesic. The cut locus of a
given point P is defined as the set of all the cut points of the
geodesics starting from P. For unitaries complexity, the
metric is homogeneus and then it is enough to study the cut
locus at the identity. In general, finding the cut locus is a
complicated problem. A useful approach is to consider
conjugate points which, roughly speaking, are the points of
the manifold that can be joined by a continuous one-
parameter family of geodesics. From a general result in
geometry, we know that a given geodesic fails to be the
minimizing one after its first conjugate point. The converse
is not true: a geodesic may stop to be minimizing well
before a conjugate point is reached. In this paper we study

conjugate points of complexity metric both for one and for
a large number of qubits. From this analysis, we find an
evidence that maximal complexity scales exponentially
with n in the progressive model for large a.

The paper is organized as follows. In Sec. II we review
some results of [5] for the complexity geometry in the
unitary space for an arbitrary number of qubits and we
derive a useful explicit formula for sectional curvatures. In
Sec. III we briefly discuss some few qubits examples. In
Sec. IV we consider the situation of a large number of
qubits n: after a brief review of the draconian case, we study
the progressive choice of penalties (1.2). In Sec. V we
discuss state complexity and we point out the relevance of
the Riemannian submersion, which relates the geometry of
the states to the one of the unitaries. We also derive a
closed-form expression for the state metric. In Sec. VI we
study the conjugate points in the unitary space of a simple
class of geodesics, given by the exponential of the gen-
erators which are eigenvalues of the penalty matrix. We
conclude in Sec. VII. Technical details and examples are
deferred to appendices.

II. UNITARY COMPLEXITY

We will first review several useful results about the
geometry of unitary complexity, following [5]. We will
consider the space of unitary operators acting on a n qubits
system, which is SU(2"). The tangent vector at a generic
point U, can be specified in terms of a traceless Hermitian
generator H, which is the tangent to the curve

U(t) = e7 U, (2.1)
evaluated at t = 0.

For a generic curve U(t) in the space of unitaries deter-
mined by the Schrédinger equation U(r) = —iH (1)U (1),
we can define in general a complexity norm using a suitable
Riemannian metric:

= /dt(H(t), H(1))!'/2. (2.2)
In our application, we will consider (...) to be a positive-
definite inner product independent of the group point U.
Such a metric can be therefore defined at the origin of the
group manifold and it can be mapped to every point of the
manifold using right translations. This metric is usually
called a right-invariant metric [63,64] and can be defined
starting from a given scalar product at the origin:

THHG(K)]

<H’K> = on

(2.3)
Here G is a positive-definite operator on the space of
unitaries, i.e., a superoperator. This terminology is common
in the quantum information literature.
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A. Comments on the choice of basis

We work with the basis defined by generalized Pauli
matrices o, which are nothing but the tensor products of n
matrices, each of which can be either a SU(2) Pauli matrix
o; (i = 1,2,3) or the identity 1,. We define the weight w(c)
as the number of SU(2) Pauli matrices involved in the
tensor product 6. We will consider only diagonal metrics in
our basis, i.e., G(6) = g,0, so that the inner product (2.3)
reads

(0.7) = 4500, (2.4)
and we denote by ¢, the penalty factor for the generator ¢
normalized as Tr(o?) = 2". We call the choice ¢, = 1 the
unpenalized choice.

The generalized Pauli matrices have a useful property: if
we choose two elements of the basis, they either commute
or anticommute. In the one qubit case this follows directly
from the Pauli matrices algebra and it can be easily
generalized to the n qubits case. In particular, let us
consider the product 7o of two generalized Pauli matrices.
Then we have

ot = (-1)'ro, (2.5)
where [ is the number of the corresponding entries in the
tensor products in 7 and in ¢ involving different Pauli
matrices.

It is useful to count the number of generalized Pauli
matrices anticommuting with a given o. If 6 = 1, trivially
there are no operators anticommuting with it. If 6 # 1, a
generalized Pauli matrix p anticommutes with it under the
condition that there is an odd number / of corresponding
entries in the tensor products in ¢ and p involving different
Pauli matrices. Let us suppose that ¢ has weight w (its
tensor product contains w Pauli matrices). Then, we
necessarily have 0 </ <w. Among the n entries of the
tensor product in p, the n —w entries in correspondence
with the identity T, in ¢ can arbitrarily be any matrix in the
basis (15, 0;) indifferently. Thus we have 4"~ choices for
such entries. For the remaining w entries of p, we have ()
choices for the / positions of the unequal Pauli matrices.
Once this is fixed, there is a further 2" degeneracy of
choices. Summarizing, the number of generalized Pauli
matrices p anticommuting with o is

- (v o
4= N <1>2W_7

lodd=1

(2.6)

It is remarkable that the number of p anticommuting with a
given ¢ # 1 does not depend on the weight of o.

The commutator of two elements of the basis (if not
vanishing) is proportional to another element of the basis,
because the two products in the commutator give the
opposite matrix (! is odd). Given two noncommuting

elements of the basis ¢ and 7, we define g, as the
penalty of their commutator; if [6,7] =0 we set by
definition g, 5 = 1.

B. Connection and geodesic equation

Let us now derive an expression for the Levi-Civita
connection V compatible with the metric (2.3). This is
given by the Koszul formula [65], which, thanks to the fact
that the inner product can be computed at the identity (and
therefore is constant in a suitable basis), simplifies to

~2i(VyY.Z) = (X.Y].Z) + ([Z.X].Y) = ([¥.Z]. X),
(2.7)

where X, Y, Z are right-invariant fields interpreted as
Hermitian matrices at the origin. Equation (2.7) allows us to
define

VxY = é([X, Y+ G (X.6(N)] + [¥.6(X)])).  (2.8)

Setting ¥ =X in Eq. (2.8), we obtain the geodesic
equation, which is nothing but the Euler-Arnold'
equation [64]:

X +iG7Y([X,G(X)]) = 0. (2.9)
In general we expect that geodesics have an intricate
behavior. Eq. (2.9) shows that there exists a simple class
of geodesics, given by the exponential of an eigenvector of
the penalty operator G. We will call the geodesics which are
exponential of such eigenvectors “exponential geodesics.”
We study the behavior of their conjugate points in Sec. VL.

C. Riemann tensor

Let us now specialize the discussion to SU(2") using
Pauli matrices p, o, 7, #, which can be viewed as right-
invariant frame fields. The curvature tensor is [5]

R/)(n'y = <v/)Tv vﬁl'l> - <v(rT’ v/)/’t> - <vi[/),o']7’ /’t> (210)
Using Eq. (2.8), we find
: 1 9:— 4
V.t =ic,,|o.1], cME(lJrT”). 2.11
dod =g (14770 @

The Riemann tensor is given by the expression:

Rpo‘m = cp,rca,/t<iL0’ T]’ l[G,/JD - Co,rcp,/t<i[6’ T]’ lLO? ﬂ]>
— Cpayelililr, 0] ). 2.12)

'Recent applications of the Euler-Arnold equations in relation
to complexity were found in [52,53].
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Since Eq. (2.12) depends just on commutators, the
Riemann curvature of a subgroup of unitaries does not
depend on the metric data outside this subgroup. For
example, complexity on a one qubit subgroup depends
just on penalties of generators acting on that particular
subgroup. An important result [5] is that the component
R,s, vanishes unless the product of the corresponding
generalized Pauli matrices pozu is proportional to the
identity.

D. Sectional curvatures

The sectional curvature is defined as half of the scalar
curvature of a two-dimensional submanifold with tangent
space specified by the directions (p,o). The general
expression for the sectional curvature of the plane deter-
mined by the vectors (v, w) is [66]

R 50" WPwr v°

K0 = ) ) = (v

(2.13)

The quantity K(v,w) depends just on the plane which is
defined by (v,w) and does not depend on their normali-
zation. The sectional curvature is a nonlinear object and it is
a nontrivial function of the orientation of the plane; in
general, in order to determine K on an arbitrary plane it is
not enough to determine it on the planes defined by couples
of vectors on an orthogonal basis.

The generalized Pauli matrices are orthogonal but not
normalized, see Eq. (2.4). The sectional curvature in the
plane spanned by two generalized Pauli matrices is

R

K(p,o) = L2, 2.14
(p.0) 4ds (2.14)
From Eq. (2.12) we find
Rpmrp = Cp,aco,p<i[p’ 6]’ l[J,pD
Cpp.ol.olililp. o], 0], p). (2.15)

This vanishes if p and ¢ commute. Instead, in the case of
anticommuting p and o, a direct calculation gives

(i[p, ol ilp. o]) = 44y, o).
(i[ilp. o], 0. p) = —4q,.

where in both the relations we repeatedly used the fact that
p and o anticommute. We can also use the property
dlp.o].0] = 4, 0 get the sectional curvature

(2.16)

(9, = 45)°
=340 +2(q, + q5) + !’%7)”] :

K(p,0) =
quo’

(2.17)

which is valid if [p, 6] # 0 (otherwise K(p, o) = 0).

This formula, which as far as we know is new and not
contained in [5], has interesting consequences. We see that
the only negative contribution to K (p, ¢) comes from g, ,:
K can become negative only if the commutator [p, o] has a
large enough penalty factor. In general, we expect that K is
positive, unless g, ; is big enough compared to g, and g,,.

One may wonder if it is possible to get negative all the
sectional curvatures of the orthogonal basis. This is not
possible, because the sectional curvatures of the one qubit
subspace depend just on the one qubit penalty factors. In
Sec. IIT A we will show that at least two out of three
independent sectional curvatures are always positive for
one qubit.

E. Ricci tensor and curvature

Sectional curvatures are related to Ricci tensor and Ricci
curvature. As shown in [5], in our basis the only non-
vanishing component of the Ricci tensor R, are the
diagonal ones, with ¢ = 7. Given an orthonormal basis
{ex} with k = 1,..., N and such that e, = v, we have the
following result [66] valid for all Riemannian manifolds:

N
R v 0f = Z K(v,ep). (2.18)
=2

In this way the scalar curvature can be expressed in terms of
the sectional curvatures as

N
(04 4
R=D Raeici =2 _K(p.o).
— c.p

It should be emphasized that the sectional curvatures do not
transform linearly as tensors, still their sum reproduces the
Ricci scalar.

