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Via Musei 41, 25121 Brescia, Italy

2INFN Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
3The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

4Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94306, USA
5Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom

6TIFPA—INFN, c/o Dipartimento di Fisica, Università di Trento, 38123 Povo (TN), Italy
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Computational complexity is a quantum information concept that recently has found applications in the
holographic understanding of the black hole interior. We consider quantum computational complexity for n
qubits using Nielsen’s geometrical approach. In the definition of complexity there is a big amount of
arbitrariness due to the choice of the penalty factors, which parametrizes the cost of the elementary
computational gates. In order to reproduce desired features in holography, such as ergodicity and
exponential maximal complexity for large number of qubits n, negative curvatures are required. With the
simplest choice of penalties, this is achieved at the price of singular sectional curvatures in the large n limit.
We investigate a choice of penalties in which we can obtain negative curvatures in a smooth way. We also
analyze the relation between operator and state complexities, framing the discussion with the language of
Riemannian submersions. This provides a direct relation between geodesics and curvatures in the unitaries
and the states spaces, which we also exploit to give a closed-form expression for the metric on the states in
terms of the one for the operators. Finally, we study conjugate points for a large number of qubits in the
unitary space and we provide a strong indication that maximal complexity scales exponentially with the
number of qubits in a certain regime of the penalties space.
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I. INTRODUCTION

An important problem in theoretical quantum computa-
tion is to determine the best quantum circuit to implement a
desired unitary transformation. In general, this might be a
challenging question. Moreover, it would be nice to have
better theoretical tools to prove if a quantum computation
problem has or not an efficient solution. The concept of
quantum computational complexity has been introduced to
answer these questions. Complexity itself is defined in a

rather heuristic way as the minimal number of computa-
tional gates required to build a given unitary operator with
some tolerance. In order to improve the quantitative
understanding, a geometrical approach to computational
complexity in quantum mechanics was introduced in [1]
and further studied in [2–5]. The basic idea is to introduce a
Riemannian metric in the space of unitary operators acting
on a given number of qubits, which quantifies how hard it is
to implement a given quantum computational task. The
distance induced by the metric in the space of unitary
operators is used as a measure of the complexity of the
quantum operation.
An additional motivation to study complexity arises from

the desire of understanding the physics of the black hole
interior [6–10]. Quantum information theory already pro-
vided us with many insights along the road to understand
quantum aspects of gravity. This is especially powerful in
the framework of AdS=CFT. The concept of entanglement
entropy has a natural dual in terms of area of extremal
surfaces [11]. Recently, such a geometric realization of
entanglement led us to a better understanding of the Page
curve [12] for an evaporating black hole, see, e.g., [13–15].
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It is natural to conjecture that other features of holo-
graphic spacetime are encoded in other quantum informa-
tion quantities, such as complexity. In the context of
AdS=CFT correspondence, the growth of computational
complexity was proposed as the boundary dual of the
growth of the size of the Einstein-Rosen bridge connecting
the left and the right sides of an eternal black hole in anti–
de Sitter spacetime. Two main holographic duals for
complexity were proposed:

(i) The complexity ¼ volume conjecture relates com-
plexity to the volume of an extremal slice anchored
to the boundary [6–8];

(ii) The complexity ¼ action conjecture relates com-
plexity to the action computed in the Wheeler-
DeWitt patch [16,17].

Holographic complexity was recently studied in a large
variety of settings, see, e.g., [18–25]. Another promi-
sing generalization is provided by subregion complexity
[26–39]. The appropriate notion of complexity in quantum
field theory, dual to these holographic quantities, is still an
open problem. One of the most promising and challenging
approaches is to generalize Nielsen’s geometric method to
quantum field theory, see, e.g., [40–53].
A conjecture about the generic time evolution of com-

plexity has been proposed in [9]. In this picture, at early
times complexity grows linearly for a period that is
exponential in the number of qubits n. This initial phase
is called the complexity ramp. At time t ∝ en it reaches its
maximum value and then it flattens for a very long time
t ∝ ee

n
, doubly exponential in n (this is called the complex-

ity plateau). After this very long time, quantum recurrence
can bring back the system to subexponential values with
non-negligible probability. This picture, if confirmed,
would give us interesting insights on the quantum history
of black holes. For instance, white holes could be thought
of as the gravity duals of a phase of decreasing complexity
due to quantum recurrence.
The geometrical approach by Nielsen is an interesting

direction to put the definition of complexity on firmer
grounds. There is an important order zero property that
complexity must satisfy in order to fit the expectations in
[9]: in the limit of large number of qubits n, the maximal
complexity should scale exponentially with n.
A full understanding of complexity is still an open

problem already in quantum mechanics. In particular, there
are many ways to define geometric computational com-
plexity. Riemannian geometry is just a possibility. It could
be that Finsler geometry is more appropriate to investigate
complexity, both for quantum computer science [1] and in
the holographic case [47]. Even in the more traditional
paradigm of Riemannian geometry, there is a lot of
ambiguity in defining complexity. Part of it comes from
the choice of the penalty factors for the Hermitian gen-
erators of the unitary transformations, which implement the
physical concept that some operations can be harder than

others to perform in a quantum circuit. The simplest
possibility would be to choose a uniform penalty factor,
independent of the number of qubits entangled by the given
quantum operation. However this brings to a maximal
allowed complexity which does not scale exponentially
with the number of qubits [1] and so it does not match our
expectations. It was suggested in [1] that Finsler metrics
with uniform penalty factors or Riemannian metrics with
nonuniform penalties may instead give an exponential
complexity in some regions of the parameter space.
An interesting toy model for many desired features of

complexity geometry was proposed in [54], considering
geodesics in a compact two-dimensional space with neg-
ative curvature. In particular, it was argued that negative
curvature gives an interesting crossover between L2 norm
at small distances and an effective L1 norm at large
distances. This allows us to remain in the framework of
Riemannian geometry, which is easier to deal with com-
pared to Finsler geometry.
Another desirable property of complexity metric is the

ergodicity of geodesics, which is important to apply
thermodynamical arguments to complexity evolution
[55–57]. Ergodicity in this context refers to the general
idea that the trajectory of a generic state along a geodesic
will eventually visit all the allowed portions of the unitary
space. There are classical mathematical results (see, e.g.,
[58]) showing that the geodesic flow on a manifold with all
negative sectional curvatures is ergodic. The complexity
metric with uniform penalty factors is positively curved in
all the directions and does not have an ergodic geodesic
flow. The introduction of nonuniform penalty factors can
make some of the sectional curvatures negative [5], but not
all of them. If the negative contribution dominates, we
expect that the geodesic motion is still ergodic.
Let us denote with w, which we will refer to as the

weight, the number of qubits that are simultaneously
entangled by a given generator. In [5], the following choice
of penalty factors was studied in detail for systems of n
qubits:

qðwÞ ¼ 1; w ≤ 2;

qðwÞ ¼ q; w > 2: ð1:1Þ

In order to get negative scalar curvature, a penalty factor q
of order 4n is needed. This brings to a singular limit where
the negative scalar curvature is dominated by a few negative
sectional curvatures that diverge in the large n limit. The
penalty choice in (1.1) was called draconian in [55]. It was
argued that this choice is not appropriate to reproduce black
hole properties such as scrambling time and switchback
effect [59].
For this reason, in [55], a less drastic choice of penalty

factors was advocated. In this paper we will study a variant
of this choice:

ROBERTO AUZZI et al. PHYS. REV. D 103, 106021 (2021)

106021-2



qðwÞ ¼ αw−1; ð1:2Þ

where α > 1 is a constant. We will call the choice (1.2)
progressive penalties. In order to understand complexity
geometry in an analytic way, we will propose a large α limit
in which complexity geometry might be studied order by
order in the expansion parameter α−1. The leading order
sectional curvatures scale as α0. We find closed form for all
the curvatures up to the next-to-leading order α−1.
As recently emphasized in [60], two different but

strongly related definitions of complexity can be consid-
ered for quantum systems:

(i) Unitary complexity quantifies how hard it is to build
some unitary operators. It was physically motivated
by the problem of quantum circuit computational
complexity [1–5].

(ii) State complexity quantifies how hard it is to build a
unitary transformation that transforms the reference
state to the target state [6–8,10]. This is the most
natural way to apply the notion of complexity to
holography.

For n qubits, the unitary complexity metric is defined on the
group manifold SUð2nÞ and it is a homogeneous but not
isotropic metric. In particular, homogeneity tells us that
scalar quantities (such as curvature) are constant. The state
complexity metric instead is defined on CP2n−1 and it is
neither isotropic nor homogeneus. The number of dimen-
sions is smaller than in the unitarymetric, but the geometrical
structure is more complicated, because this space is not
homogeneous and the scalar curvature is not constant. In this
paperwepoint out that the relationbetween unitary and states
complexity is a particular case of Riemannian submersion
[61]. For this reason, geodesics on the state space are deter-
mined by just projecting a class of geodesics on the unitary
space, the horizontal ones [62]. Moreover, the curvatures in
the state space can be obtained from the curvatures in the
unitary space by O’Neill’s formula [61].
Complexity is determined (both in unitary and state

spaces) as the length of the shortest geodesic which
connects two given points. Given a geodesic starting from
an initial point P, there exists another point along the
geodesic where it begins to fail to be the minimal one. This
is called the cut point of the geodesic. The cut locus of a
given point P is defined as the set of all the cut points of the
geodesics starting from P. For unitaries complexity, the
metric is homogeneus and then it is enough to study the cut
locus at the identity. In general, finding the cut locus is a
complicated problem. A useful approach is to consider
conjugate points which, roughly speaking, are the points of
the manifold that can be joined by a continuous one-
parameter family of geodesics. From a general result in
geometry, we know that a given geodesic fails to be the
minimizing one after its first conjugate point. The converse
is not true: a geodesic may stop to be minimizing well
before a conjugate point is reached. In this paper we study

conjugate points of complexity metric both for one and for
a large number of qubits. From this analysis, we find an
evidence that maximal complexity scales exponentially
with n in the progressive model for large α.
The paper is organized as follows. In Sec. II we review

some results of [5] for the complexity geometry in the
unitary space for an arbitrary number of qubits and we
derive a useful explicit formula for sectional curvatures. In
Sec. III we briefly discuss some few qubits examples. In
Sec. IV we consider the situation of a large number of
qubits n: after a brief review of the draconian case, we study
the progressive choice of penalties (1.2). In Sec. V we
discuss state complexity and we point out the relevance of
the Riemannian submersion, which relates the geometry of
the states to the one of the unitaries. We also derive a
closed-form expression for the state metric. In Sec. VI we
study the conjugate points in the unitary space of a simple
class of geodesics, given by the exponential of the gen-
erators which are eigenvalues of the penalty matrix. We
conclude in Sec. VII. Technical details and examples are
deferred to appendices.

II. UNITARY COMPLEXITY

We will first review several useful results about the
geometry of unitary complexity, following [5]. We will
consider the space of unitary operators acting on a n qubits
system, which is SUð2nÞ. The tangent vector at a generic
point U0 can be specified in terms of a traceless Hermitian
generator H, which is the tangent to the curve

UðtÞ ¼ e−iHtU0; ð2:1Þ

evaluated at t ¼ 0.
For a generic curve UðtÞ in the space of unitaries deter-

mined by the Schrödinger equation _UðtÞ ¼ −iHðtÞUðtÞ,
we can define in general a complexity norm using a suitable
Riemannian metric:

l ¼
Z

dthHðtÞ; HðtÞi1=2: ð2:2Þ

In our application, we will consider h…i to be a positive-
definite inner product independent of the group point U.
Such a metric can be therefore defined at the origin of the
group manifold and it can be mapped to every point of the
manifold using right translations. This metric is usually
called a right-invariant metric [63,64] and can be defined
starting from a given scalar product at the origin:

hH;Ki ¼ Tr½HGðKÞ�
2n

: ð2:3Þ

Here G is a positive-definite operator on the space of
unitaries, i.e., a superoperator. This terminology is common
in the quantum information literature.
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A. Comments on the choice of basis

We work with the basis defined by generalized Pauli
matrices σ, which are nothing but the tensor products of n
matrices, each of which can be either a SUð2Þ Pauli matrix
σi (i ¼ 1, 2, 3) or the identity 12. We define the weight wðσÞ
as the number of SUð2Þ Pauli matrices involved in the
tensor product σ. We will consider only diagonal metrics in
our basis, i.e., GðσÞ ¼ qσσ, so that the inner product (2.3)
reads

hσ; τi ¼ qσδστ; ð2:4Þ

and we denote by qσ the penalty factor for the generator σ
normalized as Trðσ2Þ ¼ 2n. We call the choice qσ ¼ 1 the
unpenalized choice.
The generalized Pauli matrices have a useful property: if

we choose two elements of the basis, they either commute
or anticommute. In the one qubit case this follows directly
from the Pauli matrices algebra and it can be easily
generalized to the n qubits case. In particular, let us
consider the product τσ of two generalized Pauli matrices.
Then we have

στ ¼ ð−1Þlτσ; ð2:5Þ

where l is the number of the corresponding entries in the
tensor products in τ and in σ involving different Pauli
matrices.
It is useful to count the number of generalized Pauli

matrices anticommuting with a given σ. If σ ¼ 1, trivially
there are no operators anticommuting with it. If σ ≠ 1, a
generalized Pauli matrix ρ anticommutes with it under the
condition that there is an odd number l of corresponding
entries in the tensor products in σ and ρ involving different
Pauli matrices. Let us suppose that σ has weight w (its
tensor product contains w Pauli matrices). Then, we
necessarily have 0 ≤ l ≤ w. Among the n entries of the
tensor product in ρ, the n − w entries in correspondence
with the identity 12 in σ can arbitrarily be any matrix in the
basis ð12; σiÞ indifferently. Thus we have 4n−w choices for
such entries. For the remaining w entries of ρ, we have ðwl Þ
choices for the l positions of the unequal Pauli matrices.
Once this is fixed, there is a further 2w degeneracy of
choices. Summarizing, the number of generalized Pauli
matrices ρ anticommuting with σ is

4n−w
Xw

l odd¼1

�
w

l

�
2w ¼ 4n

2
: ð2:6Þ

It is remarkable that the number of ρ anticommuting with a
given σ ≠ 1 does not depend on the weight of σ.
The commutator of two elements of the basis (if not

vanishing) is proportional to another element of the basis,
because the two products in the commutator give the
opposite matrix (l is odd). Given two noncommuting

elements of the basis σ and τ, we define q½σ;τ� as the
penalty of their commutator; if ½σ; τ� ¼ 0 we set by
definition q½σ;τ� ¼ 1.

B. Connection and geodesic equation

Let us now derive an expression for the Levi-Civita
connection ∇ compatible with the metric (2.3). This is
given by the Koszul formula [65], which, thanks to the fact
that the inner product can be computed at the identity (and
therefore is constant in a suitable basis), simplifies to

−2ih∇XY; Zi ¼ h½X; Y�; Zi þ h½Z; X�; Yi − h½Y; Z�; Xi;
ð2:7Þ

where X, Y, Z are right-invariant fields interpreted as
Hermitian matrices at the origin. Equation (2.7) allows us to
define

∇XY ¼ i
2
ð½X; Y� þ G−1ð½X;GðYÞ� þ ½Y;GðXÞ�ÞÞ: ð2:8Þ

Setting Y ¼ X in Eq. (2.8), we obtain the geodesic
equation, which is nothing but the Euler-Arnold1

equation [64]:

_X þ iG−1ð½X;GðXÞ�Þ ¼ 0: ð2:9Þ

In general we expect that geodesics have an intricate
behavior. Eq. (2.9) shows that there exists a simple class
of geodesics, given by the exponential of an eigenvector of
the penalty operator G. We will call the geodesics which are
exponential of such eigenvectors “exponential geodesics.”
We study the behavior of their conjugate points in Sec. VI.

C. Riemann tensor

Let us now specialize the discussion to SUð2nÞ using
Pauli matrices ρ, σ, τ, μ, which can be viewed as right-
invariant frame fields. The curvature tensor is [5]

Rρστμ ¼ h∇ρτ;∇σμi − h∇στ;∇ρμi − h∇i½ρ;σ�τ; μi: ð2:10Þ

Using Eq. (2.8), we find

∇στ ¼ icσ;τ½σ; τ�; cσ;τ ≡ 1

2

�
1þ qτ − qσ

q½σ;τ�

�
: ð2:11Þ

The Riemann tensor is given by the expression:

Rρστμ ¼ cρ;τcσ;μhi½ρ; τ�; i½σ; μ�i − cσ;τcρ;μhi½σ; τ�; i½ρ; μ�i
− c½ρ;σ�;τhi½i½ρ; σ�; τ�; μi: ð2:12Þ

1Recent applications of the Euler-Arnold equations in relation
to complexity were found in [52,53].
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Since Eq. (2.12) depends just on commutators, the
Riemann curvature of a subgroup of unitaries does not
depend on the metric data outside this subgroup. For
example, complexity on a one qubit subgroup depends
just on penalties of generators acting on that particular
subgroup. An important result [5] is that the component
Rρστμ vanishes unless the product of the corresponding
generalized Pauli matrices ρστμ is proportional to the
identity.

D. Sectional curvatures

The sectional curvature is defined as half of the scalar
curvature of a two-dimensional submanifold with tangent
space specified by the directions ðρ; σÞ. The general
expression for the sectional curvature of the plane deter-
mined by the vectors ðv; wÞ is [66]

Kðv; wÞ ¼ Rαβγδvαwβwγvδ

ðvαvαÞðwβwβÞ − ðvαwαÞ2 : ð2:13Þ

The quantity Kðv; wÞ depends just on the plane which is
defined by ðv; wÞ and does not depend on their normali-
zation. The sectional curvature is a nonlinear object and it is
a nontrivial function of the orientation of the plane; in
general, in order to determine K on an arbitrary plane it is
not enough to determine it on the planes defined by couples
of vectors on an orthogonal basis.
The generalized Pauli matrices are orthogonal but not

normalized, see Eq. (2.4). The sectional curvature in the
plane spanned by two generalized Pauli matrices is

Kðρ; σÞ ¼ Rρσσρ

qρqσ
: ð2:14Þ

From Eq. (2.12) we find

Rρσσρ ¼ cρ;σcσ;ρhi½ρ; σ�; i½σ; ρ�i
− c½ρ;σ�;σhi½i½ρ; σ�; σ�; ρi: ð2:15Þ

This vanishes if ρ and σ commute. Instead, in the case of
anticommuting ρ and σ, a direct calculation gives

hi½ρ; σ�; i½ρ; σ�i ¼ 4q½ρ;σ�;

hi½i½ρ; σ�; σ�; ρi ¼ −4qρ; ð2:16Þ
where in both the relations we repeatedly used the fact that
ρ and σ anticommute. We can also use the property
q½½ρ;σ�;σ� ¼ qρ to get the sectional curvature

Kðρ; σÞ ¼ 1

qρqσ

�
−3q½ρ;σ� þ 2ðqρ þ qσÞ þ

ðqρ − qσÞ2
q½ρ;σ�

�
;

ð2:17Þ

which is valid if ½ρ; σ� ≠ 0 (otherwise Kðρ; σÞ ¼ 0).

This formula, which as far as we know is new and not
contained in [5], has interesting consequences. We see that
the only negative contribution to Kðρ; σÞ comes from q½ρ;σ�:
K can become negative only if the commutator ½ρ; σ� has a
large enough penalty factor. In general, we expect that K is
positive, unless q½ρ;σ� is big enough compared to qρ and qσ.
One may wonder if it is possible to get negative all the

sectional curvatures of the orthogonal basis. This is not
possible, because the sectional curvatures of the one qubit
subspace depend just on the one qubit penalty factors. In
Sec. III A we will show that at least two out of three
independent sectional curvatures are always positive for
one qubit.

E. Ricci tensor and curvature

Sectional curvatures are related to Ricci tensor and Ricci
curvature. As shown in [5], in our basis the only non-
vanishing component of the Ricci tensor Rστ are the
diagonal ones, with σ ¼ τ. Given an orthonormal basis
fekg with k ¼ 1;…; N and such that e1 ¼ v, we have the
following result [66] valid for all Riemannian manifolds:

Rαβvαvβ ¼
XN
k¼2

Kðv; ekÞ: ð2:18Þ

In this way the scalar curvature can be expressed in terms of
the sectional curvatures as

R ¼
XN
k¼1

Rαβeαke
β
k ¼

X
σ;ρ

Kðρ; σÞ: ð2:19Þ

It should be emphasized that the sectional curvatures do not
transform linearly as tensors, still their sum reproduces the
Ricci scalar.
The sign of sectional curvatures plays a key role in

relation to ergodicity [55]. Roughly speaking, the geodesic
flow is called ergodic if its typical geodesic will eventually
pass nearby to all the allowed portions of the operator
space. The average of observables along the geodesic
trajectory will then coincide with the average over the
manifold of unitaries. In the context of the motion in the
group manifold of unitaries, one can consider the time
evolution of two neighboring geodesics intersecting at
t ¼ 0 under infinitesimally close local Hamiltonians. In
such a case, the deviation between the geodesics is
governed by the sectional curvature corresponding to the
section containing the two geodesics: if the sign is positive
as in the standard inner product metric, then the geodesics
converge. On the other hand, an appropriate choice of
penalty factors allows to obtain negative sectional curva-
tures, implying that the geodesics diverge. The divergence
of geodesics is an important requirement for quantum
chaos, which in turn requires an ergodic behavior.
From a general theorem [58], we know that geodesic

flow is ergodic in manifolds whose all sectional curvatures
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are negative. This result is not directly applicable to unitary
complexity, because at least some of the sectional curva-
tures in the one qubit directions are always positive. Indeed,
ergodicity of geodesic is still preserved in some examples
where the curvature is partly negative and partly positive
(see, e.g., [67]). In general, we expect that the presence of
directions with mostly negative sectional curvatures is a
strong indication of ergodic behavior of geodesics. From
Eq. (2.19) we know that the scalar curvature is the sum of
all the sectional curvatures of an orthogonal basis, and so
we expect that negative scalar curvature R is a detector of
ergodicity. Unfortunately, we do not know about any
rigorous mathematical theorem that relates the sign of R
to the ergodicity of geodesics.
In view of the investigation of conjugate points of the

geodesics in Sec. VI, it is convenient to introduce a specific
notation for the diagonal components of the Ricci tensor.
Using an orthonormal basis fuðσÞg in the algebra, we
define

Rσ ¼ RαβuαðσÞuβðσÞ ¼
Rσσ

qσ
;

uαðσÞuβðσÞgαβ ¼ 1: ð2:20Þ

Using the definitions for the curvature quantities given
above, we start by considering in Sec. III the simple cases
where the quantum-mechanical system is composed by one
or two qubits. We will extract the sectional curvatures and
the Ricci scalar and study their behavior in relation to
various choices of the penalty factors on the generators.
Then we will generalize in Sec. IV to the case with many
qubits, where we will propose some choices of penalty
factors to reproduce expected properties of complexity.

III. FEW QUBITS EXAMPLES

A. One qubit

Let us fix the penalty factor for σx to 1 and denote the
penalty factors for σy and σz by Q and P. For Q ¼ 1, the
metric has a Uð1Þ isotropic symmetry which rotates
ðσx; σyÞ. Applying the results of the previous section, the
sectional curvatures of the planes selected by our ortho-
normal basis are

Kxy ¼
−3P2 þ 2Pþ 2PQþQ2 þ 1 − 2Q

PQ
;

Kxz ¼
−3Q2 þ 2Qþ 2PQþ P2 þ 1 − 2P

PQ
;

Kyz ¼
−3þ 2Pþ 2Qþ P2 þQ2 − 2PQ

PQ
; ð3:1Þ

and the scalar curvature is

R ¼ −2
ðQ − PÞ2 − 2ðPþQÞ þ 1

PQ
: ð3:2Þ

The signs of sectional and scalar curvatures are shown in
Fig. 1. Note that two out of the three sectional curvatures in
Eq. (3.1) are positive in all the parameter space.
The sectional curvatures form a nonlinear object; these

quantities are not enough to compute the sectional curvature
in an arbitrary plane, which can be found using expressions
from the Riemann tensor. In the one qubit case, we checked
that the values in Eq. (3.1) correspond for all P, Q to the
maxima and minima of the sectional curvature.
Conventionally, we will call the generators with lowest

penalty “easy” generators, and those with highest penalty
“hard” generators. We are interested in limits where the
maximal complexity becomes large, in general exponential
in the number of states. So it might seem a contradiction to
search for limits of large complexity in the one qubit
Hilbert space. This is not necessarily the case: in order to
explore a toy model with large maximal complexity, one
may consider the limit where the weight factors P, Q go to
infinity.
One of these limits may be obtained by setting

P ¼ 1; Q → ∞: ð3:3Þ

In this case the scalar and the sectional curvatures diverge:

R ¼ 8 − 2Q; Kxy ¼ 4 − 3Q;

Kxz ¼ Kyz ¼ Q: ð3:4Þ

In general, if we set P constant and we sendQ → ∞, we do
not obtain a smooth limit.

Kxy 0

Kxz 0

Kyz 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 1. Regions of negativity of sectional curvatures in the
ðP;QÞ plane. In the white region all the sectional curvatures are
positive. The blue shaded regions correspond to a negative scalar
curvature.
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It is also interesting to consider the limit

P ¼ Q → ∞: ð3:5Þ

The scalar curvature remains small:

R ¼ 8

P
−

2

P2
; Kxy ¼ Kxz ¼

1

P2
;

Kyz ¼
4

P
−

3

P2
: ð3:6Þ

In this case all the sectional curvatures are positive and
become small.
Another possibility is to consider

P ¼ βQ → ∞; ð3:7Þ

with β constant. At large P we find that the sectional
curvatures approach to constants. For β ≠ 1, at large P the
scalar curvature is negative, R ¼ −2ðβ − 1Þ2.
In all these limits the volume of the space (measured

using the complexity metric) goes to infinity. From the
point of view of complexity, instead, these limits are very
different. In the case (3.3) the maximal complexity does not
approach infinity, because the remaining easy generators
are enough to build whatever unitary we want. Instead, in
the cases in Eqs. (3.5) and (3.7) the maximal complexity
goes to infinity, because the only easy generator at our
disposal allows to produce just a very special class of
unitary, i.e., the rotations along the x axis.