The sign of sectional curvatures plays a key role in
relation to ergodicity [55]. Roughly speaking, the geodesic
flow is called ergodic if its typical geodesic will eventually
pass nearby to all the allowed portions of the operator
space. The average of observables along the geodesic
trajectory will then coincide with the average over the
manifold of unitaries. In the context of the motion in the
group manifold of unitaries, one can consider the time
evolution of two neighboring geodesics intersecting at
t = 0 under infinitesimally close local Hamiltonians. In
such a case, the deviation between the geodesics is
governed by the sectional curvature corresponding to the
section containing the two geodesics: if the sign is positive
as in the standard inner product metric, then the geodesics
converge. On the other hand, an appropriate choice of
penalty factors allows to obtain negative sectional curva-
tures, implying that the geodesics diverge. The divergence
of geodesics is an important requirement for quantum
chaos, which in turn requires an ergodic behavior.

From a general theorem [58], we know that geodesic
flow is ergodic in manifolds whose all sectional curvatures

(2.19)
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are negative. This result is not directly applicable to unitary
complexity, because at least some of the sectional curva-
tures in the one qubit directions are always positive. Indeed,
ergodicity of geodesic is still preserved in some examples
where the curvature is partly negative and partly positive
(see, e.g., [67]). In general, we expect that the presence of
directions with mostly negative sectional curvatures is a
strong indication of ergodic behavior of geodesics. From
Eq. (2.19) we know that the scalar curvature is the sum of
all the sectional curvatures of an orthogonal basis, and so
we expect that negative scalar curvature R is a detector of
ergodicity. Unfortunately, we do not know about any
rigorous mathematical theorem that relates the sign of R
to the ergodicity of geodesics.

In view of the investigation of conjugate points of the
geodesics in Sec. VI, it is convenient to introduce a specific
notation for the diagonal components of the Ricci tensor.
Using an orthonormal basis {u(s)} in the algebra, we
define

R
R, = Ryu(0)u (6) = o2
ds

u®(o)ul (6)gus = 1. (2.20)

Using the definitions for the curvature quantities given
above, we start by considering in Sec. III the simple cases
where the quantum-mechanical system is composed by one
or two qubits. We will extract the sectional curvatures and
the Ricci scalar and study their behavior in relation to
various choices of the penalty factors on the generators.
Then we will generalize in Sec. IV to the case with many
qubits, where we will propose some choices of penalty
factors to reproduce expected properties of complexity.

III. FEW QUBITS EXAMPLES
A. One qubit

Let us fix the penalty factor for ¢, to 1 and denote the
penalty factors for o, and o, by Q and P. For Q = 1, the
metric has a U(1) isotropic symmetry which rotates
(04.0y). Applying the results of the previous section, the
sectional curvatures of the planes selected by our ortho-
normal basis are

—3P24+2P+2PQ+ Q*+1-20

xy PQ ’
X _ =30*+20+2PQ+P*+1-2P
Xz PQ ’
—34+2P+20+ P2+ Q*-2P
K, - 34+2P+20+P2+Q o (1)
PO

and the scalar curvature is

! 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 1. Regions of negativity of sectional curvatures in the
(P, Q) plane. In the white region all the sectional curvatures are
positive. The blue shaded regions correspond to a negative scalar
curvature.

L(@-P?-2P+0)+1
PQ '

R= (3.2)

The signs of sectional and scalar curvatures are shown in
Fig. 1. Note that two out of the three sectional curvatures in
Eq. (3.1) are positive in all the parameter space.

The sectional curvatures form a nonlinear object; these
quantities are not enough to compute the sectional curvature
in an arbitrary plane, which can be found using expressions
from the Riemann tensor. In the one qubit case, we checked
that the values in Eq. (3.1) correspond for all P, Q to the
maxima and minima of the sectional curvature.

Conventionally, we will call the generators with lowest
penalty “easy” generators, and those with highest penalty
“hard” generators. We are interested in limits where the
maximal complexity becomes large, in general exponential
in the number of states. So it might seem a contradiction to
search for limits of large complexity in the one qubit
Hilbert space. This is not necessarily the case: in order to
explore a toy model with large maximal complexity, one
may consider the limit where the weight factors P, Q go to
infinity.

One of these limits may be obtained by setting

P=1,

0 — oo.

(3.3)

In this case the scalar and the sectional curvatures diverge:

R=8-20,
sz:Kyz:Q-

K., =4-30,
(3.4)

In general, if we set P constant and we send Q — oo, we do
not obtain a smooth limit.
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It is also interesting to consider the limit

P=0 - . (3.5)
The scalar curvature remains small:
8 2 1
R=p 2 FBo=ke=p
K, = % - %. (3.6)

In this case all the sectional curvatures are positive and
become small.

Another possibility is to consider

P =00 — o, (3.7)
with f# constant. At large P we find that the sectional
curvatures approach to constants. For § # 1, at large P the
scalar curvature is negative, R = =2(f — 1)%.

In all these limits the volume of the space (measured
using the complexity metric) goes to infinity. From the
point of view of complexity, instead, these limits are very
different. In the case (3.3) the maximal complexity does not
approach infinity, because the remaining easy generators
are enough to build whatever unitary we want. Instead, in
the cases in Egs. (3.5) and (3.7) the maximal complexity
goes to infinity, because the only easy generator at our
disposal allows to produce just a very special class of
unitary, i.e., the rotations along the x axis.

B. Two qubits

The two qubits case is the simplest environment where
we can address the question of what happens if one
penalizes operators according to the number of qubits that
are entangled at the same time.

We choose A as penalty factor for the weight 1 matrices
and B as penalty factor for the weight 2 ones. The
nonvanishing sectional curvatures K (p, ¢) in the orthonor-
mal basis can take three values:

1 b A 4B — 3A
—, =—. c=—>p—.
A B? B?

a= (3.8)
The value a arises when (p, o) have both weight w = 1, the
value ¢ when they have both w = 2 and the value b if they
are generators with different weights. The multiplicity of
each value of the sectional curvatures is

N, =12, N, =172, N, = 36. (3.9)
The scalar curvature is
3A%2 — 12AB - B?
R=-12 ) (3.10)

AB?

Let us specialize A =1 and B = ¢ with ¢ > 1. We are
penalizing the weight 2 matrices (denoted as ‘“hard”)
compared to the weight 1 matrices (denoted as “easy”).
The scalar curvature is

-3+ 129+ ¢*

R:12 )
q2

(3.11)

which is always positive. Note that in this case the structure
of the algebra generators is as follows

[easy, easy] = easy, [easy, hard] = hard,

[hard, hard] = easy, (3.12)
and so it gives rise to positive sectional curvatures, from
Eq. (2.17). Although such a choice is the most intuitive, it
necessarily provides positive curvatures, see also [60] for
the same conclusion. Note that no singularity appears in the
curvature if we send g — 0.

If we instead set A = p and B = 1, we are penalizing the
weight 1 matrices and the scalar curvature is

3pP-12p—1
T

R=-12 (3.13)

Note that in this case the structure of the algebra generators
is reversed

[hard, hard] = hard, [easy, hard] = easy,

[easy, easy] = hard, (3.14)
and indeed gives negative curvature at large enough p,
according to Eq. (2.17). This result gives a quantitative
explanation of some intuitions discussed in [60].

We point out that the aforementioned case is not the only
one where such a behavior occurs. In general, when we split
the set of generators in two classes, one of which is a
maximal subalgebra, the structure of commutators (3.12)
and (3.14) always arises.

IV. MANY QUBITS

We consider quantum systems composed by many
qubits, which is the first step in the direction of a system
with infinite degrees of freedom as it happens in field
theory. In this case it is possible to study the dependence of
the curvatures on the number of qubits, in order to under-
stand the assignment of penalty factors that can reproduce
physical phenomena like the switchback effect and
scrambling.

The idea is to study the time evolution of complexity
when the system of interest is subject to a perturbation.
From the holographic point of view, this is usually
performed with the introduction of a shock wave very
far in the past, in such a way that the scrambling time
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corresponds to the delay after which the black hole reaches
again the equilibrium [7]. From the perspective of quantum
circuits, a useful model consists in the evolution of an
epidemic [10]. If there is a single infected qubit that can
interact with all the other ones via a local Hamiltonian, the
scrambling time measures the scale after which the infec-
tion has involved a large enough number of qubits in order
for complexity to reach the value n, corresponding to the
number of qubits.

In this context, a related effect is the switchback one,
which is a delay in the growth of complexity arising from
cancellations between multiple shock waves or perturba-
tions. Using the toy model introduced in [54], it was
suggested that, in order to get a satisfying description of
switchback effect and scrambling, the typical sectional
curvatures should scale as 1/n or 1/n? in the large number
of qubits limit (depending on the variant of the model). For
arecent discussion of the switchback effect for low number
of qubits, see [68]. Even without restricting to a particular
toy model, the divergence of sectional curvatures in the
large number of qubits limit gives rise to a singular
behavior that should be avoided. In this section we will
study the consequences of various assignments of penalties
on the behavior of curvatures.

Let us consider the case with n qubits, equipped with a
class of penalty factors that are functions just of the weight
of the generators. Let us denote the penalty associated to
the weight k by ¢;. The number of generalized Pauli
matrices with weight k£ in our basis is given by

Nk:3k<z>. (4.1)

Given two generators (p, o), let us denote, respectively, by
M and N the weights of p and o, and by w the weight of the
commutator [p, ¢]. From the analysis given in Appendix A,
we can show that w can take the following values

w,=|M—-N|+1+2r, (4.2)
where the integer r has the following range
0 <r<min(M,N) - 1. (4.3)

If two directions in the unitary space do not com-
mute, the sectional curvatures can be obtained from
Eq. (2.17), i.e.,

K(M.N.r)= M) :

(—3qw, +2(qp+ay) + 7

dm4dn
(4.4)

where K(M, N, r) denotes the sectional curvature of the
plane spanned by generalized Pauli matrices of weights M
and N, whose commutator has weight w,, given by

Eq. (4.2). We denote by N (M,N,r) the degeneracy of
such sectional curvatures. We derive an explicit expression
for N (M, N, r) in Appendix A.

If two directions commute K(M,N,r)=0; given a
generalized Pauli matrix, about one half of the other
Pauli matrices in the basis commute with it, see Eq. (2.6).
So about one half of the total sectional curvatures vanish by
construction, independently of the penalty factors.

A. Draconian penalties

The combination of 1 and 2 qubits operators is universal
and can be used to build an arbitrary operator in SU(2")
[69]. This result suggests a somewhat minimal choice of
penalty factors, studied in detail in [5]

q, =1, w<2,

9, =4, w > 2, (4.5)

This choice does not distinguish different values of the
weight w > 2 and was called “draconian” in [60].

The sectional curvatures can be found using the general
expression in Eq. (2.17), giving the values in Table I.

For ¢ =1 we recover the case where all the penalty
factors are equal, which corresponds to a bi-invariant metric
on SU(2"). In this case all the nonvanishing sectional
curvatures are equal and positive. The interesting region
with negative curvature is at large ¢. So in this limit it
makes sense to use the approximation where only the
sectional curvatures at leading order in ¢ are considered.

Let us consider the approximation in which we keep just
the O(g) and the O(1) terms. In this limit the only
nonvanishing sectional curvatures are

K(1,1,0) = K(2.1,0) = K(2,2,0) = 1,
K(3.2,0) =g,

K(2,2.1) =4 -3q, (4.6)
with multiplicities
N(1,1,0) = 6n,
N(2.1,0) = N(2,2,0) = 18n(n — 1),
N(3.2,0) =N(2.2.1) =54n(n—1)(n=2). (4.7)

TABLEI. Values of the nonvanishing sectional curvature K for
various choices of p, ¢ in the model with draconian penalty
factors. We denote by P and Q the set of generators with w < 2
and w > 2, respectively.

[p,ol €P [p,o] € Q
p,c€P K=1 K=4-3¢q
p, o€ Q K = %33 Kzé

q
peEP, o K=gqg K=1

q
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The scalar curvature then is

R = —54n(n —1)(n —2)q + 6n(36n* —99n + 64).

(4.8)

This calculation is in agreement with the exact result computed in [5] in a different way:

R = —54qn(n — 1)(n —2) + 6n[36n> — 99n + 64]

q 2

- % [3n(3n — 1)4"! — 6n(3n —4)(6n —7)].

In order to get negative curvature, we need g « 4" or larger.
This means that ¢ has to grow exponentially with n. In
particular, in this regime the scalar curvature is dominated
by a small number (polynomial in n) of sectional curva-
tures whose magnitude grows like |K| ~ g ~ 4". This is a
singular limit, and, as discussed in [55], this brings us to
some unwanted properties in the scrambling and switch-
back effect of black holes complexity.

B. Towards a more sustainable taxation policy

In [55] a more moderate penalty factors choice was
advocated:

q, =1, w <2,

q, = c4" 72, w> 2, (4.10)
where ¢ is an order 1 constant. The authors called this
choice “moderate,” because sectional curvatures are not as
big as in the draconian model. Big curvatures in general are
not a desired feature of complexity geometry, because they
are in tension with the desired properties of scrambling and
switchback effect. The exponential behavior g, « 4 in
(4.10) is suggested by the draconian model: in such a case
the behavior g « 4" of penalties is needed in order to have
negative curvature. In this section we will consider some
variations of this model, in which ¢, «x a* for some
appropriate constant a.

The draconian model resembles a flat tax: all the weights
bigger than 2 are treated the same. The middle-class
exponents with w~3 and the billionaires with w~n
pay exactly the same amount of taxes. The penalty choice
in Eq. (4.10) goes in the direction of a more progressive
taxation, because high incomes are taxed progressively.
Still there is a minor source of inequality in Eq. (4.10): the
very low income guys at w = 1 are taxed just the same as
the working class at w = 2. In order to promote social
justice we are motivated to introduce the following choice
of penalties (see also [70])

G, =", (4.11)

e

) —6n(45n> = 117n +74) | +

(4.9)

which we will call “progressive” penalties. The scaling as
4k at large k is generalized as o.

The model (4.11) simplifies in the large « limit, which
can be used as an expansion parameter for the analytical
understanding of the model. In particular, from Eq. (2.17)
we can see that at large a sectional curvatures scale at most
as a”. With the choice in Eq. (4.11), we expect that by
construction the maximal complexity becomes infinity at
fixed n in the limit @ — oo, because one qubit operators
cannot produce the most general operators in the unitary
space. For example, they cannot produce unitaries that
entangle two qubits that were previously unentangled.
Physically, we will be interested in the limit of large but
finite a.

Moreover, we can consider generalizations of this basic
model. In particular, we can generalize the choice in
Eq. (4.11) as

('I(;:L WSWOv

s = a"™, w > Wy, (4.12)
with wy > 2. For wy = 2 and a = 4, we recover the model
studied in [55]. With this choice of penalties, we expect that
the maximal complexity at fixed n does not diverge for
a — o0, because the combination of 1 and 2 qubits
operators is universal and can be used to build an arbitrary
operator in the unitary space. From Eq. (2.17), we can see
that this model has the property that at large o sectional
curvatures scale at most as a"o~!. Therefore, the large a
limit provides a singular geometry, as the curvature
diverges.

C. Progressive penalties
We computed the curvatures as a power expansion in «,
at the leading order a° and at next to leading order a~!. The
cumbersome calculations are deferred to Appendix B.
At the leading order in a, the scalar curvature is

R =3n(4" = 27"1). (4.13)
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FIG. 2. The exact value of R/# plotted as a function of « in the case of progressive penalties, for n = 5, 10, 15, 20. The asymptotic
value at @ — oo is shown in black. The minimum in the picture appears for n > 8. Increasing n, the shape of the minimum tends to
become more and more steep and it is located at a lower value of a. Note that when n = 20, for values @ > 4 the result of the average
sectional curvature at O(a®) is already very close to the exact result.

It is negative for n > 3 and comes just from two values of
the sectional curvatures: K = 1 with multiplicity A/, and
K = —3 with multiplicity A/_, where

N, =127"""n = 322"y + 18n,

N_:&—3n.

5 (4.14)

At next to leading order, the correction to the curvature is

9 4n
5R:§n(n—1)—.

. (4.15)

In order to get a feeling on the average sectional
curvature, it is convenient to divide R by the total number
of sectional curvatures between couples of elements in the
basis, which we denote by

n=4"=1)>-(4"-1). (4.16)

The average sectional curvature becomes tiny at large n and
a, le.,

_ R 6 (T\* 19nn-1)
K_—N——n<E) to e (D)

n 7 2

We do not have an analytic expression at higher order in a
for the generic n qubits case. However, if n is fixed to be

some not too large value, we can compute the exact result at
all orders explicitly since the sum over the penalties
contains a finite number of terms.

The exact value of the average sectional curvature as a
function of a for a few values of n is plotted in Fig. 2.
Nothing special happens for the value @ = 4, which instead
plays an important role for the draconian model. It is
interesting that there is a minimum at finite a. It turns out
that the series expansion in a~! for K is, at large n,
an alternate sign series with slow rate of convergence.
For example, in order to get the minimum in the plot for K
when n = 10, we have to expand up to the order a™.

This choice of penalties for @ — oo has many similarities
with the one qubit case in Eq. (3.7), where P = QO — o
with f constant and different from 1. In both limits we
expect that the maximal complexity diverges, and the
sectional curvatures do not. Also, R approaches a negative
constant in both cases.

V. STATE COMPLEXITY AND SUBMERSIONS

Up to now, we have focused the discussion on the
complexity of unitaries. In this section, we bring the
attention of our reader to the geometry of the space of
states. Geometrically, this space is naturally associated with
a quotient of the space of unitaries where all the different
unitary transformations that, starting from a given reference
state, build the same state (up to a phase) are identified.
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The complexity of the state built in this way is then defined
to be the minimum of the complexities of all the identified
unitaries. Requiring that the state complexity is also
obtained as a length on the space of states defines a
map between two Riemannian manifolds, which turns
out to be a Riemannian submersion. We recall its definition
in Sec. VA, and we proceed in the subsequent sections in
exploiting known results for Riemannian submersions.

In particular, O’Neill’s formula relates the curvature of
the space of states to the one of the space of unitaries,
providing a lower bound on the curvature on states. This
underlying geometrical structure allows a direct compari-
son of some class of geodesics, which we explore in
Secs. VD and VI

A. Submersions

For convenience of the reader, in this section we briefly
review the concept of Riemannian sumbersions, referring to
the textbooks [65,71] for more details.

Let us consider two Riemannian manifolds (M, g,) with
dimension m and (B, h,s) with dimension b < m and a
smooth map z: M — B with surjective differential dz.dz is
amap dr:TM — TB, that for any y € M induces a linear
map between the vector spaces TyM and T,B, where
x = z(y). This map has maximal rank, and thus a kernel
of dimension f = m — b. We will call V, = ker(dz,) the
vertical space at y. Its orthogonal complement in 7\ M,
induced by the metric g, is called the horizontal space at y
and denoted by Hy. For the submersion to be Riemannian,
H, has to be identified with 7B in an isometric way, in
other words

9(X.Y) = h(dx(X), d=(Y)),

VX, Y €M, (5.1)

A pictorial depiction is shown in Fig. 3.

Vy
/ Fa:

<
=

T,M

T.B

Qe ------

B

FIG. 3.
from [71].

A reproduction of a depiction of a submersion

Quotients of manifolds by an isometric group action
provide interesting examples of submersion (see for exam-
ple the textbooks [65,71]). Let M be a Riemannian
manifold and G be a closed subgroup of the isometry
group of M, and denote by 7z the projection from M to the
quotient space B = M/G. This defines a natural metric on
B such that 7 is a Riemannian submersion [65].

In the following sections, we make use of this con-
struction to understand properties of the space of states
from the complexity of unitaries.

B. Submersions and complexity geometry

Let us apply the notion of submersion to the complexity
geometry. We take M = SU(2") with a right-invariant
metric (the unitary space) and G as the subgroup of the
isometries of M which leaves the reference state invariant
up to a phase. More precisely, we consider a unitary U
which generates the state |y) starting from the reference
state |yo)

Ulwo) = lv). (5.2)

We call unbroken subgroup the subgroup of SU(2") that

fixes the reference state up to a phase
Viwo) = e lyp). (5.3)

Such a Vis an element of SU(2" — 1) x U(1). Thus,uptoa
phase, both U’ = UV and U prepare the same state |y):
U'lyo) = e?ly), = U ~U. (5.4)

Therefore we have a map from the unitary space to the

quotient B defined as

z: SU(2") - B, (5.5)

where

SU(2")

B =CP?¥ ! = .
SU2" = 1) x U(1)

(5.6)

This map is an isometric submersion, as we are going to
prove writing it explicitly in a specific coordinate system.