B. Two qubits

The two qubits case is the simplest environment where
we can address the question of what happens if one
penalizes operators according to the number of qubits that
are entangled at the same time.
We choose A as penalty factor for the weight 1 matrices

and B as penalty factor for the weight 2 ones. The
nonvanishing sectional curvatures Kðρ; σÞ in the orthonor-
mal basis can take three values:

a ¼ 1

A
; b ¼ A

B2
; c ¼ 4B − 3A

B2
: ð3:8Þ

The value a arises when ðρ; σÞ have both weight w ¼ 1, the
value c when they have both w ¼ 2 and the value b if they
are generators with different weights. The multiplicity of
each value of the sectional curvatures is

Na ¼ 12; Nb ¼ 72; Nc ¼ 36: ð3:9Þ

The scalar curvature is

R ¼ −12
3A2 − 12AB − B2

AB2
: ð3:10Þ

Let us specialize A ¼ 1 and B ¼ q with q > 1. We are
penalizing the weight 2 matrices (denoted as “hard”)
compared to the weight 1 matrices (denoted as “easy”).
The scalar curvature is

R ¼ 12
−3þ 12qþ q2

q2
; ð3:11Þ

which is always positive. Note that in this case the structure
of the algebra generators is as follows

½easy; easy� ¼ easy; ½easy; hard� ¼ hard;

½hard; hard� ¼ easy; ð3:12Þ

and so it gives rise to positive sectional curvatures, from
Eq. (2.17). Although such a choice is the most intuitive, it
necessarily provides positive curvatures, see also [60] for
the same conclusion. Note that no singularity appears in the
curvature if we send q → ∞.
If we instead set A ¼ p and B ¼ 1, we are penalizing the

weight 1 matrices and the scalar curvature is

R ¼ −12
3p2 − 12p − 1

p
: ð3:13Þ

Note that in this case the structure of the algebra generators
is reversed

½hard; hard� ¼ hard; ½easy; hard� ¼ easy;

½easy; easy� ¼ hard; ð3:14Þ

and indeed gives negative curvature at large enough p,
according to Eq. (2.17). This result gives a quantitative
explanation of some intuitions discussed in [60].
We point out that the aforementioned case is not the only

one where such a behavior occurs. In general, when we split
the set of generators in two classes, one of which is a
maximal subalgebra, the structure of commutators (3.12)
and (3.14) always arises.

IV. MANY QUBITS

We consider quantum systems composed by many
qubits, which is the first step in the direction of a system
with infinite degrees of freedom as it happens in field
theory. In this case it is possible to study the dependence of
the curvatures on the number of qubits, in order to under-
stand the assignment of penalty factors that can reproduce
physical phenomena like the switchback effect and
scrambling.
The idea is to study the time evolution of complexity

when the system of interest is subject to a perturbation.
From the holographic point of view, this is usually
performed with the introduction of a shock wave very
far in the past, in such a way that the scrambling time
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corresponds to the delay after which the black hole reaches
again the equilibrium [7]. From the perspective of quantum
circuits, a useful model consists in the evolution of an
epidemic [10]. If there is a single infected qubit that can
interact with all the other ones via a local Hamiltonian, the
scrambling time measures the scale after which the infec-
tion has involved a large enough number of qubits in order
for complexity to reach the value n, corresponding to the
number of qubits.
In this context, a related effect is the switchback one,

which is a delay in the growth of complexity arising from
cancellations between multiple shock waves or perturba-
tions. Using the toy model introduced in [54], it was
suggested that, in order to get a satisfying description of
switchback effect and scrambling, the typical sectional
curvatures should scale as 1=n or 1=n2 in the large number
of qubits limit (depending on the variant of the model). For
a recent discussion of the switchback effect for low number
of qubits, see [68]. Even without restricting to a particular
toy model, the divergence of sectional curvatures in the
large number of qubits limit gives rise to a singular
behavior that should be avoided. In this section we will
study the consequences of various assignments of penalties
on the behavior of curvatures.
Let us consider the case with n qubits, equipped with a

class of penalty factors that are functions just of the weight
of the generators. Let us denote the penalty associated to
the weight k by qk. The number of generalized Pauli
matrices with weight k in our basis is given by

N k ¼ 3k
�
n

k

�
: ð4:1Þ

Given two generators ðρ; σÞ, let us denote, respectively, by
M and N the weights of ρ and σ, and by w the weight of the
commutator ½ρ; σ�. From the analysis given in Appendix A,
we can show that w can take the following values

wr ¼ jM − Nj þ 1þ 2r; ð4:2Þ

where the integer r has the following range

0 ≤ r ≤ minðM;NÞ − 1: ð4:3Þ

If two directions in the unitary space do not com-
mute, the sectional curvatures can be obtained from
Eq. (2.17), i.e.,

KðM;N;rÞ¼ 1

qMqN

�
−3qwr

þ2ðqMþqNÞþ
ðqM−qNÞ2

qwr

�
;

ð4:4Þ

where KðM;N; rÞ denotes the sectional curvature of the
plane spanned by generalized Pauli matrices of weights M
and N, whose commutator has weight wr, given by

Eq. (4.2). We denote by N ðM;N; rÞ the degeneracy of
such sectional curvatures. We derive an explicit expression
for N ðM;N; rÞ in Appendix A.
If two directions commute KðM;N; rÞ ¼ 0; given a

generalized Pauli matrix, about one half of the other
Pauli matrices in the basis commute with it, see Eq. (2.6).
So about one half of the total sectional curvatures vanish by
construction, independently of the penalty factors.

A. Draconian penalties

The combination of 1 and 2 qubits operators is universal
and can be used to build an arbitrary operator in SUð2nÞ
[69]. This result suggests a somewhat minimal choice of
penalty factors, studied in detail in [5]

qσ ¼ 1; w ≤ 2;

qσ ¼ q; w > 2: ð4:5Þ
This choice does not distinguish different values of the
weight w > 2 and was called “draconian” in [60].
The sectional curvatures can be found using the general

expression in Eq. (2.17), giving the values in Table I.
For q ¼ 1 we recover the case where all the penalty

factors are equal, which corresponds to a bi-invariant metric
on SUð2nÞ. In this case all the nonvanishing sectional
curvatures are equal and positive. The interesting region
with negative curvature is at large q. So in this limit it
makes sense to use the approximation where only the
sectional curvatures at leading order in q are considered.
Let us consider the approximation in which we keep just

the OðqÞ and the Oð1Þ terms. In this limit the only
nonvanishing sectional curvatures are

Kð1; 1; 0Þ ¼ Kð2; 1; 0Þ ¼ Kð2; 2; 0Þ ¼ 1;

Kð3; 2; 0Þ ¼ q;

Kð2; 2; 1Þ ¼ 4 − 3q; ð4:6Þ
with multiplicities

N ð1; 1; 0Þ ¼ 6n;

N ð2; 1; 0Þ ¼ N ð2; 2; 0Þ ¼ 18nðn − 1Þ;
N ð3; 2; 0Þ ¼ N ð2; 2; 1Þ ¼ 54nðn − 1Þðn − 2Þ: ð4:7Þ

TABLE I. Values of the nonvanishing sectional curvature K for
various choices of ρ, σ in the model with draconian penalty
factors. We denote by P and Q the set of generators with w ≤ 2
and w > 2, respectively.

½ρ; σ� ∈ P ½ρ; σ� ∈ Q

ρ, σ ∈ P K ¼ 1 K ¼ 4 − 3q
ρ, σ ∈ Q K ¼ 4q−3

q2
K ¼ 1

q

ρ ∈ P, σ ∈ Q K ¼ q K ¼ 1
q2
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The scalar curvature then is

R ¼ −54nðn − 1Þðn − 2Þqþ 6nð36n2 − 99nþ 64Þ: ð4:8Þ

This calculation is in agreement with the exact result computed in [5] in a different way:

R ¼ −54qnðn − 1Þðn − 2Þ þ 6n½36n2 − 99nþ 64�

þ 1

q

�
4n

2

�
4n − 1þ 3nð3n − 1Þ

2

�
− 6nð45n2 − 117nþ 74Þ

�
þ

−
1

q2
½3nð3n − 1Þ4n−1 − 6nð3n − 4Þð6n − 7Þ�: ð4:9Þ

In order to get negative curvature, we need q ∝ 4n or larger.
This means that q has to grow exponentially with n. In
particular, in this regime the scalar curvature is dominated
by a small number (polynomial in n) of sectional curva-
tures whose magnitude grows like jKj ≈ q ≈ 4n. This is a
singular limit, and, as discussed in [55], this brings us to
some unwanted properties in the scrambling and switch-
back effect of black holes complexity.

B. Towards a more sustainable taxation policy

In [55] a more moderate penalty factors choice was
advocated:

qσ ¼ 1; w ≤ 2;

qσ ¼ c4w−2; w > 2; ð4:10Þ

where c is an order 1 constant. The authors called this
choice “moderate,” because sectional curvatures are not as
big as in the draconian model. Big curvatures in general are
not a desired feature of complexity geometry, because they
are in tension with the desired properties of scrambling and
switchback effect. The exponential behavior qk ∝ 4k in
(4.10) is suggested by the draconian model: in such a case
the behavior q ∝ 4n of penalties is needed in order to have
negative curvature. In this section we will consider some
variations of this model, in which qk ∝ αk for some
appropriate constant α.
The draconian model resembles a flat tax: all the weights

bigger than 2 are treated the same. The middle-class
exponents with w ≈ 3 and the billionaires with w ≈ n
pay exactly the same amount of taxes. The penalty choice
in Eq. (4.10) goes in the direction of a more progressive
taxation, because high incomes are taxed progressively.
Still there is a minor source of inequality in Eq. (4.10): the
very low income guys at w ¼ 1 are taxed just the same as
the working class at w ¼ 2. In order to promote social
justice we are motivated to introduce the following choice
of penalties (see also [70])

qσ ¼ αw−1; ð4:11Þ

which we will call “progressive” penalties. The scaling as
4k at large k is generalized as αk.
The model (4.11) simplifies in the large α limit, which

can be used as an expansion parameter for the analytical
understanding of the model. In particular, from Eq. (2.17)
we can see that at large α sectional curvatures scale at most
as α0. With the choice in Eq. (4.11), we expect that by
construction the maximal complexity becomes infinity at
fixed n in the limit α → ∞, because one qubit operators
cannot produce the most general operators in the unitary
space. For example, they cannot produce unitaries that
entangle two qubits that were previously unentangled.
Physically, we will be interested in the limit of large but
finite α.
Moreover, we can consider generalizations of this basic

model. In particular, we can generalize the choice in
Eq. (4.11) as

qσ ¼ 1; w ≤ w0;

qσ ¼ αw−w0 ; w > w0; ð4:12Þ

with w0 ≥ 2. For w0 ¼ 2 and α ¼ 4, we recover the model
studied in [55]. With this choice of penalties, we expect that
the maximal complexity at fixed n does not diverge for
α → ∞, because the combination of 1 and 2 qubits
operators is universal and can be used to build an arbitrary
operator in the unitary space. From Eq. (2.17), we can see
that this model has the property that at large α sectional
curvatures scale at most as αw0−1. Therefore, the large α
limit provides a singular geometry, as the curvature
diverges.

C. Progressive penalties

We computed the curvatures as a power expansion in α,
at the leading order α0 and at next to leading order α−1. The
cumbersome calculations are deferred to Appendix B.
At the leading order in α, the scalar curvature is

R ¼ 3nð4n − 27n−1Þ: ð4:13Þ
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It is negative for n ≥ 3 and comes just from two values of
the sectional curvatures: K ¼ 1 with multiplicity N þ and
K ¼ −3 with multiplicity N −, where

N þ ¼ 127n−1n − 322nþ1nþ 18n;

N − ¼ N þ
2

− 3n: ð4:14Þ

At next to leading order, the correction to the curvature is

δR ¼ 9

2
nðn − 1Þ 4

n

α
: ð4:15Þ

In order to get a feeling on the average sectional
curvature, it is convenient to divide R by the total number
of sectional curvatures between couples of elements in the
basis, which we denote by

η ¼ ð4n − 1Þ2 − ð4n − 1Þ: ð4:16Þ

The average sectional curvature becomes tiny at large n and
α, i.e.,

K̄ ¼ R
η
≈ −

6

7
n

�
7

16

�
n
þ 1

α

9

4n
nðn − 1Þ

2
: ð4:17Þ

We do not have an analytic expression at higher order in α
for the generic n qubits case. However, if n is fixed to be

some not too large value, we can compute the exact result at
all orders explicitly since the sum over the penalties
contains a finite number of terms.
The exact value of the average sectional curvature as a

function of α for a few values of n is plotted in Fig. 2.
Nothing special happens for the value α ¼ 4, which instead
plays an important role for the draconian model. It is
interesting that there is a minimum at finite α. It turns out
that the series expansion in α−1 for K̄ is, at large n,
an alternate sign series with slow rate of convergence.
For example, in order to get the minimum in the plot for K̄
when n ¼ 10, we have to expand up to the order α−5.
This choice of penalties for α → ∞ has many similarities

with the one qubit case in Eq. (3.7), where P ¼ βQ → ∞
with β constant and different from 1. In both limits we
expect that the maximal complexity diverges, and the
sectional curvatures do not. Also, R approaches a negative
constant in both cases.

V. STATE COMPLEXITY AND SUBMERSIONS

Up to now, we have focused the discussion on the
complexity of unitaries. In this section, we bring the
attention of our reader to the geometry of the space of
states. Geometrically, this space is naturally associated with
a quotient of the space of unitaries where all the different
unitary transformations that, starting from a given reference
state, build the same state (up to a phase) are identified.
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FIG. 2. The exact value of R=η plotted as a function of α in the case of progressive penalties, for n ¼ 5, 10, 15, 20. The asymptotic
value at α → ∞ is shown in black. The minimum in the picture appears for n ≥ 8. Increasing n, the shape of the minimum tends to
become more and more steep and it is located at a lower value of α. Note that when n ¼ 20, for values α ≥ 4 the result of the average
sectional curvature at Oðα0Þ is already very close to the exact result.
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The complexity of the state built in this way is then defined
to be the minimum of the complexities of all the identified
unitaries. Requiring that the state complexity is also
obtained as a length on the space of states defines a
map between two Riemannian manifolds, which turns
out to be a Riemannian submersion. We recall its definition
in Sec. VA, and we proceed in the subsequent sections in
exploiting known results for Riemannian submersions.
In particular, O’Neill’s formula relates the curvature of

the space of states to the one of the space of unitaries,
providing a lower bound on the curvature on states. This
underlying geometrical structure allows a direct compari-
son of some class of geodesics, which we explore in
Secs. V D and VI.

A. Submersions

For convenience of the reader, in this section we briefly
review the concept of Riemannian sumbersions, referring to
the textbooks [65,71] for more details.
Let us consider two Riemannian manifolds ðM; gαβÞwith

dimension m and ðB; hαβÞ with dimension b < m and a
smooth map π∶M → B with surjective differential dπ:dπ is
a map dπ∶TM → TB, that for any y ∈ M induces a linear
map between the vector spaces TyM and TxB, where
x ¼ πðyÞ. This map has maximal rank, and thus a kernel
of dimension f ¼ m − b. We will call Vy ¼ kerðdπyÞ the
vertical space at y. Its orthogonal complement in TyM,
induced by the metric g, is called the horizontal space at y
and denoted by Hy. For the submersion to be Riemannian,
Hy has to be identified with TxB in an isometric way, in
other words

gðX; YÞ ¼ hðdπðXÞ; dπðYÞÞ; ∀X; Y ∈ Hy: ð5:1Þ

A pictorial depiction is shown in Fig. 3.

Quotients of manifolds by an isometric group action
provide interesting examples of submersion (see for exam-
ple the textbooks [65,71]). Let M be a Riemannian
manifold and G be a closed subgroup of the isometry
group of M, and denote by π the projection from M to the
quotient space B ¼ M=G. This defines a natural metric on
B such that π is a Riemannian submersion [65].
In the following sections, we make use of this con-

struction to understand properties of the space of states
from the complexity of unitaries.

B. Submersions and complexity geometry

Let us apply the notion of submersion to the complexity
geometry. We take M ¼ SUð2nÞ with a right-invariant
metric (the unitary space) and G as the subgroup of the
isometries of M which leaves the reference state invariant
up to a phase. More precisely, we consider a unitary U
which generates the state jψi starting from the reference
state jψ0i

Ujψ0i ¼ jψi: ð5:2Þ

We call unbroken subgroup the subgroup of SUð2nÞ that
fixes the reference state up to a phase

Vjψ0i ¼ eiϕjψ0i: ð5:3Þ

Such a V is an element of SUð2n − 1Þ ×Uð1Þ. Thus, up to a
phase, both U0 ≡UV and U prepare the same state jψi:

U0jψ0i ¼ eiϕjψi; ⇒ U0 ∼U: ð5:4Þ

Therefore we have a map from the unitary space to the
quotient B defined as

π∶ SUð2nÞ → B; ð5:5Þ

where

B ¼ CP2n−1 ¼ SUð2nÞ
SUð2n − 1Þ ×Uð1Þ : ð5:6Þ

This map is an isometric submersion, as we are going to
prove writing it explicitly in a specific coordinate system.
In order to make contact with Sec. II, we take a diagonal

penalty matrix in the basis of the generalized Pauli
matrices, see Eq. (2.4), with the property

hσr; σsi ¼ qrδrs ¼ qr
1

2n
TrðσrσsÞ: ð5:7Þ

For the states metric it is more convenient to do a change of
basis. We can identify a basis for broken generators ρk and
unbroken ones τa:

FIG. 3. A reproduction of a depiction of a submersion
from [71].
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ωl ¼ ðρk; τaÞ; 1 ≤ k ≤ 2ðK − 1Þ;
1 ≤ a ≤ ðK − 1Þ2; K ¼ 2n; ð5:8Þ

with normalization

TrðωlωmÞ ¼ δml: ð5:9Þ

We can express

σr ¼
X
l

ωlTrðωlσrÞ;

ωl ¼
1

2n

X
r

σrTrðωlσrÞ: ð5:10Þ

Then we can find the penalty scalar product in the basis ωk:

Mlm ¼ hωl;ωmi ¼
1

22n

X
r

qrTrðωlσrÞTrðωmσrÞ: ð5:11Þ

This discussion also applies to the case where Mlm is a
generic symmetric matrix. Let us introduce the following
notation for the exponential of broken and unbroken
generators

Uθ ¼ eiθkρk ; Vλ ¼ eiλaτa ; ð5:12Þ

where the variables θk denote the coordinates in the state
space and λa are the additional coordinates that define the
unitary space. A generic element of SUðKÞ can be written
as U ¼ UθVλ. Then we can compute

dUU† ¼ ðdUθVλ þ UθdVλÞV†
λU

†
θ;

¼ dUθU
†
θ þ UθdVλV

†
λU

†
θ; ð5:13Þ

where

dUθ ¼
∂Uθ

∂θk dθk; dVλ ¼
∂Vλ

∂λj dλj: ð5:14Þ

In this way the right-invariant forms defined on SUðKÞ are
given by

Xr ¼ −iTrðdUU†ωrÞ;
¼ −iðAdU†

θ
ÞrsTrfðU†

θdUθ þ dVλV
†
λÞωsg;

where we have used the adjoint action

U†
θωrUθ ¼ ðAdU†

θ
Þrsωs: ð5:15Þ

We can now write the metric in the unitary space as

ds2 ¼ MrsXrXs ¼ M̃lmðul þ vlÞðum þ vmÞ; ð5:16Þ

where

M̃lm ¼ MrsðAdU†
θ
ÞrlðAdU†

θ
Þsm;

us ¼ −iTrfU†
θdUθωsg;

vs ¼ −iTrfdVλV
†
λωsg; ð5:17Þ

in such a way that M̃lm depends just on θk, us contains just
ðθk; dθkÞ and vs contains just ðλa; dλaÞ.
Now it is convenient to split the indices in ωr in indices

corresponding to broken and unbroken generators, as in
Eq. (5.8). We have that vi ¼ 0 for i corresponding to a
broken index. Then we can write the unitary metric
Eq. (5.17) as

ds2 ¼ ð ui ua þ va Þ
�
M̃ij M̃ib

M̃aj M̃ab

��
uj

ub þ vb

�
;

¼ ðM̃ij − M̃icM̃−1
ca M̃ajÞuiuj þ M̃abfafb; ð5:18Þ

where we introduced

fa ¼ va þ ua þ M̃−1
adM̃djuj: ð5:19Þ

The problem of finding the minimal infinitesimal operator
which synthesizes the state of coordinates θk þ dθk from
the state with coordinates θk is then solved by the equation
fa ¼ 0, because the term M̃abfafb in Eq. (5.19) is positive
definite. This construction generalizes the result in [60] to
arbitrary number of qubits.
We can then identify the metric on the state space B as

ds2S ¼ ðM̃ij − M̃icM̃−1
ca M̃ajÞuiuj: ð5:20Þ

We explicitly checked that the metric in the space of states
CP1 for a single qubit coincides with the result found in
[60]. In Appendix C we will see how to apply this result to
qutrits.
From Eq. (5.19), it follows that the projection map π

from M to B

π∶ðθk; λjÞ ↦ ðθkÞ ð5:21Þ

is a Riemannian submersion, where π−1ðθkÞ is parame-
trized by λk, for fixed θk. The explicit expression for the
horizontal spaces at arbitrary θk is given by faðXÞ ¼ 0 for
any generic vector X in the tangent space.

C. Submersions and curvature

We can use O’Neill’s formula [61] to relate the sectional
curvatures of states KS to the ones of unitaries K:

KSðh̃1; h̃2Þ ¼ Kðh1; h2Þ þ
3

4

jVð½h1; h2�Þj2
jh1j2jh2j2 − hh1; h2i2

; ð5:22Þ
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where V is the projector on the vertical subspace, h…i is the
scalar product from the metric of the manifoldM, j…j is the
norm induced by the scalar product, h̃k ¼ dπðhkÞ are
vectors fields in the state space, hk are horizontal fields
in the unitary space, ½h1; h2� is the commutator of the vector
fields in the unitary space.
This expression shows that the sectional curvature of a

plane in the space of states can be always expressed as
sectional curvature of an appropriate plane in the unitary
space plus a positive definite contribution coming from the
commutator of horizontal vectors. It can be used to
compute the curvatures in the state space without even
knowing its metric. As an illustrative example, we apply
Eq. (5.22) to the one qubit case in Appendix D.

D. Submersions and geodesics

The relation between geodesics in B and geodesics in M
for generic submersions was studied in [62]. An important
result is that if a geodesic inM is horizontal at some point, it
remains horizontal. Then the projection by π of an horizontal
geodesic is a geodesic in the space of states B. As a general
result, we have that for submersions from complete mani-
foldsM as our unitary space, every geodesic ofB can be built
as the projection of a horizontal geodesic inM. It is important
to stress that the projection of a geodesic that is not horizontal
in general does not provide a geodesic on B.
We know from Eq. (2.9) that the exponential of an

eigenvector of the penalty matrix G is a geodesic in the
unitary space. Combining with the previous result, the
exponential of an eigenstate of G which is also
perpendicular to the unbroken subgroup at the origin, gives
a geodesic in the state space B. This property provides us a
simple class of geodesics in some particular situations. In
the 1-qubit case, this is studied in Sec. VI C.
Let us instead consider the 2-qubits case with penalties

depending just on the weights. Taking as reference state
j00i, the unbroken subgroup is generated by the following
generators:

1 ⊗ σz; σz ⊗ 1; σz ⊗ σz;

σx ⊗ ð1 − σzÞ; σy ⊗ ð1 − σzÞ;
ð1 − σzÞ ⊗ σx; ð1 − σzÞ ⊗ σy;

σx ⊗ σy − σy ⊗ σx;

σx ⊗ σx þ σy ⊗ σy: ð5:23Þ

The orthogonal complement to this space is generated by

σx ⊗ ð1þ ασzÞ; σy ⊗ ð1þ ασzÞ;
ð1þ ασzÞ ⊗ σx; ð1þ ασzÞ ⊗ σy;

S−2 ¼ σx ⊗ σy þ σy ⊗ σx;

Sþ2 ¼ σx ⊗ σx − σy ⊗ σy; ð5:24Þ

where α is a coefficient2 dependent on the penalty factors,
chosen to ensure orthogonality with unbroken generators in
Eq. (5.24). Note that just the last two generators S�2 in
Eq. (5.25) have a definite weight w ¼ 2, and so just these
two operators generate exponential horizontal geodesics.
We can generalize this arguments to n qubits as follows.

Let us take as reference state j00…0i. Let us consider the
action of a infinitesimal transformation on this state, with
w ¼ n and which contains just σx and σy entries in the
tensor product. This operator will rotate the state as

j00…0i → j00…0i þ ϵj11…1i; ð5:25Þ

where ϵ is an infinitesimal complex number. This sector of
operators contain 2n generators; out of this set, a vector
space of dimension 2n − 2 operators is unbroken. So, in the
w ¼ n sector which contain just tensor products of σx and
σy we can always find a broken dimension 2 subspace
which is orthogonal to the vertical space.
Let us build these generators explicitly. We introduce

An
s ¼

1

ðnsÞ
X

ðk1;…;knÞ
σk1 ⊗ … ⊗ σkn ; ð5:26Þ

where the sum runs over all the permutations ðk1;…; knÞ
which contain s generators σy and n − s generators σx.
Then the two generators

Sþn ¼
Xk even
0≤k≤n

ikAn
k; S−n ¼

Xk odd
0≤k≤n

ikþ1An
k; ð5:27Þ

are both broken by the reference state and orthogonal to all
the unbroken w ¼ n generalized Pauli matrices which
contain just σx and σy in the tensor product. This con-
struction generalizes to n qubits the two operators in the last
line of Eq. (5.25).
Then we can look for other generators orthogonal to the

vertical space. We can consider a generalized Pauli matrix
of the form S�n−1 ⊗ ð1þ α1σzÞ with the coefficient chosen
in such a way that it is orthogonal to S�n−1 ⊗ ð1 − σzÞ. This
involves a linear combination of weight n and n − 1
generators and in general one can find 2ðn

1
Þ such operators.