In order to make contact with Sec. II, we take a diagonal
penalty matrix in the basis of the generalized Pauli
matrices, see Eq. (2.4), with the property

1
= Qrérs = QrinTr(GrUS)' (57)

2

<0r’ Gs>

For the states metric it is more convenient to do a change of
basis. We can identify a basis for broken generators p; and
unbroken ones 7,:
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w; = (Pr.7a), 1<k <2(K-1),
1<a< (K-1)2 K=72", (5.8)
with normalization
Tr(wlwm) = O (59)
We can express
= Za),Tr w0,
!
! > o T (5.10)
— r(w .
1= on : Oy 10

Then we can find the penalty scalar product in the basis w*:

My, = <6017

Zq,Tr w16,)Tr(w,0,).  (5.11)

22n

This discussion also applies to the case where M, is a
generic symmetric matrix. Let us introduce the following
notation for the exponential of broken and unbroken
generators

U@ = eiakﬂk, V/l = eM“T“, (512)
where the variables 8, denote the coordinates in the state
space and 4, are the additional coordinates that define the
unitary space. A generic element of SU(K) can be written
as U = UyV,. Then we can compute

dUU" = (dUyV, + UydV,)ViU),
= dU,U} + UpdV,ViU;, (5.13)
where
U, v,
dUy=—-2d0,,  dV,=—-2di. (5.14
0= 3g, "y (5.14)

In this way the right-invariant forms defined on SU(K) are
given by

X, =-iTr(dUU'w,),
= —i(AdU-{g),STr{(UZ,dUg +dV,V)w,},
where we have used the adjoint action

Uy, Uy = (Ady1) . (5.15)

We can now write the metric in the unitary space as

ds* =M, X, X :Mlm(ul+vl)(um+vm)» (516)

where

M _Mrs(Ad )rl(Ad )

u, = —iTr{UadUga)s},

vy = —iTr{dV,Viw,}, (5.17)
in such a way that M,,, depends just on 6, u, contains just
(6k,dB)) and v, contains just (1, d4,).

Now it is convenient to split the indices in w, in indices
corresponding to broken and unbroken generators, as in
Eq. (5.8). We have that v; = 0 for i corresponding to a
broken index. Then we can write the unitary metric
Eq. (5.17) as

iy, BN u
ds* = (u; ua+va)<~l] ~1b>< / >,
Maj Mab Mb+’llh

= (Mij_Miz?M;c}Maj)uiuj+Mabfafbv (5.18)
where we introduced
fa= g+ ug+ M IMyu;. (5.19)

The problem of finding the minimal infinitesimal operator
which synthesizes the state of coordinates 8, + df, from
the state with coordinates 6, is then solved by the equation
fa = 0, because the term M, f . f, in Eq. (5.19) is positive
definite. This construction generalizes the result in [60] to
arbitrary number of qubits.
We can then identify the metric on the state space B as
dst = (M;; — M; M1/, )u;u;. (5.20)
We explicitly checked that the metric in the space of states
CP! for a single qubit coincides with the result found in
[60]. In Appendix C we will see how to apply this result to
qutrits.
From Eq. (5.19), it follows that the projection map =
from M to B
72 (Or. 4;) = (6r) (5.21)
is a Riemannian submersion, where 7~'(6;) is parame-
trized by 4,, for fixed 6. The explicit expression for the
horizontal spaces at arbitrary 0 is given by f,(X) = 0 for
any generic vector X in the tangent space.

C. Submersions and curvature

We can use O’Neill’s formula [61] to relate the sectional
curvatures of states K to the ones of unitaries K:

3 V(. k)P

Ko(hy, hy) =
sl ha) AT PlhaP = (g, )2

K(hy, hy) +

. (5.22)
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where V is the projector on the vertical subspace, (...) is the
scalar product from the metric of the manifold M, |...| is the
norm induced by the scalar product, /i, = dr(h;) are
vectors fields in the state space, h; are horizontal fields
in the unitary space, [h;, h,] is the commutator of the vector
fields in the unitary space.

This expression shows that the sectional curvature of a
plane in the space of states can be always expressed as
sectional curvature of an appropriate plane in the unitary
space plus a positive definite contribution coming from the
commutator of horizontal vectors. It can be used to
compute the curvatures in the state space without even
knowing its metric. As an illustrative example, we apply
Eq. (5.22) to the one qubit case in Appendix D.

D. Submersions and geodesics

The relation between geodesics in B and geodesics in M
for generic submersions was studied in [62]. An important
result is that if a geodesic in M is horizontal at some point, it
remains horizontal. Then the projection by z of an horizontal
geodesic is a geodesic in the space of states B. As a general
result, we have that for submersions from complete mani-
folds M as our unitary space, every geodesic of B can be built
as the projection of a horizontal geodesic in M. Itis important
to stress that the projection of a geodesic that is not horizontal
in general does not provide a geodesic on B.

We know from Eq. (2.9) that the exponential of an
eigenvector of the penalty matrix G is a geodesic in the
unitary space. Combining with the previous result, the
exponential of an eigenstate of G which is also
perpendicular to the unbroken subgroup at the origin, gives
a geodesic in the state space B. This property provides us a
simple class of geodesics in some particular situations. In
the 1-qubit case, this is studied in Sec. VIC.

Let us instead consider the 2-qubits case with penalties
depending just on the weights. Taking as reference state
|00), the unbroken subgroup is generated by the following
generators:

1®o,, o, ®1, 0,0,
Ox ® (]] _61)7 Oy ® (]] _61)7
(]] _Gz) ® Ox, (]] _02) ® Oy,

0, ®0,—0,Q 0oy,

0, ®0,+0,®o,. (5.23)

The orthogonal complement to this space is generated by

0, ® (1+ac,), o, ® (1 +ac,),
(1+ao,) ® oy, (1 +a0,) ®o,,
§; =0, ®0y,+0,Qo0,,

S =0,®0,—0,Q0, (5.24)

where « is a coefficient® dependent on the penalty factors,
chosen to ensure orthogonality with unbroken generators in
Eq. (5.24). Note that just the last two generators S5 in
Eq. (5.25) have a definite weight w = 2, and so just these
two operators generate exponential horizontal geodesics.
We can generalize this arguments to n qubits as follows.
Let us take as reference state [00...0). Let us consider the
action of a infinitesimal transformation on this state, with
w = n and which contains just ¢, and o, entries in the
tensor product. This operator will rotate the state as

100...0) — |00...0) + €[11...1), (5.25)

where € is an infinitesimal complex number. This sector of
operators contain 2" generators; out of this set, a vector
space of dimension 2" — 2 operators is unbroken. So, in the
w = n sector which contain just tensor products of ¢, and
o, we can always find a broken dimension 2 subspace
which is orthogonal to the vertical space.

Let us build these generators explicitly. We introduce

1
AT = Y 0, ®...Q0, (5.26)
s (ky ook
where the sum runs over all the permutations (k, ..., k,)

which contain s generators ¢, and n —s generators o,.
Then the two generators

keven kodd
Sy= > AL Sy= > ilan (5.27)
0<k<n 0<k<n

are both broken by the reference state and orthogonal to all
the unbroken w = n generalized Pauli matrices which
contain just o, and o, in the tensor product. This con-
struction generalizes to n qubits the two operators in the last
line of Eq. (5.25).

Then we can look for other generators orthogonal to the
vertical space. We can consider a generalized Pauli matrix
of the form S* | ® (1 + a;0.) with the coefficient chosen
in such a way that it is orthogonal to Snj't_1 ® (1 —o0,). This
involves a linear combination of weight n and n —1
generators and in general one can find 2(}) such operators.
One can iterate the construction, looking for generators of
the form

Soes ® (1 + a50,)", (5.28)
and determine a; in such a way that (5.29) is orthogonal to
the unbroken operators

*The precise value is completely irrelevant for the following
discussion.
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S, ®(1-0,)® 1" ® 0, (5.29)
where b, ¢ are some integer numbers. For each integer s, the
operators in (5.29) are linear combinations of weight w
generators with

n—s<w<n. (5.30)
There are 2("!) of such operators, with 1 <s < n. In this
way one can build all the 2" — 1 horizontal vectors in the
unitary space, which project to the CP?'~! directions in the
state space. A broken unitary labelled by s is a linear
combination of generalized Pauli matrices with weight w
withn—s <w<n.

If the penalties of each weight ¢,, are all different (as in
the progressive model), just the s = O broken unitaries S
are penalty eigenstates. This is the most generic case. The
only exponential horizontal geodesics are generated by
linear combinations of S; and S;,.

If some penalties for different weights are degenerate, we
can find more eigenstates of the penalties which are
orthogonal to the unbroken subgroup. For example, in
the draconian model all the weights with 3 <w < n are
equally penalized, so all the broken unitaries with 0 < s <
n — 3 generate projectable exponential geodesics.

There is a relation between conjugate points in M and B
[62]. Let us consider a horizontal geodesic

y(t):la,b) > M (5.31)
and let y(zy) be the first conjugate point of y along the
geodesic starting form y(a). Then the projected geodesic
p(t) = =(y(t)) has a conjugate point for 7, < 1.

VI. TOWARDS AN EXPONENTIAL COMPLEXITY

The definitions of unitary and state complexity require
the minimization of the length of a path connecting the
identity with a generic unitary, or the reference state to
the target state, respectively. In the following, we exploit
the techniques developed in the previous sections to find
explicit classes of geodesics and to find their conjugate
points, which play an important role in the minimization
process.

A. Conjugate points and Raychaudhury equation

An important problem in the geometric approach to
complexity is to determine the minimal length geodesics
that connect the identity to a given unitary. From a general
result in Riemannian geometry, a geodesic does not
minimize lengths anymore after its first conjugate point.
This is not a necessary condition: there could be a globally
shorter path before the first conjugate point.

A useful tool to study conjugate points is the
Raychaudhury equation (see, e.g., [72] for a review). Let

us consider a congruence of geodesics which is orthogonal
to a family of hypersurfaces in an arbitrary Riemannian
manifold. Let us denote by u“ the tangent vector field to the
geodesics, with u®u, = 1. The geodesics are in affine
parametrization, i.e., u/’Dﬁua = 0, where Dy is the covar-
iant derivative. The deviation vectors & are taken orthogo-
nal to u“, i.e., £u, = 0. We can define the transverse part
of the metric as

haﬂ = Gap — UgUp, (61)

and the tensor

which can be shown to be symmetric if the congruence of
geodesics is orthogonal to a family of hypersurfaces.
Morever B,z can be decomposed in the trace and traceless
part

1

(6.3)
where d is the dimension of space, ® is the expansion scalar
and o, the (traceless and symmetric) shear tensor. The
expansion scalar ® measures the time derivative of an
infinitesimal transverse volume AV of the geodesic, i.e.,

1 dAV
=V dl (6.4)
If the scalar ® approaches —co in some point r along a
geodesic, it detects the presence of conjugate points for our
congruence of geodesics. This means that the geodesic that
we are studying does not anymore give us the minimal
distance for points beyond r. The Raychaudhury equation
determines the evolution of ® along the geodesic flow:

doe 1

- do1 0% — 67645 — Rypuul, (6.5)
where R, is the Ricci tensor and 4 is an affine parameter.
There exists also an equation for the traceless part 6,4, see,

e.g., [73]. We discuss this equation in Appendix E.

B. An application to a simple class of geodesics

From Eq. (2.9), we know that, in the unitary space, the
exponential of eigenvectors of the penalty factors matrix G
gives us a class of geodesics, which we call “exponential
geodesics.” It is particularly convenient to apply the
Raychaudhury equation to this class of geodesics, which
have constant R, zu®u’. If we neglect the term 6”6, in
Eqg. (6.5), it can be solved analytically. In general this term
is nonzero (see Appendix E), but it is positive definite.
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So, neglecting the 6% 04p term gives us an upper bound for
the presence of a conjugate point along a geodesic.

Let us first solve Eq. (6.5) in the limit ® — oo, as it is the
case for a family of geodesics starting from the same point.
In this case we can neglect Raﬁu“uﬂ, leading to

. 1
0+—07=0,

— (6.6)

where k is an integration constant. This approximation is
the same as considering the flat space limit. In order to
consider a family of geodesics that start at the same point at
A =0, we set k =0. Let us now consider

. 1
O+—0’+B=0,

— (6.7)

where B = Raﬁu"uﬁ . The conjugate point, in this approxi-
mation, shows up only for B > 0. Requiring that at small 1
the solution reproduces the flat space one ® = (d — 1)/4,
we find

B
®=+/B(ld-1)cot|/——4], (6.8)
d-1
and so it has a conjugate point at
Vd-—1
I iy (6.9)
VB

Since o—"/}aaﬁ is a positive-definite quantity, the value of A,
provides an upper bound for the distance 1. of the
conjugate point from the origin:

avd—1
A /Raﬂu“ub

Note that, keeping the Ricci curvature fixed, 4, scales
exponentially with the number of qubits due to the factor
vd—1=~2". This is a first evidence of the exponential
nature of the maximal complexity.

de < Ao = (6.10)

C. One qubit

In order to make the discussion concrete with a clear
example we will consider the one qubit case, see Sec. III A.
In this case the unitary manifold is a generalized Berger
sphere and an explicit expression for the metric is available.
Introducing the coordinates (6,.6,,6;) to parametrize the
unitary

U= eiazézeiyye),eioxe,v

(6.11)

the metric can be written explicitly:

=) ¥ 2Psin26,
| )
2Psin20, 0 2P
where
E = 2(Psin’20, + cos*20,(Qsin’*26, + cos?26,)),
¥ = (1 - Q)cos26,sin4d,,
X=(Q-1)cos40,+ Q0+ 1. (6.13)

We know from the general analysis that the exponentials of
c,, 0,, 0, are geodesics, with

Ge: 60,=14,  0,=6.=0,
. A
Gy. Hy:\/—a, G’XZHZZO,
A
G,: 0.= 7 0, =6, =0, (6.14)

as can be also checked directly from the geodesic equations
of the metric (6.12).

We have seen that the presence of conjugate points on
this simple class of geodesics can be detected by the Ricci
tensor:

_2(1-(P-0))
Rx —_— T,
20+P-1)(Q-P+1)
R, = 50 :
RZZZ(P—i—Q—l)(P—Q—Fl)’ (6.15)
PQ
where we denote R, . =R; ; .-

Conjugate points of the geodesic Gy in Eq. (6.14) occur
in the regions of the parameter space (P, Q) where the
corresponding R|, is positive, see Fig. 4. In particular, each
of the geodesics Gy for k = x, y, z develops a conjugate
point in the region where R; > 0 for

_na
o

A plot of an example of conjugate point is shown in Fig. 4
in stereographic projection.

Using Eq. (E1), it is also possible to include the o-“ﬁaaﬂ
corrections in order to determine in general the exact
location of the conjugate points. From such an equation,
we can show that 6* vanishes for G, in the P = Q case, for
G, in the P =1 case and for G, in the Q =1 case (see
Appendix E). We have then a few exact results:

(1) For Q =1, G, has a conjugate point at 1 = %

<o Ao (6.16)

=
(i) For P =1, G, has a conjugate point at 4 = %
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3.0

251

20 Ry>0,Ry,Rz<0

05}
Rz>0,Ry,Ry<0

Rx>0,Ry,Rz<0

1 1 1 1 -]
0.0 0.5 1.0 1.5 2.0 25 3.0

FIG. 4. Left: regions where each R, . is positive. Right: example of an exact conjugate point (the black spot) of geodesics for

P = Q0 = 0.4 in stereographic projection.

(iii) For P = Q, G, has a conjugate point at A = zP (see
the black spot in Fig. 4).

In particular, it is interesting to consider the limit in
Eq. (3.3), with P =1 and Q — oo. In this case the only
exponential geodesic with a conjugate pointis G,. In the limit
Q — oo the conjugate point moves very close to the origin, at
0, =r/Q and at A =7r/\/Q. The G, geodesic is then
minimizing only very close to the origin, and the limit is
singular. Indeed we already expected a singularity from the
behavior of curvatures, see Eq. (3.4). Also, sending the
penalty Q to infinity does not correspond to getting a big
complexity in the ¢, direction: a shortcut with length scaling
as 1/+/Q is for sure available just after the conjugate point.
This is an indication of low maximal complexity and it is
correlated to a singular limit in the curvature.

It is also interesting to consider the limit in Eq. (3.5),
where P = Q — oo. The Ricci curvatures are all positive:

2 4 2

R, =5 =R =314

(6.17)

In this case G, has an exact conjugate point at §, = 1 =
zP, while G, have conjugate points for 1< 7\/P/2,
which correspond to Gy, 0, of order 1. There is no
singularity in geodesic, as expected from the curvatures
in (3.6). Note that, while the distance of the conjugate point
in G, . diverges, their position in the coordinate 6, ,
approaches a finite limit for P — oo. The limit of large
penalty indeed may correspond to a large maximal com-
plexity, because no obvious shortcuts are available. This is
supported by numerical computations: the points with large
complexity lay nearby the conjugate point, and so the
maximal complexity scales as v/P.

In the one qubit case, the exponential geodesics on
unitary space can be projected to the states space using the

submersion, as explained in Sec. V D. Taking as a reference
state |0), the unbroken subgroup is generated by o.. The
geodesics shot in the orthogonal directions ¢, and o, are
then horizontal and projectable. For generic P, Q there are
then two exponential horizontal geodesics. The corre-
sponding geodesics on states can be obtained by the
projection of these curves by the submersion 7.

It is more intuitive to plot the geodesics in the states
space, since it is a two-dimensional space. In the one qubit
case, the metric for states in the standard Bloch sphere
coordinates (6, ¢) is

0oy an) e
where
Ay = Pcos’Ocos’¢ + PQcos’Osin’¢ + Qsin?6),
Ay = Ay = P(Q — 1) sin @ cos O sin ¢ cos p,
Ay, = Psin?@(Qcos’¢ + sin’g),
¥ = 4{sin’0sin’¢ + Pcos’*d + Qsin’dcos’p}.  (6.19)

We checked numerically that the projection of the hori-
zontal geodesics in the unitary space corresponds to geo-
desics in the states space, as is required by general results
on submersions.

It is then interesting to plot the geodesics for the case of
large P and Q in the state space. In Fig. 5 the geodesics for the
case P =Q =10 on the Bloch sphere are shown. In
particular, we see that the maximal complexity region lies
just before the conjugate point in 6. Such a point lies inside
the drop delimited by the self intersection of the black curve.
As itis clear from the figure, no geodesics of length less than
A can penetrate inside the drop.
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D. Draconian model

In order to study conjugate points in the draconian model we can use the results from [5] for R, where ¢ is a generalized

Pauli matrix with weight w:

R, =2(3n—2) +—
q

5 —206n- 2)),

1 /4"
w=2, Rg_—24q(n—2)+8(6n—11)—|——2(?—8(3n—5)>,

q

1 4n 1
w =3, R{,:—<12q2+3—|—36(n—3)——12(3n—8)>,
q

q

These expressions are valid for arbitrary n and ¢. In
particular, for ¢ = 1 we recover the cases with uniform
penalties g(w) = 1, where all the R, are the same, i.e.,
R, = 4"/2. In order to have negative scalar curvature, we
have to scale ¢ with n as g ~ O(4").

In studying conjugate points along the exponential
geodesics, it is interesting to consider not only the distance
A from the origin, but also their position in a coordinate 6,
which runs along the geodesic and does not scale with the
penalty. We can define 8 as the length in the case with all
the penalties ¢, = 1 (bi-invariant metric). In our normali-
zation, an exponential geodesic can be described by

ifo
V2T
where o is the generalized Pauli matrix pointing in the

direction of the given exponential geodesic. Note that this
geodesic comes back to the identity matrix after a period

U(0) = exp (6.21)

_ _Alin)2
0[,—7[2”'/.

(6.22)

-1.0
-1.0

FIG. 5. Geodesics with length 1 =2.5 for Q =10, P = 10.
The geodesics are plotted in different colors. The endpoints of the
various curves are represented in black.

1 /4"
Ro‘ = a (3 + 4W(3I’l - 2W)

1

o (6.20)

4w(3n — 2w)).

In the large n limit of the unpenalized case g(w) =1,
Eq. (6.10) gives that for all the weights w
do = 0y~ 1V/2. (6.23)
In every direction, the cut point must then be realized for
A < 4g. This implies that the maximal complexity is less
than ﬂ'\/i, which is independent of n.
Let us now consider the regime with negative scalar
curvature g =~ O(4"). We can use Eq. (6.10) with d =

4" — 1 to get an estimate of the distance of conjugate points
from the origin:

2"
Wzl, /‘L ~ ) 9 :A,,
0 \/6_71 0 0
2" T o 1 =z
w =73, Ao & N, Oy ="Ln——"—
Vg vzt YT a2 Vi
A
w >4, do & \/2q = V272", 0y =~ ~\/2x,
q

where we have inserted g ~ 4" and 6, is the length of these
geodesics in the unpenalized metric g, = 1.