One can iterate the construction, looking for generators of
the form

S�n−s ⊗ ð1þ αsσzÞs; ð5:28Þ

and determine αs in such a way that (5.29) is orthogonal to
the unbroken operators

2The precise value is completely irrelevant for the following
discussion.
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S�n−s ⊗ ð1 − σzÞ ⊗ 1b ⊗ σcz; ð5:29Þ

where b, c are some integer numbers. For each integer s, the
operators in (5.29) are linear combinations of weight w
generators with

n − s ≤ w ≤ n: ð5:30Þ

There are 2ðnsÞ of such operators, with 1 ≤ s ≤ n. In this
way one can build all the 2n − 1 horizontal vectors in the
unitary space, which project to the CP2n−1 directions in the
state space. A broken unitary labelled by s is a linear
combination of generalized Pauli matrices with weight w
with n − s ≤ w ≤ n.
If the penalties of each weight qw are all different (as in

the progressive model), just the s ¼ 0 broken unitaries S�n
are penalty eigenstates. This is the most generic case. The
only exponential horizontal geodesics are generated by
linear combinations of Sþn and S−n .
If some penalties for different weights are degenerate, we

can find more eigenstates of the penalties which are
orthogonal to the unbroken subgroup. For example, in
the draconian model all the weights with 3 ≤ w ≤ n are
equally penalized, so all the broken unitaries with 0 ≤ s ≤
n − 3 generate projectable exponential geodesics.
There is a relation between conjugate points in M and B

[62]. Let us consider a horizontal geodesic

γðtÞ∶½a; b� → M ð5:31Þ

and let γðt0Þ be the first conjugate point of γ along the
geodesic starting form γðaÞ. Then the projected geodesic
βðtÞ ¼ πðγðtÞÞ has a conjugate point for t00 ≤ t0.

VI. TOWARDS AN EXPONENTIAL COMPLEXITY

The definitions of unitary and state complexity require
the minimization of the length of a path connecting the
identity with a generic unitary, or the reference state to
the target state, respectively. In the following, we exploit
the techniques developed in the previous sections to find
explicit classes of geodesics and to find their conjugate
points, which play an important role in the minimization
process.

A. Conjugate points and Raychaudhury equation

An important problem in the geometric approach to
complexity is to determine the minimal length geodesics
that connect the identity to a given unitary. From a general
result in Riemannian geometry, a geodesic does not
minimize lengths anymore after its first conjugate point.
This is not a necessary condition: there could be a globally
shorter path before the first conjugate point.
A useful tool to study conjugate points is the

Raychaudhury equation (see, e.g., [72] for a review). Let

us consider a congruence of geodesics which is orthogonal
to a family of hypersurfaces in an arbitrary Riemannian
manifold. Let us denote by uα the tangent vector field to the
geodesics, with uαuα ¼ 1. The geodesics are in affine
parametrization, i.e., uβDβuα ¼ 0, where Dβ is the covar-
iant derivative. The deviation vectors ξμ are taken orthogo-
nal to uα, i.e., ξαuα ¼ 0. We can define the transverse part
of the metric as

hαβ ¼ gαβ − uαuβ; ð6:1Þ

and the tensor

Bαβ ¼ Dβuα; ð6:2Þ

which can be shown to be symmetric if the congruence of
geodesics is orthogonal to a family of hypersurfaces.
Morever Bαβ can be decomposed in the trace and traceless
part

Bαβ ¼
1

d − 1
Θhαβ þ σαβ; ð6:3Þ

where d is the dimension of space,Θ is the expansion scalar
and σαβ the (traceless and symmetric) shear tensor. The
expansion scalar Θ measures the time derivative of an
infinitesimal transverse volume ΔV of the geodesic, i.e.,

Θ ¼ 1

ΔV
dΔV
dλ

: ð6:4Þ

If the scalar Θ approaches −∞ in some point r along a
geodesic, it detects the presence of conjugate points for our
congruence of geodesics. This means that the geodesic that
we are studying does not anymore give us the minimal
distance for points beyond r. The Raychaudhury equation
determines the evolution of Θ along the geodesic flow:

dΘ
dλ

¼ −
1

d − 1
Θ2 − σαβσαβ − Rαβuαuβ; ð6:5Þ

where Rαβ is the Ricci tensor and λ is an affine parameter.
There exists also an equation for the traceless part σαβ, see,
e.g., [73]. We discuss this equation in Appendix E.

B. An application to a simple class of geodesics

From Eq. (2.9), we know that, in the unitary space, the
exponential of eigenvectors of the penalty factors matrix G
gives us a class of geodesics, which we call “exponential
geodesics.” It is particularly convenient to apply the
Raychaudhury equation to this class of geodesics, which
have constant Rαβuαuβ. If we neglect the term σαβσαβ in
Eq. (6.5), it can be solved analytically. In general this term
is nonzero (see Appendix E), but it is positive definite.
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So, neglecting the σαβσαβ term gives us an upper bound for
the presence of a conjugate point along a geodesic.
Let us first solve Eq. (6.5) in the limit Θ → ∞, as it is the

case for a family of geodesics starting from the same point.
In this case we can neglect Rαβuαuβ, leading to

_Θþ 1

d − 1
Θ2 ¼ 0; Θ ¼ d − 1

λ − k
; ð6:6Þ

where k is an integration constant. This approximation is
the same as considering the flat space limit. In order to
consider a family of geodesics that start at the same point at
λ ¼ 0, we set k ¼ 0. Let us now consider

_Θþ 1

d − 1
Θ2 þ B ¼ 0; ð6:7Þ

where B ¼ Rαβuαuβ. The conjugate point, in this approxi-
mation, shows up only for B > 0. Requiring that at small λ
the solution reproduces the flat space one Θ ¼ ðd − 1Þ=λ,
we find

Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðd − 1Þ

p
cot

� ffiffiffiffiffiffiffiffiffiffiffi
B

d − 1

r
λ

�
; ð6:8Þ

and so it has a conjugate point at

λ0 ¼
π
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ffiffiffiffi
B

p : ð6:9Þ

Since σαβσαβ is a positive-definite quantity, the value of λ0
provides an upper bound for the distance λc of the
conjugate point from the origin:

λc ≤ λ0 ¼
π
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rαβuαub

q : ð6:10Þ

Note that, keeping the Ricci curvature fixed, λ0 scales
exponentially with the number of qubits due to the factorffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
≈ 2n. This is a first evidence of the exponential

nature of the maximal complexity.

C. One qubit

In order to make the discussion concrete with a clear
example we will consider the one qubit case, see Sec. III A.
In this case the unitary manifold is a generalized Berger
sphere and an explicit expression for the metric is available.
Introducing the coordinates ðθx; θy; θzÞ to parametrize the
unitary

U ¼ eiσzθzeiσyθyeiσxθx ; ð6:11Þ

the metric can be written explicitly:

gij ¼
1

2

0
B@

Ξ Ψ 2P sin 2θy
Ψ Σ 0

2P sin 2θy 0 2P

1
CA; ð6:12Þ

where

Ξ ¼ 2ðPsin22θy þ cos22θyðQsin22θz þ cos22θzÞÞ;
Ψ ¼ ð1 −QÞ cos 2θy sin 4θz;
Σ ¼ ðQ − 1Þ cos 4θz þQþ 1: ð6:13Þ

We know from the general analysis that the exponentials of
σx, σy, σz are geodesics, with

Gx∶ θx ¼ λ; θy ¼ θz ¼ 0;

Gy∶ θy ¼
λffiffiffiffi
Q

p ; θx ¼ θz ¼ 0;

Gz∶ θz ¼
λffiffiffiffi
P

p ; θx ¼ θy ¼ 0; ð6:14Þ

as can be also checked directly from the geodesic equations
of the metric (6.12).
We have seen that the presence of conjugate points on

this simple class of geodesics can be detected by the Ricci
tensor:

Rx ¼
2ð1 − ðP −QÞ2Þ

PQ
;

Ry ¼
2ðQþ P − 1ÞðQ − Pþ 1Þ

PQ
;

Rz ¼
2ðPþQ − 1ÞðP −Qþ 1Þ

PQ
; ð6:15Þ

where we denote Rx;y;z ≡ Rσx;σy;σz .
Conjugate points of the geodesic Gk in Eq. (6.14) occur

in the regions of the parameter space ðP;QÞ where the
corresponding Rk is positive, see Fig. 4. In particular, each
of the geodesics Gk for k ¼ x, y, z develops a conjugate
point in the region where Rk > 0 for

λc ≤ λ0; λ0 ¼
π
ffiffiffi
2

pffiffiffiffiffiffi
Rk

p : ð6:16Þ

A plot of an example of conjugate point is shown in Fig. 4
in stereographic projection.
Using Eq. (E1), it is also possible to include the σαβσαβ

corrections in order to determine in general the exact
location of the conjugate points. From such an equation,
we can show that σαβ vanishes forGx in the P ¼ Q case, for
Gy in the P ¼ 1 case and for Gz in the Q ¼ 1 case (see
Appendix E). We have then a few exact results:

(i) For Q ¼ 1, Gz has a conjugate point at λ ¼ πffiffiffi
P

p .

(ii) For P ¼ 1, Gy has a conjugate point at λ ¼ πffiffiffi
Q

p .
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(iii) For P ¼ Q, Gx has a conjugate point at λ ¼ πP (see
the black spot in Fig. 4).

In particular, it is interesting to consider the limit in
Eq. (3.3), with P ¼ 1 and Q → ∞. In this case the only
exponential geodesicwith a conjugate point isGy. In the limit
Q → ∞ the conjugate pointmoves very close to the origin, at
θy ¼ π=Q and at λ ¼ π=

ffiffiffiffi
Q

p
. The Gy geodesic is then

minimizing only very close to the origin, and the limit is
singular. Indeed we already expected a singularity from the
behavior of curvatures, see Eq. (3.4). Also, sending the
penalty Q to infinity does not correspond to getting a big
complexity in the σy direction: a shortcut with length scaling
as 1=

ffiffiffiffi
Q

p
is for sure available just after the conjugate point.

This is an indication of low maximal complexity and it is
correlated to a singular limit in the curvature.
It is also interesting to consider the limit in Eq. (3.5),

where P ¼ Q → ∞. The Ricci curvatures are all positive:

Rx ¼
2

P2
; Ry ¼ Rz ¼

4

P
−

2

P2
: ð6:17Þ

In this case Gx has an exact conjugate point at θx ¼ λ ¼
πP, while Gy;z have conjugate points for λ≲ π

ffiffiffiffiffiffiffiffi
P=2

p
,

which correspond to θy, θz of order 1. There is no
singularity in geodesic, as expected from the curvatures
in (3.6). Note that, while the distance of the conjugate point
in Gy;z diverges, their position in the coordinate θy;z
approaches a finite limit for P → ∞. The limit of large
penalty indeed may correspond to a large maximal com-
plexity, because no obvious shortcuts are available. This is
supported by numerical computations: the points with large
complexity lay nearby the conjugate point, and so the
maximal complexity scales as

ffiffiffiffi
P

p
.

In the one qubit case, the exponential geodesics on
unitary space can be projected to the states space using the

submersion, as explained in Sec. V D. Taking as a reference
state j0i, the unbroken subgroup is generated by σz. The
geodesics shot in the orthogonal directions σx and σy are
then horizontal and projectable. For generic P, Q there are
then two exponential horizontal geodesics. The corre-
sponding geodesics on states can be obtained by the
projection of these curves by the submersion π.
It is more intuitive to plot the geodesics in the states

space, since it is a two-dimensional space. In the one qubit
case, the metric for states in the standard Bloch sphere
coordinates ðθ;ϕÞ is

gij ¼
1

Ψ

�Λ11 Λ12

Λ21 Λ22

�
; ð6:18Þ

where

Λ11 ¼ Pcos2θcos2ϕþ PQcos2θsin2ϕþQsin2θ;

Λ12 ¼ Λ21 ¼ PðQ − 1Þ sin θ cos θ sinϕ cosϕ;

Λ22 ¼ Psin2θðQcos2ϕþ sin2ϕÞ;
Ψ ¼ 4fsin2θsin2ϕþ Pcos2θ þQsin2θcos2ϕg: ð6:19Þ

We checked numerically that the projection of the hori-
zontal geodesics in the unitary space corresponds to geo-
desics in the states space, as is required by general results
on submersions.
It is then interesting to plot the geodesics for the case of

largeP andQ in the state space. In Fig. 5 thegeodesics for the
case P ¼ Q ¼ 10 on the Bloch sphere are shown. In
particular, we see that the maximal complexity region lies
just before the conjugate point in σy. Such a point lies inside
the drop delimited by the self intersection of the black curve.
As it is clear from the figure, no geodesics of length less than
λ can penetrate inside the drop.