The geodesics with w = 1 have a conjugate point after a
length which is exponential in n. However, this cannot
correspond to a cut point. Indeed this conjugate point
occurs after that the geodesic has passed through the
identity matrix many times, since from Eq. (6.22) we have
0, < 0, at large n.

The geodesics with w > 4 instead have a conjugate point
at @ of order 1, with a length which scales exponentially in
n. If in addition we would know that the cut point coincides
with the conjugate point, this would be a proof that
maximal complexity is scaling exponentially with n.
Unfortunately, we do not have a strong indication that this
happens. Still, the fact that  remains of order 1 makes the
possibility that the cut point coincides with conjugate point
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not as unrealistic as in the w = 1 case. Note that, with
very good approximation, there is no dependence on w
for w > 4 in the distance of the conjugate point from the
origin.

The geodesics with w = 3 have a conjugate point at a
value of the coordinate 6 very close to the identity. In this
limit we have evidence that the conjugate point is also a cut
point, because it happens at infinitesimal value of the
coordinate 6. However, the distance from the origin is of
order 1, so this does not teach us anything interesting about
the possible exponential growth of complexity at large n.
Also, the exponential dependence 6 o 27" shows that
draconian penalties are by construction singular.

From the results in Sec. V D, we know that we can find
many directions orthogonal to the unbroken subgroup
which are also penalties eigenvectors. In particular, all
the tangent directions orthogonal to the vertical space with
0 <s <n-3,see Eq. (5.31), contain just operators with
weight w >3 and so generate exponential projectable
geodesics. The considerations about conjugate points for
these exponential geodesics can then be extended to the
state space, with the caveat that the conjugate point might
occur before in the state space, see [62].

E. Progressive model

At leading order in a, the Ricci contraction with the unit
vector pointing in the direction ¢ is (for w > 1)

R, = ZW(ZW_I _ 2211—2w+1), (625)

and R, = 2 forw = 1 [see Appendix B, Eq. (B11)]. This is
positive for w = 1 and for

2
w>§(n+ 1). (6.26)
The conjugate point for w = 1 is estimated at
Ao =0y = =2 (6.27)

V2

Again, Eq. (6.22) tells us that 6, < 6, at large n, so this
conjugate point cannot correspond to a cut point.

The conjugate points for the generators at large w in
Eq. (6.26) are more interesting. In this class, the largest
positive R,, is at w = n, which reads

R, =n(2"—-4), (6.28)
and gives a conjugate point at
x2"? Ao n2"/?
Ay = , Oy=—p=—7—5. (629
0 \/71 0 an/2 \/ﬁan/Z ( )

The smallest positive value of R, is realized for slightly
different values of the integer w, depending on the value of
n modulo 3. We have to distinguish the following cases:

2
n=3a, w= 2% +1, R, =223 <1 + ?”) ~ n22/30.67,

_ 2n+4
w= 3
2n+5

3

n=73a+1,

n=23a+2, w=

where a is an integer number. In all cases R,, ~ n2>"/3 up to
order one factors. This gives a conjugate point at

92n/3 y) 22n/3
Jo :ﬂf R E— (6.31)
n

0T 3T Vna'3
Intermediate values of the weight give conjugate points
distances which scale in between the ones in Egs. (6.29)
and (6.31).

In order to have small 6, in the large n limit in
Eqgs. (6.29) and (6.31), we have just to require a > 4.
The required value of a should also be large enough to trust
the leading order result (6.25). The Ricci curvature indeed
seems to converge to the asymptotic value at large a quite
fast (see Fig. 2 for the Ricci scalar).

= 22n/3

w =223 (n +2)21/3 ~ n221/31.26,

7(2n+5)

R ~ n2%/31 85,

(6.30)

Since 6, — 0, we expect that, for large n, the geodesics
in Egs. (6.29) and (6.31) are truly minimizing ones. So we
find strong indication that in this limit the distance of the
cut point of the geodesics with large w (in the window

Zn <w < n) is in between

71'2"/2 ”22n/3
<A< ——. 6.32
\/ﬁ =70 = \/E ( )
Consequently, the maximal complexity is bigger than
7[22n/3
Amax = —F—= 6.33
max \/I’_l ( )

and scales exponentially in n.
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One may wonder if this is just an artifact of the large o
limit: indeed in this regime we expect that the maximal
complexity goes to infinity by construction. In order to
clarify this subtle point, let us consider higher order
corrections to R,, and to A. The order a~! term vanishes
for all the Ricci, except for w = 2 which is not interesting
for conjugate points (see Appendix B). So we need to go to
order a2,

To make the computation simpler, let us consider w = n.
In this case, the nonvanishing a2 terms in the sectional
curvatures which contribute to R, are

3 2
60K(n,2,0) = ——, 0K(n,3,0) =—,
(12,00 =~ K(n.3.0) =
2 1
(3K(I’l,l’l—2,0):——2, 5[((11,11—],()):*2’
a (04
1
5K(n,N,1):—2, for4 <N<n-1 (634)
a

A direct calculation gives
(n—1)n((2" = 16)n —2(2" — 4))
60> '

(6.35)

R, =n(2" —4) +

on + 1 32n

~n- —F=n .
6a?

The length of the geodesic built from the exponential of a
w = n generator before the conjugate point is then, at the
next order in a:

/10:

-2 zizn/2<1_

Jn g 2o v

In order to trust the approximation, we should just increase
a in a way slightly faster than n for large n, for example
quadratically. From this polynomial increase of a with n,
we get an exponential increase of complexity. We believe
that this is a strong indication that maximal complexity
scales exponentially with n with a progressive choice of
penalties.

This is not a rigorous proof. For example, we neglected
the shear term in the Raychaudhuri equation which may
cause the conjugate point to appear before. It would be
interesting to improve the analysis studying the impact
of these terms. We leave this as a problem for future
investigation.

From Sec. V D, we know that for the progressive model
there is just a two-dimensional space of vectors, which are
both orthogonal to the vertical space and also eigenstates of
the penalty. They are generated by arbitrary linear combi-
nations of S in Eq. (5.28) and they have both w = n. So
the previous calculation in unitary space for w = n applies
also for state complexity, with the caveat that the conjugate
point might occur before in the state space, see [62].

o n2>. (6.36)

VII. CONCLUSIONS

In this paper we studied several aspects of complexity
geometry. Using the formalism introduced in [5] for unitary
complexity of a system of n qubits, we showed that the
negativity of sectional curvatures K along the directions p,
o in the unitary space is directly related to a large penalty
factor for the commutator [p, o], i.e.,

(9, 4,)°
K(ﬂ? 6) = 4,4 _3¢IU),6] + 2(Qp + CIG) + qu .
(7.1)

In this equation, the only negative term is proportional to
the penalty of [p, o], so that in order to get a negative
K(p, o) the penalty q}p.0) has to dominate compared to g,
and g,,; this is always possible for large enough gy, ;. From
this expression it is clear that negative curvature is always
associated to commutators of the form

[easy, easy] = hard, (7.2)

where easy and hard refer to small and large penalty factors
respectively. This is consistent with the analysis in [60].
The correlation between negative curvature and the con-
dition in Eq. (7.2) holds also in the qutrit example that we
studied in Appendix C.

We applied the formalism of [5] to various examples,
both for small and large number of qubits. The one qubit
case is already an interesting nutshell for some generic
properties (see Sec. III A). First of all, one qubit is a
universal closed subsector of the n-qubits space, because
sectional curvatures inside each qubit space depend just on
the penalties of this subsector. In the generic one qubit
parameter space, we have that at leas two out of three of the
sectional curvatures in the orthogonal basis are positive.
This argument shows that, for complexity geometry of n
qubits, at least some sectional curvatures are always
positive. Moreover, some of the possible behaviors that
are realized when some of the penalty factors are sent to
infinity generalize to large number of qubits. There are two
prototypical situations:

(1) If the easy generators (which are the ones whose
penalties are not sent to infinity) are enough to
construct the generic unitary, the maximal complex-
ity does not diverge. Some of the sectional curva-
tures instead diverge and the geometry is singular.
An example of this case is realized for Q — oo and P
constant.

(2) If the remaining easy generators are not enough to
construct the generic unitary, the maximal complex-
ity is infinity by construction and the sectional
curvatures do not diverge. An example of this case
is for P = fQ — oo, with f# constant, where both
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vanishing (for # = 1) and negative (for  # 1) scalar
curvatures can be realized.

For a larger number of qubits » the situation is much more
intricate, because the dimension of the space of unitaries
scales as 4". The allowed values of sectional curvatures in the
orthogonal basis have large multiplicities, which can scale
exponentially or polynomially with n and the weight w. In
Appendix A we provide general expressions for this count-
ing. For large n we have a huge arbitrariness in the choice of
the penalty factors. Two useful prototypes are

(i) Draconian penalties, defined by Eq. (1.1). In the
large ¢ limit, for fixed n, complexity does not
diverge, and the geometry becomes singular. This
is similar to point 1 of the one qubit case.

(if) Progressive penalties, as defined in Eq. (1.2). In the
large o limit, complexity diverges for fixed n and the
geometry is not singular (the sectional curvatures
scale as a). The scalar curvature, see Eq. (4.13), is
negative. The situation is similar to point 2 in the one
qubit case.

So far we discussed complexity as defined for unitary
operators. For applications to holography, it is more
relevant to consider the different but somehow related
notion of state complexity [8]. Complexity for states is
defined as the lowest possible complexity of an operator
which prepares the state, starting from a given reference
state. In general, we have to minimize over all the possible
unitaries that prepare the given state [60]. The complexity
metric here is much more intricate, because the geometry is
not homogeneous.

In Sec. V, we point out that the relation between the
unitary and the state geometry follows directly from
the mathematical theory of Riemannian submersions
[61,62,71]. In particular, the geodesics in the state space
B can be found by a projection of a particular class of
geodesics (the horizontal ones) from the unitary space M.
Moreover, conjugate points for geodesics in B are realized
for a complexity equal or less than the one in M. Curvatures
in the state and in the unitary spaces are related by O’Neill’s
formula [61]. Geodesics in the state space can be in
principle computed without even knowing the metric on
B. Our approach gives also a a closed-form expression for
the state metric. We checked that this result reproduces the
known 1-qubit metric with arbitrary penalties. As a new
application, we determine the state complexity metric and
curvatures for the one qutrit example.

An important open problem is to understand the regime
in which the complexity metric provides a complexity
distance scaling exponentially with the number of qubits. In
Sec. VI we provide robust evidence for the exponential
behavior of complexity for progressive penalties. The
analysis is based on the study of conjugate points in the
unitary space. For a general manifold, the study of con-
jugate points does not provide direct information about the
maximal possible complexity, because a geodesic might
cross its cut point before the conjugate point. This obstruction

can be circumvented if one considers parametric regimes in
which the angular position of the conjugate point approaches
the identity. In this limit we expect that the cut point coincides
with the conjugate point. We show that this regime is realized
for progressive penalties at large a and we give an estimate
for a lower bound for the scaling of complexity. This bound
scales exponentially with 7.
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APPENDIX A: COUNTING NONVANISHING
SECTIONAL CURVATURES

Given two generators (p, o), we define [ as the number of
corresponding tensorial product entries in which p and ¢
have different Pauli matrices (for anticommuting p and o, [
is odd). We define m as the number of corresponding
tensorial product entries in which p and ¢ have the same
Pauli matrices.

The number of entries in the tensorial product in which
there is a Pauli matrix in ¢ and an identity in the
corresponding entry in p is given by

s=N-I1-m. (A1)

Due to the properties of generalized Pauli matrices, if a
pair of generators in the basis do not commute, then they
necessarily need to anticommute. Consequently, the com-
mutator [p, 6| has weight

w=M+N-1[1-2m, (A2)
where [ + m < min(M, N). The minimal weight is realized
just for / =1 and for m = min(N — 1, M — 1). The maxi-
mum weight instead is realized by [ = 1 and m = 0.

In order to parametrize the possible values of the weight
w, let us introduce an integer label r:

for N<M:

I+1
r:N—%—m,
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for N > M:
r=M—l+T1—m, r=0,....M-1, (A4)
in such a way that the weight of the commutator is
w,=|M—-N|+1+2r. (A5)

The r = 0 case corresponds to the lowest possible weight
of the commutator, while the maximum of r corresponds to
the maximum weight.

The weight is limited also by the number of qubits, i.e.,
w, < n. So, for any given pair (M, N), we must have that
the integer r is in the following range:

for N < M,

n—|M-N|l-1

OSrSmin(N—l, 3 ), (A6)

for N > M,
n—|M—-N|-1

: ) (A7)

Note that for each fixed number of qubits n, r <
[(n—1)/2] where [...] denotes the integer part.

Given a generator p in the basis with weight M, we
similarly denote by R(M, N, r) the number of generators
with weight N whose commutator with p has a weight
parametrized by a given integer r, as in Eq. (A5).

We give now an explicit formula for R(M, N, r). Let us
first consider the N < M case and let us start with » = 0. In
this case we need to determine how many ¢ will give a [p, o]
with the minimal possible weight. As stressed before, this is
realized just for / =1, m = N — 1, and s = 0. We have M
places to stick the / = 1 entry of ¢ (which corresponds to a
different Pauli matrix compared to p, so there is an extra
factor of 2), and then we have (}~1) ways to stick the
m = N — 1 entries of ¢ with the same Pauli matrix as in p.
The number of such matrices is

05r§min<M—1,

M-1
R(M,N.0) =2M .
N-1

(A8)
Let us consider » = 1. Here in general we have two possible
situations. We may have /=1, m=N-2, s=1 or
instead [ =3, m =N -3, and s = 0. In the first case,
there are three ways to choose the Pauli matrix in ¢ which
has an identity in the corresponding entry in p. This gives

R(M,N,1) = <A34> 23 (%:;’)

()T

In the general case we have to sum over all the possible odd
values of [; it is then convenient to set [ = 2k + 1 with
integer k. In general we have ("l” )2! ways to set the entries in
tensor product where p and ¢ have different Pauli matrices,
(MW:’) ways to set the entries in such a way that p and ¢ have
the same Pauli matrices in the corresponding entries and
("-M)3* ways to set entries in which in the corresponding
elements of p and o there are an identity matrix and a Pauli
matrix, respectively. The total combinatorial factors is

s () (7

k=0

:i M\ (M= 2k=1
2\ 2k + 1 N—k=1-r

n-M r—k
x (r—k>3 ’

where we used s = r — k. In this expression we should not
worry about negative values of N —k—1—r, which
indeed may occur, because the corresponding terms in
the sum vanish after analytically continuing the binomial
coefficients with the I" function.

If N > M, we can write a similar formula. We can still
use the same Eq. (A10), with s =r—k+ N —M and m
accordingly given by (Al):

s S0

k=0

:i< M >22k+1<M—2k—1>

£\ 2k + 1 M—k—1-r
% n—-M 3r—k+N-M
r—k+N-M '

Let us denote by N(M,N,r) the number of sectional
curvatures with value given by Eq. (4.4). These can be
found as

(A10)

(A1)

N(M,N,r) =NyR(M,N,r) = NyR(N,M,r), (Al2)

where N, Ny are defined in Eq. (4.1).

APPENDIX B: EXPLICIT CALCULATIONS FOR
THE PROGRESSIVE PENALTIES CASE

In this section we consider the choice in Eq. (4.11). A
direct calculation gives, for N < M:

K(M.N,r) = =3a2+1=N) 4 2g1=N 4 2¢!-M
+ a2 (1 + a2M-N) _2g=(M=N)y = (B])

and, for N > M:
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K(M,N,r) = =3a20+1=M) 1 2g1=N 4 2gq!-M

+ a2 (1 + a2NV=M) —2q=(N=M)) = (B2)
Note that at large a sectional curvatures scale at most
as @ + O(a™h).

1. Leading order

Let us start with the a® terms. For r =0, the only

nonvanishing sectional curvatures at this order are K = 1,
forM =N =1 and

M,N > 1, M #N. (B3)
For r > 1, the only term that can be of order a° is for
M,N > 1 and is given by

_3a2(r+l—N) + 0((1—1) M>N

. (B4)
_3a2(r+l—M)+O(a—1) M <N

K(M,N.r) = {

IfM>N,wehaver =0,...,N — 1, then K = —3 only for
the maximal value r=N-1. If M <N, we have
r=20,....,M —1, then K = —3 only for the maximal value
r=M-—1.

We first compute the Ricci tensor contracted with a unit
vector u(o), where o has weight M, as defined in
Eq. (2.20):

Ry =YY K(M.N.rR(M.N.r).  (BS)

For M =1, the only leading-order contribution is for
M=N=1:

R, =R(1,1,0) =2. (B6)
Let us now consider 1 < M < n. The positive leading-order

contributions to R, are given by the scalar curvatures with
r = 0, whose value is K = 1:

M—-1 n
Rjy=> R(M.N.0)+ Y  R(M.N.0),
N=2 N=M+1

= 2M(2M-1 =3 4 22n=M)), (B7)
The negative leading-order contributions to R;, are given
by the scalar curvatures with r = N —1if M > N and r =
M —1if M < N, all equal to K = —3. The expression turns
out to be the same for both the cases:

for M > N
n—M

M -1)=2M
R(M,N,N —1) (N_l

>3N—1, (BS)

for M < N
-M
R(M,N.M 1) = 2M(V;V 1>3N—1, (B9)
We finally get
1+n—-M
n—-M
Ry, = ZM( >3N—1,
2 My
= —6M[22=M) —1]. (B10)

The maximum value of N in the sum, N, = 1 +n — M,
ensures that r = M — 1 is allowed in the case M < N, as
can be obtained from Eq. (A6).
The final result for R,, at the leading order is
Ry = R}, + Ry, = 2M(2M~1 —22(=M)+1) - (B11)
Using Eq. (4.1) and this result, the scalar curvature is
computed as

R=Y NyRy=3n(#"-27""").  (BI2)
M=1

2. Next-to-leading order

We can systematically improve this calculation order by
order in the expansion parameter a. For example, at order
a~!, the only nonzero contribution to the sectional curva-
tures, which we denote as SK(M, N, r), are

4
M=N=2, r=0,1, oK = —,
2
M=N+1, N >3, r=20, oK = ——,
[04
2
M =2, N >4, r=20, oK = —,
(04
2
M =2, N >3, r=1, 0K =—,
o

and the ones obtained exchanging M with N. Due to a
nontrivial cancellation, the only corrections to R, is for
w=2

n

4
SRy = —. (B13)
a

This gives the following correction to the curvature

9 4n
SR=2-n(n—1)—.
nn =1~

: (B14)
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APPENDIX C: STATE COMPLEXITY FOR
ONE QUTRIT

In this section we show an application of the method in
Sec. V B to determine the metric and the curvature proper-
ties in the space of states, using the explicit decomposition
of the unitary space as a submersion. We consider the case
of a qudit theory, which describes a system with n energy
levels. In particular, we focus on the case of one qutrit,
where n = 3 and the group manifold is M = SU(3).

The corresponding space of states is M /G = CP?, which
is parametrized by two complex coordinates (z;,z;) with
i € {1,2}. Alternatively, we can use four real coordinates
(0, ¢;) where 0; € [0, z] and ¢; € [0,2x] with i € {1,2}.
The parametrization with complex coordinates is useful to
transform the reference state, which we conventionally take
to be |wo) = (1,0,0), into the generic state

Uy =

cos 64
o 2
= | —e siné, cos 6, =

—e” 1 5in @, cos 0,

cos(a2 ) — cos(26,) Sin(gz )

| 1 cos 6,
ly) =————=1| 2, | = | ¢ sin6,cosh, (C1)
Vv 1+ Z,'Zl

2 e'?2 sin 0, sin 6,

The parametrization with angular coordinates, which we
use in the second equality, will be convenient to des-
cribe the curvatures, giving a compact expression for the
Ricci scalar.

Here and in the following, the subscript refers to the
coordinate dependence of the group element from the space
of states (€ subscript) or from the additional coordinates
that bring to the space of unitaries (4 subscript). Instead the
superscript (K) refers to the group SU(K) to which the
element belongs. The generic element of the coset space
M/G is given by

1 ( | » >
i\ 2z i UL
1+ ZiZl Z; 1+ ZiZ (31] 1+\/rz,-2i

—e"%25in @, sin 6,

—eld1=2) SiH(%%) Sin(292)

2
L

2
1

—e'?5in @, sin@, —e (P1¢) sin(%) sin(26,) cos(%%) + co0s(26,) sin(g—j)

While the last equality is specific of this case, the
expression in the first line applies to the space CPX with
K € N arbitrary. In the general case, the only difference is
that the index runs over i € {1,...,K}.