Rx 0,Ry ,Rz 0

Rz 0,Rx ,Ry 0

Ry 0,Rx ,Rz 0

Rx ,Ry ,Rz 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
P0.0

0.5

1.0

1.5

2.0

2.5

3.0
Q

FIG. 4. Left: regions where each Rx;y;z is positive. Right: example of an exact conjugate point (the black spot) of geodesics for
P ¼ Q ¼ 0.4 in stereographic projection.
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D. Draconian model

In order to study conjugate points in the draconian model we can use the results from [5] for Rσ, where σ is a generalized
Pauli matrix with weight w:

w ¼ 1; Rσ ¼ 2ð3n − 2Þ þ 1

q2

�
4n

2
− 2ð3n − 2Þ

�
;

w ¼ 2; Rσ ¼ −24qðn − 2Þ þ 8ð6n − 11Þ þ 1

q2

�
4n

2
− 8ð3n − 5Þ

�
;

w ¼ 3; Rσ ¼
1

q

�
12q2 þ 4n

2
þ 36ðn − 3Þ − 1

q
12ð3n − 8Þ

�
;

w ≥ 4; Rσ ¼
1

q

�
4n

2
þ 4wð3n − 2wÞ − 1

q
4wð3n − 2wÞ

�
: ð6:20Þ

These expressions are valid for arbitrary n and q. In
particular, for q ¼ 1 we recover the cases with uniform
penalties qðwÞ ¼ 1, where all the Rσ are the same, i.e.,
Rσ ¼ 4n=2. In order to have negative scalar curvature, we
have to scale q with n as q ≈Oð4nÞ.
In studying conjugate points along the exponential

geodesics, it is interesting to consider not only the distance
λ from the origin, but also their position in a coordinate θ,
which runs along the geodesic and does not scale with the
penalty. We can define θ as the length in the case with all
the penalties qσ ¼ 1 (bi-invariant metric). In our normali-
zation, an exponential geodesic can be described by

UðθÞ ¼ exp
iθσffiffiffiffiffi
2n

p ; ð6:21Þ

where σ is the generalized Pauli matrix pointing in the
direction of the given exponential geodesic. Note that this
geodesic comes back to the identity matrix after a period

θp ¼ π21þn=2: ð6:22Þ

In the large n limit of the unpenalized case qðwÞ ¼ 1,
Eq. (6.10) gives that for all the weights w

λ0 ¼ θ0 ≈ π
ffiffiffi
2

p
: ð6:23Þ

In every direction, the cut point must then be realized for
λ ≤ λ0. This implies that the maximal complexity is less
than π

ffiffiffi
2

p
, which is independent of n.

Let us now consider the regime with negative scalar
curvature q ≈Oð4nÞ. We can use Eq. (6.10) with d ¼
4n − 1 to get an estimate of the distance of conjugate points
from the origin:

w ¼ 1; λ0 ≈
π2nffiffiffiffiffiffi
6n

p ; θ0 ¼ λ0;

w ¼ 3; λ0 ≈
π2nffiffiffiffiffiffiffiffi
12q

p ≈
πffiffiffiffiffi
12

p ; θ0 ¼
λ0ffiffiffi
q

p ≈
1

2n
πffiffiffiffiffi
12

p ;

w ≥ 4; λ0 ≈ π
ffiffiffiffiffiffi
2q

p
≈

ffiffiffi
2

p
π2n; θ0 ¼

λ0ffiffiffi
q

p ≈
ffiffiffi
2

p
π;

ð6:24Þ

where we have inserted q ≈ 4n and θ0 is the length of these
geodesics in the unpenalized metric qσ ¼ 1.
The geodesics with w ¼ 1 have a conjugate point after a

length which is exponential in n. However, this cannot
correspond to a cut point. Indeed this conjugate point
occurs after that the geodesic has passed through the
identity matrix many times, since from Eq. (6.22) we have
θp ≪ θ0 at large n.
The geodesics with w ≥ 4 instead have a conjugate point

at θ of order 1, with a length which scales exponentially in
n. If in addition we would know that the cut point coincides
with the conjugate point, this would be a proof that
maximal complexity is scaling exponentially with n.
Unfortunately, we do not have a strong indication that this
happens. Still, the fact that θ remains of order 1 makes the
possibility that the cut point coincides with conjugate point

FIG. 5. Geodesics with length λ ¼ 2.5 for Q ¼ 10, P ¼ 10.
The geodesics are plotted in different colors. The endpoints of the
various curves are represented in black.
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not as unrealistic as in the w ¼ 1 case. Note that, with
very good approximation, there is no dependence on w
for w ≥ 4 in the distance of the conjugate point from the
origin.
The geodesics with w ¼ 3 have a conjugate point at a

value of the coordinate θ very close to the identity. In this
limit we have evidence that the conjugate point is also a cut
point, because it happens at infinitesimal value of the
coordinate θ. However, the distance from the origin is of
order 1, so this does not teach us anything interesting about
the possible exponential growth of complexity at large n.
Also, the exponential dependence θ ∝ 2−n shows that
draconian penalties are by construction singular.
From the results in Sec. V D, we know that we can find

many directions orthogonal to the unbroken subgroup
which are also penalties eigenvectors. In particular, all
the tangent directions orthogonal to the vertical space with
0 ≤ s ≤ n − 3, see Eq. (5.31), contain just operators with
weight w ≥ 3 and so generate exponential projectable
geodesics. The considerations about conjugate points for
these exponential geodesics can then be extended to the
state space, with the caveat that the conjugate point might
occur before in the state space, see [62].

E. Progressive model

At leading order in α, the Ricci contraction with the unit
vector pointing in the direction σ is (for w > 1)

Rw ¼ 2wð2w−1 − 22n−2wþ1Þ; ð6:25Þ

and Rw ¼ 2 for w ¼ 1 [see Appendix B, Eq. (B11)]. This is
positive for w ¼ 1 and for

w >
2

3
ðnþ 1Þ: ð6:26Þ

The conjugate point for w ¼ 1 is estimated at

λ0 ¼ θ0 ¼
πffiffiffi
2

p 2n: ð6:27Þ

Again, Eq. (6.22) tells us that θp ≪ θ0 at large n, so this
conjugate point cannot correspond to a cut point.
The conjugate points for the generators at large w in

Eq. (6.26) are more interesting. In this class, the largest
positive Rw is at w ¼ n, which reads

Rn ¼ nð2n − 4Þ; ð6:28Þ

and gives a conjugate point at

λ0 ¼
π2n=2ffiffiffi

n
p ; θ0 ¼

λ0
αn=2

¼ π2n=2ffiffiffi
n

p
αn=2

: ð6:29Þ

The smallest positive value of Rw is realized for slightly
different values of the integer w, depending on the value of
n modulo 3. We have to distinguish the following cases:

n ¼ 3a; w ¼ 2
n
3
þ 1; Rw ¼ 22n=3

�
1þ 2n

3

�
≈ n22n=30.67;

n ¼ 3aþ 1; w ¼ 2nþ 4

3
; Rw ¼ 22n=3ðnþ 2Þ21=3 ≈ n22n=31.26;

n ¼ 3aþ 2; w ¼ 2nþ 5

3
; Rw ¼ 22n=3

7ð2nþ 5Þ
6 · 21=3

≈ n22n=31.85; ð6:30Þ

where a is an integer number. In all cases Rw ≈ n22n=3 up to
order one factors. This gives a conjugate point at

λ0 ¼
π22n=3ffiffiffi

n
p ; θ0 ¼

λ0
αn=3

¼ π22n=3ffiffiffi
n

p
αn=3

: ð6:31Þ

Intermediate values of the weight give conjugate points
distances which scale in between the ones in Eqs. (6.29)
and (6.31).
In order to have small θ0 in the large n limit in

Eqs. (6.29) and (6.31), we have just to require α > 4.
The required value of α should also be large enough to trust
the leading order result (6.25). The Ricci curvature indeed
seems to converge to the asymptotic value at large α quite
fast (see Fig. 2 for the Ricci scalar).

Since θ0 → 0, we expect that, for large n, the geodesics
in Eqs. (6.29) and (6.31) are truly minimizing ones. So we
find strong indication that in this limit the distance of the
cut point of the geodesics with large w (in the window
2
3
n < w < n) is in between

π2n=2ffiffiffi
n

p ≤ λ0 ≤
π22n=3ffiffiffi

n
p : ð6:32Þ

Consequently, the maximal complexity is bigger than

λmax ¼
π22n=3ffiffiffi

n
p ; ð6:33Þ

and scales exponentially in n.
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One may wonder if this is just an artifact of the large α
limit: indeed in this regime we expect that the maximal
complexity goes to infinity by construction. In order to
clarify this subtle point, let us consider higher order
corrections to Rw and to λ. The order α−1 term vanishes
for all the Ricci, except for w ¼ 2 which is not interesting
for conjugate points (see Appendix B). So we need to go to
order α−2.
To make the computation simpler, let us consider w ¼ n.

In this case, the nonvanishing α−2 terms in the sectional
curvatures which contribute to Rn are

δKðn; 2; 0Þ ¼ −
3

α2
; δKðn; 3; 0Þ ¼ 2

α2
;

δKðn; n − 2; 0Þ ¼ −
2

α2
; δKðn; n − 1; 0Þ ¼ 1

α2
;

δKðn;N; 1Þ ¼ 1

α2
; for 4 ≤ N ≤ n − 1: ð6:34Þ

A direct calculation gives

Rn ¼ nð2n − 4Þ þ ðn − 1Þnðð2n − 16Þn − 2ð2n − 4ÞÞ
6α2

;

≈ n · 2n þ 1

6α2
n32n: ð6:35Þ

The length of the geodesic built from the exponential of a
w ¼ n generator before the conjugate point is then, at the
next order in α:

λ0 ¼
π · 2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n · 2n þ n3

6α2
2n

q ≈
πffiffiffi
n

p 2n=2
�
1 −

1

12α2
n2
�
: ð6:36Þ

In order to trust the approximation, we should just increase
α in a way slightly faster than n for large n, for example
quadratically. From this polynomial increase of α with n,
we get an exponential increase of complexity. We believe
that this is a strong indication that maximal complexity
scales exponentially with n with a progressive choice of
penalties.
This is not a rigorous proof. For example, we neglected

the shear term in the Raychaudhuri equation which may
cause the conjugate point to appear before. It would be
interesting to improve the analysis studying the impact
of these terms. We leave this as a problem for future
investigation.
From Sec. V D, we know that for the progressive model

there is just a two-dimensional space of vectors, which are
both orthogonal to the vertical space and also eigenstates of
the penalty. They are generated by arbitrary linear combi-
nations of S�n in Eq. (5.28) and they have both w ¼ n. So
the previous calculation in unitary space for w ¼ n applies
also for state complexity, with the caveat that the conjugate
point might occur before in the state space, see [62].

VII. CONCLUSIONS

In this paper we studied several aspects of complexity
geometry. Using the formalism introduced in [5] for unitary
complexity of a system of n qubits, we showed that the
negativity of sectional curvatures K along the directions ρ,
σ in the unitary space is directly related to a large penalty
factor for the commutator ½ρ; σ�, i.e.,

Kðρ; σÞ ¼ 1

qρqσ

�
−3q½ρ;σ� þ 2ðqρ þ qσÞ þ

ðqρ − qσÞ2
q½ρ;σ�

�
:

ð7:1Þ

In this equation, the only negative term is proportional to
the penalty of ½ρ; σ�, so that in order to get a negative
Kðρ; σÞ the penalty q½ρ;σ� has to dominate compared to qρ
and qσ; this is always possible for large enough q½ρ;σ�. From
this expression it is clear that negative curvature is always
associated to commutators of the form

½easy; easy� ¼ hard; ð7:2Þ

where easy and hard refer to small and large penalty factors
respectively. This is consistent with the analysis in [60].
The correlation between negative curvature and the con-
dition in Eq. (7.2) holds also in the qutrit example that we
studied in Appendix C.
We applied the formalism of [5] to various examples,

both for small and large number of qubits. The one qubit
case is already an interesting nutshell for some generic
properties (see Sec. III A). First of all, one qubit is a
universal closed subsector of the n-qubits space, because
sectional curvatures inside each qubit space depend just on
the penalties of this subsector. In the generic one qubit
parameter space, we have that at leas two out of three of the
sectional curvatures in the orthogonal basis are positive.
This argument shows that, for complexity geometry of n
qubits, at least some sectional curvatures are always
positive. Moreover, some of the possible behaviors that
are realized when some of the penalty factors are sent to
infinity generalize to large number of qubits. There are two
prototypical situations:
(1) If the easy generators (which are the ones whose

penalties are not sent to infinity) are enough to
construct the generic unitary, the maximal complex-
ity does not diverge. Some of the sectional curva-
tures instead diverge and the geometry is singular.
An example of this case is realized forQ → ∞ and P
constant.

(2) If the remaining easy generators are not enough to
construct the generic unitary, the maximal complex-
ity is infinity by construction and the sectional
curvatures do not diverge. An example of this case
is for P ¼ βQ → ∞, with β constant, where both
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vanishing (for β ¼ 1) and negative (for β ≠ 1) scalar
curvatures can be realized.

For a larger number of qubits n the situation is much more
intricate, because the dimension of the space of unitaries
scales as 4n. The allowed values of sectional curvatures in the
orthogonal basis have large multiplicities, which can scale
exponentially or polynomially with n and the weight w. In
Appendix Awe provide general expressions for this count-
ing. For large nwe have a huge arbitrariness in the choice of
the penalty factors. Two useful prototypes are

(i) Draconian penalties, defined by Eq. (1.1). In the
large q limit, for fixed n, complexity does not
diverge, and the geometry becomes singular. This
is similar to point 1 of the one qubit case.