The group SU(3) contains as maximal subgroup
SU(2) x U(1). In order to build the stabilizer of the
element (1,0,0) inside SU(3), we use a recursive procedure.
The SU(2) factor corresponds to the case of a single qubit:
then the stabilizer of the element (1,0) is given by the
exponential of the Pauli matrix ¢,, which reads

iy 0
(2)_ ilho, __ ¢ )
V7 = e = ) .
4 ( 0 ek

Now we consider the coset element of SU(2), that can be
easily taken from the lower-dimensional generalization of
Eq. (C2) and reads

(C3)

5 cos 4;
o= (o
e sin 4

In this way we build the generic element of SU(2) as

—e~%sin >

Cc4
cos Ay ()

2 2
ve) = ydyR,

e2 cos

_ ( —e it h) gjn ), )
— \leie+4) sin 4, '

e "2 cos 1,

|
Finally, the stabilizer of the reference state inside SU(3)
requires another U(1) factor, coming from a global
phase that does not change the physics of the system.
Indeed, we have the freedom to add another real variable,
and the generic element of the maximal subgroup can be
written as

vy = pUg, (Cs)
with the phasis given by the matrix
ek 0 .. 0
0 etk
= , Co6
PK . .0 (ce)
0 .0 e

and where we need to embed the matrix U?) inside SU(3)

as follows:
1 0
(2) _
ow=(! %)

In this way we finally obtain the stabilizer of the reference
state as

(C7)
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o2k 0 0
Vf) B eilh=t) cos 1, —emilatht) gin 4,
0 ei(/12+ﬂ3—/14) sin /11 e—i(/12+14) COS /11

(C8)

It depends on four real coordinates A;, with i € {1,2,3,4}.

Now we want to apply Eq. (5.21) to determine the metric
on the states space starting from the right-invariant form
and the left-invariant form v, defined in (5.18). In addition,
we need to specify the penalty matrix M. The most relevant
case corresponds to penalizing the unbroken generators,
because it is a configuration that allows for the existence of
commutators of the form

[easy, easy] = hard, (C9)

which are expected to generate negative curvature. This
happens due to the algebraic relations (3.14), which occur
because we selected a maximal subalgebra. In addition, by
considering 0 < P < 1, we can also realize a relation of the
form (3.12), where only the broken generators are
penalized.

For these reasons, we take the penalty matrix to be

M = diag(P,P,P,P.1,1,1,1), (C10)

where the first four components refer to directions along the
maximal subgroup SU(2) x U(1), and the last four direc-
tions to the broken generators.

We analytically compute the metric on states (5.21). The
result is

2Psin’6 2Psin’0,cos’6
dst = de? + =L ae + =1 72 g2
S oAG) 7 A(0,) :
C(0,.6,) ., 2Psin’0,cos*6,
T2 g SIS T g
A@)Bo) "t AonsE) P
X (cos*0y(dep, — dep,)* + 2d¢p depy), (C11)
where we defined for convenience the quantities
A(0))=(P—1)cos(26,) + P+ 1,
B(6,)=(P—1)cos(46,) + P+ 1,
C(0,,6,) = Psin®0,[B(0,) — cos(20,)
X (2P cos(20;) + (P — 1)sin?(20,))],
D(0,) =3(P—1)cos(20,) + P + 3. (C12)

The metric depends on the angles ; but not on the phases
¢,. The scalar curvature reads

FIG. 6. Scalar curvature (C13) for the state space CP? with
penalty factors P applied to all the generators of the maximal
subgroup.

()
2 \P (P =1)cos?0; +1)?
2-2P(3P + 14)
(P+3)(P—1)cos?*d, + P+3
96P
((P=1)cos(40,) + P+ 1)?
—8(P — 1)(9P + 19)cos?0, + 3P(P — 18) + 3
(P+3)((P—1)cos(46,) +P+1)

+

(C13)

We observe that the Ricci scalar depends only on the
angular coordinate 8, giving a further simplification with
respect to the metric on CP?. This is due to the many
symmetries of the penalties in Eq. (C10).

In Fig. 6 we plot the Ricci scalar as a function of 8, for
different values of the penalty P. We observe that when
0 < P <1 the scalar curvature is always positive, and
reaches a constant value R = 24 when P = 1, the case of
undeformed inner product on SU(3). When P > 1 there is
always a region with negative curvature, which increases its
size accordingly to the increasing of the penalty.

We consider the limit when P — oo, which means that
the motion along the subgroup directions is strongly
penalized. In this limit the Ricci scalar is

P—oo

3
lim R = -3 [sec(20;)(11 sec(26,) + 12)

+4 sec?0; + 5]. (C14)

As can be seen in Fig. 7, in such a case the Ricci scalar is
always negative and contains singularities. In the opposite
limit P — O we instead obtain everywhere a positive and
divergent Ricci scalar, since it contains a singular term
proportional to P!,

The behavior of the curvature in this example is similar
to the one qubit case with Q = 1 and P generic, which was
studied in detail in [60].
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FIG. 7. Scalar curvature (C14) for the unitary space SU(3) in
the limiting case of penalty P — oo applied to all the generators
of the maximal subgroup.

APPENDIX D: SUBMERSION FOR ONE QUBIT

Let us apply the method of submersion to the one qubit
case. In order to generate a state specified by the (6, ¢)
angles on the Bloch sphere starting from |0), we can use the
following unitary

i0

Uy = exp {5 (0,cos¢p + o, sin qﬁ)} . (D1)

The action of unbroken generators can be parametrized

by V;
V, =exp (i%l),

and the generic SU(2) transformation is

i sin(§)e~24+29) )

e cos(9)

(D2)

U—Ungl—(

The submersion is realized by the projection
z: (4.0.9) > (0.9). (D3)

and the vertical space is spanned by 0,.
The metric on the unitary space M, with penalties P and
Q as in Sec. IIT A, is

1
ds* = 2 {(Tr[idUU6,])?

+Q(Tr[idUU'6,))? + P(Tx[idUU"6.))?},  (D4)
where
ou ou ou
dU = —df +—d —dA. D5
U="gdo+— y ¢+ (D5)
Explicitly, we find
b
dUU = i( . ) (D6)
b* —a
where
1
a= E((dﬂ + d¢p) cos 0 — do),
b= %e-ioﬂ(de _i(di+dg)sing). (D7)

Using the unitary metric, we can find the horizontal
vectors fields (which are defined as orthogonal to the
vertical direction 0,)

(Q —1)sin@sin2¢

h] - 699'—

hz - é)¢ +

o8
2(Pcos?0 + sin20(Qcos’p + sin’¢)) -
—2Pcos?0 + 2P cos 0 — sin*0((Q — 1) cos 2¢p + Q + 1)

which have the property z(h;) = 0p, 7(hy) = 0.

Then we can use Eq. (5.22) to find the curvature in the
states space, using the results for the one qubit unitaries in
Sec. III A. An explicit calculation gives the curvature in the
states space:

rR=2, DY
5 (D9)

where

2(Pcos?0 + sin*0(Qcos*¢p + sin’¢p))

0,, (D8)

I
a = 8{=2(Q — 1)sin’*dcos’¢
X [=P% 4 (P = 1)cos’8(P — Q)* + P + Q7]
+ (P = 1)cos?0[-2(P> — Q%> + Q)
—(P=1)(Q = 1)(P - 0)cos’6)
+ (P =1)(Q — 1)*(P - Q)sin*Ocos*¢p

+P(Q-1)+(Q-1)Q + P?}, (D10)
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FIG. 8. Comparison of Kg(h,,h,), K(hy.h,), and AK as a function of (6, ¢»). The numerical values P = 6, Q = 3 have been used for

illustrative purposes.

B =PO[(P—1)cos’@
+(Q — 1) sin? @ cos® ¢ + 1]2,
which matches with the one that can be calculated directly
from the states metric in [60]. The difference of the

sectional curvatures between the unitary and the state
spaces matches with O’Neill formula

AK = Kg(hy, hy) — K(hy., hy),

_ 3 ([ ha])P
411y ho|* = (. hy)?

(D11)

The plot of K¢(hy,h,), K(hy,h,) and AK for particular
values of the penalties is shown in Fig. 8.

APPENDIX E: SHEAR TENSOR EQUATION

The equation for the traceless part 6,5 in Euclidean
signature is

Do 2
wo_ s _
G =10 T %
1 1 -
+mhﬂyoﬂﬂ6aﬂ - Clmyﬁu uﬂ _mRﬂw (El)
where
R, = hh’R L g hon E2
ﬂv_ﬂvaﬂ_m af nv ( )

is the projected trace-free part of R,,, .

The Weyl tensor is given by

R/wgaﬂ + Ravg/tﬂ - Raﬁg/w
d-2
9wYap — GupYav
——————R, E3
T a-1d-2) (E3)

Rﬂﬂgal/ -

Chap = ~Ryawp +

and its contraction with the normalized velocity is

1
C;wwﬂua (0-) uﬂ (6) =

o

C;m'ua' (E4)
Recalling that in our basis R,;,; = =R, # 0 only if u =
v and that both the metric and the Ricci tensor are diagonal,
we conclude that C,,,, #0 only if 4 =wv. However, if
u = v = o, wehave C,,,, = 0. Therefore, the only relevant
nonvanishing components of C,,, are the ones with

u =v = p # o. These components read

R, +R, R
d-2 " (d-1)(d=-2)|

Cpapo‘ =459s K(p? O') -
(E5)

The only nonvanishing components of the Weyl tensor
contraction with the normalized velocity are the ones
with p # o:

Cpopptt®(0) u? (o)
R, 4R, R

d=2

=49, K(p,(i) -
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A direct calculation gives that R, is nonvanishing only if
pu=v=p#o

I_Qp/, =q,|R R-R,)|. (E7)

a1

The nonvanishing components of the tensor entering
into the shear equation (E1) are thus the ones with

p Fo:

1 - 1
Cpaﬂﬂua(d)uﬂ(d) +ERP[) = ql){K(p, (7) —HRG}.

(E8)

Note that in the one qubit case (d = 3), by means of
Egs. (3.1) and (6.15), all the components of the above
tensor vanish for G, if P = Q, for G, if P = 1 and for G if
Q = 1. In these cases, from Eq. (E1) we get that if the shear
tensor 6,5 = 0, then it vanishes along all the geodesic.
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