(ii) Progressive penalties, as defined in Eq. (1.2). In the
large α limit, complexity diverges for fixed n and the
geometry is not singular (the sectional curvatures
scale as α0). The scalar curvature, see Eq. (4.13), is
negative. The situation is similar to point 2 in the one
qubit case.

So far we discussed complexity as defined for unitary
operators. For applications to holography, it is more
relevant to consider the different but somehow related
notion of state complexity [8]. Complexity for states is
defined as the lowest possible complexity of an operator
which prepares the state, starting from a given reference
state. In general, we have to minimize over all the possible
unitaries that prepare the given state [60]. The complexity
metric here is much more intricate, because the geometry is
not homogeneous.
In Sec. V, we point out that the relation between the

unitary and the state geometry follows directly from
the mathematical theory of Riemannian submersions
[61,62,71]. In particular, the geodesics in the state space
B can be found by a projection of a particular class of
geodesics (the horizontal ones) from the unitary space M.
Moreover, conjugate points for geodesics in B are realized
for a complexity equal or less than the one inM. Curvatures
in the state and in the unitary spaces are related by O’Neill’s
formula [61]. Geodesics in the state space can be in
principle computed without even knowing the metric on
B. Our approach gives also a a closed-form expression for
the state metric. We checked that this result reproduces the
known 1-qubit metric with arbitrary penalties. As a new
application, we determine the state complexity metric and
curvatures for the one qutrit example.
An important open problem is to understand the regime

in which the complexity metric provides a complexity
distance scaling exponentially with the number of qubits. In
Sec. VI we provide robust evidence for the exponential
behavior of complexity for progressive penalties. The
analysis is based on the study of conjugate points in the
unitary space. For a general manifold, the study of con-
jugate points does not provide direct information about the
maximal possible complexity, because a geodesic might
cross its cut point before the conjugate point. This obstruction

can be circumvented if one considers parametric regimes in
which the angular position of the conjugate point approaches
the identity. In this limitwe expect that the cut point coincides
with the conjugate point.We show that this regime is realized
for progressive penalties at large α and we give an estimate
for a lower bound for the scaling of complexity. This bound
scales exponentially with n.
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APPENDIX A: COUNTING NONVANISHING
SECTIONAL CURVATURES

Given two generators ðρ; σÞ, we define l as the number of
corresponding tensorial product entries in which ρ and σ
have different Pauli matrices (for anticommuting ρ and σ, l
is odd). We define m as the number of corresponding
tensorial product entries in which ρ and σ have the same
Pauli matrices.
The number of entries in the tensorial product in which

there is a Pauli matrix in σ and an identity in the
corresponding entry in ρ is given by

s ¼ N − l −m: ðA1Þ

Due to the properties of generalized Pauli matrices, if a
pair of generators in the basis do not commute, then they
necessarily need to anticommute. Consequently, the com-
mutator ½ρ; σ� has weight

w ¼ M þ N − l − 2m; ðA2Þ

where lþm ≤ minðM;NÞ. The minimal weight is realized
just for l ¼ 1 and for m ¼ minðN − 1;M − 1Þ. The maxi-
mum weight instead is realized by l ¼ 1 and m ¼ 0.
In order to parametrize the possible values of the weight

w, let us introduce an integer label r:

for N ≤ M∶

r ¼ N −
lþ 1

2
−m; r ¼ 0;…; N − 1; ðA3Þ
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for N > M∶

r ¼ M −
lþ 1

2
−m; r ¼ 0;…;M − 1; ðA4Þ

in such a way that the weight of the commutator is

wr ¼ jM − Nj þ 1þ 2r: ðA5Þ

The r ¼ 0 case corresponds to the lowest possible weight
of the commutator, while the maximum of r corresponds to
the maximum weight.
The weight is limited also by the number of qubits, i.e.,

wr ≤ n. So, for any given pair ðM;NÞ, we must have that
the integer r is in the following range:

for N ≤ M;

0 ≤ r ≤ min

�
N − 1;

n − jM − Nj − 1

2

�
; ðA6Þ

for N > M;

0 ≤ r ≤ min

�
M − 1;

n − jM − Nj − 1

2

�
: ðA7Þ

Note that for each fixed number of qubits n, r ≤
½ðn − 1Þ=2� where ½…� denotes the integer part.
Given a generator ρ in the basis with weight M, we

similarly denote by RðM;N; rÞ the number of generators
with weight N whose commutator with ρ has a weight
parametrized by a given integer r, as in Eq. (A5).
We give now an explicit formula for RðM;N; rÞ. Let us

first consider the N ≤ M case and let us start with r ¼ 0. In
this case we need to determine howmany σ will give a ½ρ; σ�
with the minimal possible weight. As stressed before, this is
realized just for l ¼ 1, m ¼ N − 1, and s ¼ 0. We have M
places to stick the l ¼ 1 entry of σ (which corresponds to a
different Pauli matrix compared to ρ, so there is an extra
factor of 2), and then we have ðM−1

N−1Þ ways to stick the
m ¼ N − 1 entries of σ with the same Pauli matrix as in ρ.
The number of such matrices is

RðM;N; 0Þ ¼ 2M

�
M − 1

N − 1

�
: ðA8Þ

Let us consider r ¼ 1. Here in general we have two possible
situations. We may have l ¼ 1, m ¼ N − 2, s ¼ 1 or
instead l ¼ 3, m ¼ N − 3, and s ¼ 0. In the first case,
there are three ways to choose the Pauli matrix in σ which
has an identity in the corresponding entry in ρ. This gives

RðM;N; 1Þ ¼
�
M
3

�
23
�
M − 3

N − 3

�

þ
�
M
1

�
21
�
M − 1

N − 2

��
n −M

1

�
3: ðA9Þ

In the general case we have to sum over all the possible odd
values of l; it is then convenient to set l ¼ 2kþ 1 with
integer k. In general we have ðMl Þ2l ways to set the entries in
tensor product where ρ and σ have different Pauli matrices,
ðM−l

m Þways to set the entries in such a way that ρ and σ have
the same Pauli matrices in the corresponding entries and
ðn−Ms Þ3s ways to set entries in which in the corresponding
elements of ρ and σ there are an identity matrix and a Pauli
matrix, respectively. The total combinatorial factors is

RðM;N; rÞ ¼
Xr
k¼0

�
M
l

�
2l
�
M − l
m

��
n −M

s

�
3s

¼
Xr
k¼0

�
M

2kþ 1

�
22kþ1

�
M − 2k − 1

N − k − 1 − r

�

×

�
n −M
r − k

�
3r−k; ðA10Þ

where we used s ¼ r − k. In this expression we should not
worry about negative values of N − k − 1 − r, which
indeed may occur, because the corresponding terms in
the sum vanish after analytically continuing the binomial
coefficients with the Γ function.
If N > M, we can write a similar formula. We can still

use the same Eq. (A10), with s ¼ r − kþ N −M and m
accordingly given by (A1):

RðM;N; rÞ ¼
Xr
k¼0

�
M
l

�
2l
�
M − l
m

��
n −M

s

�
3s

¼
Xr
k¼0

�
M

2kþ 1

�
22kþ1

�
M − 2k − 1

M − k − 1 − r

�

×

�
n −M

r − kþ N −M

�
3r−kþN−M: ðA11Þ

Let us denote by N ðM;N; rÞ the number of sectional
curvatures with value given by Eq. (4.4). These can be
found as

N ðM;N; rÞ ¼ NMRðM;N; rÞ ¼ N NRðN;M; rÞ; ðA12Þ

where NM, N N are defined in Eq. (4.1).

APPENDIX B: EXPLICIT CALCULATIONS FOR
THE PROGRESSIVE PENALTIES CASE

In this section we consider the choice in Eq. (4.11). A
direct calculation gives, for N ≤ M:

KðM;N; rÞ ¼ −3α2ðrþ1−NÞ þ 2α1−N þ 2α1−M

þ α−2rð1þ α−2ðM−NÞ − 2α−ðM−NÞÞ; ðB1Þ

and, for N > M:
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KðM;N; rÞ ¼ −3α2ðrþ1−MÞ þ 2α1−N þ 2α1−M

þ α−2rð1þ α−2ðN−MÞ − 2α−ðN−MÞÞ: ðB2Þ

Note that at large α sectional curvatures scale at most
as α0 þOðα−1Þ.

1. Leading order

Let us start with the α0 terms. For r ¼ 0, the only
nonvanishing sectional curvatures at this order are K ¼ 1,
for M ¼ N ¼ 1 and

M;N > 1; M ≠ N: ðB3Þ

For r ≥ 1, the only term that can be of order α0 is for
M;N > 1 and is given by

KðM;N; rÞ ¼
�
−3α2ðrþ1−NÞ þOðα−1Þ M ≥ N

−3α2ðrþ1−MÞ þOðα−1Þ M < N
: ðB4Þ

IfM ≥ N, we have r ¼ 0;…; N − 1, then K ¼ −3 only for
the maximal value r ¼ N − 1. If M < N, we have
r ¼ 0;…;M − 1, then K ¼ −3 only for the maximal value
r ¼ M − 1.
We first compute the Ricci tensor contracted with a unit

vector uðσÞ, where σ has weight M, as defined in
Eq. (2.20):

RM ¼
X
N

X
r

KðM;N; rÞRðM;N; rÞ: ðB5Þ

For M ¼ 1, the only leading-order contribution is for
M ¼ N ¼ 1:

R1 ¼ Rð1; 1; 0Þ ¼ 2: ðB6Þ

Let us now consider 1 < M ≤ n. The positive leading-order
contributions to RM are given by the scalar curvatures with
r ¼ 0, whose value is K ¼ 1:

Rþ
M ¼

XM−1

N¼2

RðM;N; 0Þ þ
Xn

N¼Mþ1

RðM;N; 0Þ;

¼ 2Mð2M−1 − 3þ 22ðn−MÞÞ: ðB7Þ

The negative leading-order contributions to RM are given
by the scalar curvatures with r ¼ N − 1 if M ≥ N and r ¼
M − 1 ifM < N, all equal toK ¼ −3. The expression turns
out to be the same for both the cases:

for M ≥ N

RðM;N;N − 1Þ ¼ 2M

�
n −M
N − 1

�
3N−1; ðB8Þ

for M < N

RðM;N;M − 1Þ ¼ 2M

�
n −M
N − 1

�
3N−1; ðB9Þ

We finally get

R−
M ¼

X1þn−M

N¼2

2M

�
n −M
N − 1

�
3N−1;

¼ −6M½22ðn−MÞ − 1�: ðB10Þ

The maximum value of N in the sum, Nmax ¼ 1þ n −M,
ensures that r ¼ M − 1 is allowed in the case M < N, as
can be obtained from Eq. (A6).
The final result for RM at the leading order is

RM ¼ Rþ
M þ R−

M ¼ 2Mð2M−1 − 22ðn−MÞþ1Þ: ðB11Þ

Using Eq. (4.1) and this result, the scalar curvature is
computed as

R ¼
Xn
M¼1

NMRM ¼ 3nð4n − 27n−1Þ: ðB12Þ

2. Next-to-leading order

We can systematically improve this calculation order by
order in the expansion parameter α. For example, at order
α−1, the only nonzero contribution to the sectional curva-
tures, which we denote as δKðM;N; rÞ, are

M ¼ N ¼ 2; r ¼ 0; 1; δK ¼ 4

α
;

M ¼ N þ 1; N ≥ 3; r ¼ 0; δK ¼ −
2

α
;

M ¼ 2; N ≥ 4; r ¼ 0; δK ¼ 2

α
;

M ¼ 2; N ≥ 3; r ¼ 1; δK ¼ 2

α
;

and the ones obtained exchanging M with N. Due to a
nontrivial cancellation, the only corrections to RM is for
w ¼ 2

δR2 ¼
4n

α
: ðB13Þ

This gives the following correction to the curvature

δR ¼ 9

2
nðn − 1Þ 4

n

α
: ðB14Þ
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APPENDIX C: STATE COMPLEXITY FOR
ONE QUTRIT

In this section we show an application of the method in
Sec. V B to determine the metric and the curvature proper-
ties in the space of states, using the explicit decomposition
of the unitary space as a submersion. We consider the case
of a qudit theory, which describes a system with n energy
levels. In particular, we focus on the case of one qutrit,
where n ¼ 3 and the group manifold is M ¼ SUð3Þ.
The corresponding space of states isM=G ¼ CP2, which

is parametrized by two complex coordinates ðzi; z̄iÞ with
i ∈ f1; 2g. Alternatively, we can use four real coordinates
ðθi;ϕiÞ where θi ∈ ½0; π� and ϕi ∈ ½0; 2π� with i ∈ f1; 2g.
The parametrization with complex coordinates is useful to
transform the reference state, which we conventionally take
to be jψ0i ¼ ð1; 0; 0Þ, into the generic state

jψi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ziz̄i

p
0
B@

1

z1
z2

1
CA ¼

0
B@

cos θ1
eiϕ1 sin θ1 cos θ2
eiϕ2 sin θ1 sin θ2

1
CA: ðC1Þ

The parametrization with angular coordinates, which we
use in the second equality, will be convenient to des-
cribe the curvatures, giving a compact expression for the
Ricci scalar.
Here and in the following, the subscript refers to the

coordinate dependence of the group element from the space
of states (θ subscript) or from the additional coordinates
that bring to the space of unitaries (λ subscript). Instead the
superscript (K) refers to the group SUðKÞ to which the
element belongs. The generic element of the coset space
M=G is given by

Uð3Þ
θ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ziz̄i
p

 
1 −z̄j
zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ziz̄i

p
δij −

ziz̄j

1þ
ffiffiffiffiffiffiffiffiffiffi
1þziz̄i

p

!

¼

0
BB@

cos θ1 −e−iϕ1 sin θ1 cos θ2 −e−iϕ2 sin θ1 sin θ2

−eiϕ1 sin θ1 cos θ2 cosðθ21
2
Þ − cosð2θ2Þ sinðθ

2
1

2
Þ −eiðϕ1−ϕ2Þ sinðθ21

2
Þ sinð2θ2Þ

−eiϕ2 sin θ1 sin θ2 −e−iðϕ1−ϕ2Þ sinðθ21
2
Þ sinð2θ2Þ cosðθ21

2
Þ þ cosð2θ2Þ sinðθ

2
1

2
Þ

1
CCA: ðC2Þ

While the last equality is specific of this case, the
expression in the first line applies to the space CPK with
K ∈ N arbitrary. In the general case, the only difference is
that the index runs over i ∈ f1;…; Kg.
The group SUð3Þ contains as maximal subgroup

SUð2Þ × Uð1Þ. In order to build the stabilizer of the
element (1,0,0) inside SUð3Þ, we use a recursive procedure.
The SUð2Þ factor corresponds to the case of a single qubit:
then the stabilizer of the element (1,0) is given by the
exponential of the Pauli matrix σz, which reads

Vð2Þ
λ ¼ eiλ2σz ¼

�
eiλ2 0

0 e−iλ2

�
: ðC3Þ

Now we consider the coset element of SUð2Þ, that can be
easily taken from the lower-dimensional generalization of
Eq. (C2) and reads

Uð2Þ
λ ¼

�
cos λ1 −e−iλ3 sin λ1

eiλ3 sin λ1 cos λ1

�
: ðC4Þ

In this way we build the generic element of SUð2Þ as

Uð2Þ ¼ Uð2Þ
λ Vð2Þ

λ ;

¼
�

eiλ2 cos λ1 −e−iðλ2þλ3Þ sin λ1
eiðλ2þλ3Þ sin λ1 e−iλ2 cos λ1

�
:

Finally, the stabilizer of the reference state inside SUð3Þ
requires another Uð1Þ factor, coming from a global
phase that does not change the physics of the system.
Indeed, we have the freedom to add another real variable,
and the generic element of the maximal subgroup can be
written as

Vð3Þ
λ ¼ p2U

ð2Þ
E ; ðC5Þ

with the phasis given by the matrix

pK ¼

0
BBB@

eiKλ2K 0 … 0

0 e−iλ2K … …

… … … 0

0 … 0 e−iλ2K

1
CCCA; ðC6Þ

and where we need to embed the matrix Uð2Þ inside SUð3Þ
as follows:

Uð2Þ
E ≡

�
1 0

0 Uð2Þ

�
: ðC7Þ

In this way we finally obtain the stabilizer of the reference
state as
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Vð3Þ
λ ¼

0
B@

e2iλ4 0 0

0 eiðλ2−λ4Þ cos λ1 −e−iðλ2þλ3þλ4Þ sin λ1
0 eiðλ2þλ3−λ4Þ sin λ1 e−iðλ2þλ4Þ cos λ1

1
CA:

ðC8Þ

It depends on four real coordinates λi, with i ∈ f1; 2; 3; 4g.
Now we want to apply Eq. (5.21) to determine the metric

on the states space starting from the right-invariant form us
and the left-invariant form vs defined in (5.18). In addition,
we need to specify the penalty matrixM. The most relevant
case corresponds to penalizing the unbroken generators,
because it is a configuration that allows for the existence of
commutators of the form

½easy; easy� ¼ hard; ðC9Þ

which are expected to generate negative curvature. This
happens due to the algebraic relations (3.14), which occur
because we selected a maximal subalgebra. In addition, by
considering 0 ≤ P < 1, we can also realize a relation of the
form (3.12), where only the broken generators are
penalized.
For these reasons, we take the penalty matrix to be

M ¼ diagðP;P; P; P; 1; 1; 1; 1Þ; ðC10Þ

where the first four components refer to directions along the
maximal subgroup SUð2Þ × Uð1Þ, and the last four direc-
tions to the broken generators.
We analytically compute the metric on states (5.21). The

result is

ds2S ¼ dθ21 þ
2Psin2θ1
Aðθ1Þ

dθ22 þ
2Psin2θ1cos2θ2

Aðθ1Þ
dϕ2

1

þ Cðθ1; θ2Þ
Aðθ1ÞBðθ1Þ

dϕ2
2 þ

2Psin2θ1cos2θ2
Aðθ1ÞBðθ1Þ

Dðθ1Þ

× ðcos2θ2ðdϕ1 − dϕ2Þ2 þ 2dϕ1dϕ2Þ; ðC11Þ

where we defined for convenience the quantities

Aðθ1Þ≡ ðP − 1Þ cosð2θ1Þ þ Pþ 1;

Bðθ1Þ≡ ðP − 1Þ cosð4θ1Þ þ Pþ 1;

Cðθ1; θ2Þ≡ Psin2θ1½Bðθ1Þ − cosð2θ2Þ
× ð2P cosð2θ1Þ þ ðP − 1Þsin2ð2θ1ÞÞ�;

Dðθ1Þ≡ 3ðP − 1Þ cosð2θ1Þ þ Pþ 3: ðC12Þ

The metric depends on the angles θi but not on the phases
ϕi. The scalar curvature reads

R ¼ 15

2

�
1

P
− 1

�
þ 14P
ððP − 1Þcos2θ1 þ 1Þ2

þ 2 − 2Pð3Pþ 14Þ
ðPþ 3ÞðP − 1Þcos2θ1 þ Pþ 3

þ 96P
ððP − 1Þ cosð4θ1Þ þ Pþ 1Þ2

þ −8ðP − 1Þð9Pþ 19Þcos2θ1 þ 3PðP − 18Þ þ 3

ðPþ 3ÞððP − 1Þ cosð4θ1Þ þ Pþ 1Þ :

ðC13Þ

We observe that the Ricci scalar depends only on the
angular coordinate θ1, giving a further simplification with
respect to the metric on CP2. This is due to the many
symmetries of the penalties in Eq. (C10).
In Fig. 6 we plot the Ricci scalar as a function of θ1 for

different values of the penalty P. We observe that when
0 < P < 1 the scalar curvature is always positive, and
reaches a constant value R ¼ 24 when P ¼ 1, the case of
undeformed inner product on SUð3Þ. When P > 1 there is
always a region with negative curvature, which increases its
size accordingly to the increasing of the penalty.
We consider the limit when P → ∞, which means that

the motion along the subgroup directions is strongly
penalized. In this limit the Ricci scalar is

lim
P→∞

R ¼ −
3

2
½secð2θ1Þð11 secð2θ1Þ þ 12Þ

þ4 sec2θ1 þ 5�: ðC14Þ

As can be seen in Fig. 7, in such a case the Ricci scalar is
always negative and contains singularities. In the opposite
limit P → 0 we instead obtain everywhere a positive and
divergent Ricci scalar, since it contains a singular term
proportional to P−1.
The behavior of the curvature in this example is similar

to the one qubit case with Q ¼ 1 and P generic, which was
studied in detail in [60].

FIG. 6. Scalar curvature (C13) for the state space CP2 with
penalty factors P applied to all the generators of the maximal
subgroup.
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APPENDIX D: SUBMERSION FOR ONE QUBIT

Let us apply the method of submersion to the one qubit
case. In order to generate a state specified by the ðθ;ϕÞ
angles on the Bloch sphere starting from j0i, we can use the
following unitary

Uθ ¼ exp

�
iθ
2
ðσx cosϕþ σy sinϕÞ

�
: ðD1Þ

The action of unbroken generators can be parametrized
by Vλ

Vλ ¼ exp

�
i
σz
2
λ

�
; ðD2Þ

and the generic SUð2Þ transformation is

U ¼ UθVλ ¼
 

e
iλ
2 cosðθ

2
Þ i sinðθ

2
Þe−1

2
iðλþ2ϕÞ

i sinðθ
2
Þe1

2
iðλþ2ϕÞ e−

iλ
2 cosðθ

2
Þ

!
:

The submersion is realized by the projection

π∶ ðλ; θ;ϕÞ → ðθ;ϕÞ; ðD3Þ

and the vertical space is spanned by ∂λ.
The metric on the unitary space M, with penalties P and

Q as in Sec. III A, is

ds2 ¼ 1

4
fðTr½idUU†σx�Þ2

þQðTr½idUU†σy�Þ2 þ PðTr½idUU†σz�Þ2g; ðD4Þ

where

dU ¼ ∂U
∂θ dθ þ ∂U

∂ϕ dϕþ ∂U
∂λ dλ: ðD5Þ

Explicitly, we find

dUU† ¼ i

�
a b

b� −a

�
: ðD6Þ

where

a ¼ 1

2
ððdλþ dϕÞ cos θ − dϕÞ;

b ¼ 1

2
e−iϕðdθ − iðdλþ dϕÞ sin θÞ: ðD7Þ

Using the unitary metric, we can find the horizontal
vectors fields (which are defined as orthogonal to the
vertical direction ∂λ)

h1 ¼ ∂θ −
ðQ − 1Þ sin θ sin 2ϕ

2ðPcos2θ þ sin2θðQcos2ϕþ sin2ϕÞÞ ∂λ;

h2 ¼ ∂ϕ þ
−2Pcos2θ þ 2P cos θ − sin2θððQ − 1Þ cos 2ϕþQþ 1Þ

2ðPcos2θ þ sin2θðQcos2ϕþ sin2ϕÞÞ ∂λ; ðD8Þ

which have the property πðh1Þ ¼ ∂θ, πðh2Þ ¼ ∂ϕ.
Then we can use Eq. (5.22) to find the curvature in the

states space, using the results for the one qubit unitaries in
Sec. III A. An explicit calculation gives the curvature in the
states space:

R ¼ α

β
; ðD9Þ

where

α ¼ 8f−2ðQ − 1Þsin2θcos2ϕ
× ½−P2 þ ðP − 1Þcos2θðP −QÞ2 þ PþQ2�
þ ðP − 1Þcos2θ½−2ðP2 −Q2 þQÞ
− ðP − 1ÞðQ − 1ÞðP −QÞcos2θ�
þ ðP − 1ÞðQ − 1Þ2ðP −QÞsin4θcos4ϕ
þ PðQ − 1Þ þ ðQ − 1ÞQþ P2g; ðD10Þ

FIG. 7. Scalar curvature (C14) for the unitary space SUð3Þ in
the limiting case of penalty P → ∞ applied to all the generators
of the maximal subgroup.
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β ¼ PQ½ðP − 1Þ cos2 θ
þðQ − 1Þ sin2 θ cos2 ϕþ 1�2;

which matches with the one that can be calculated directly
from the states metric in [60]. The difference of the
sectional curvatures between the unitary and the state
spaces matches with O’Neill formula

ΔK ¼ KSðh̃1; h̃2Þ − Kðh1; h2Þ;

¼ 3

4

jVð½h1; h2�Þj2
jh1j2jh2j2 − hh1; h2i2

: ðD11Þ

The plot of KSðh̃1; h̃2Þ, Kðh1; h2Þ and ΔK for particular
values of the penalties is shown in Fig. 8.

APPENDIX E: SHEAR TENSOR EQUATION

The equation for the traceless part σαβ in Euclidean
signature is

Dσμν
dλ

¼ −
2

d − 1
Θσμν − σσμσνσ

þ 1

d − 1
hμνσαβσαβ − Cμανβuαuβ −

1

d − 2
R̄μν; ðE1Þ

where

R̄μν ¼ hαμh
β
νRαβ −

1

ðd − 1ÞRαβhαβhμν ðE2Þ

is the projected trace-free part of Rμν.

The Weyl tensor is given by

Cμανβ ¼ −Rμανβ þ
Rμβgαν − Rμνgαβ þ Rανgμβ − Rαβgμν

d − 2

þ gμνgαβ − gμβgαν
ðd − 1Þðd − 2Þ R; ðE3Þ

and its contraction with the normalized velocity is

CμανβuαðσÞuβðσÞ ¼
1

qσ
Cμσνσ: ðE4Þ

Recalling that in our basis Rμσνσ ¼ −Rμσσν ≠ 0 only if μ ¼
ν and that both the metric and the Ricci tensor are diagonal,
we conclude that Cμσνσ ≠ 0 only if μ ¼ ν. However, if
μ ¼ ν ¼ σ, we haveCμσνσ ¼ 0. Therefore, the only relevant
nonvanishing components of Cμσνσ are the ones with
μ ¼ ν ¼ ρ ≠ σ. These components read

Cρσρσ ¼ qρqσ

�
Kðρ; σÞ − Rρ þ Rσ

d − 2
þ R
ðd − 1Þðd − 2Þ

�
:

ðE5Þ

The only nonvanishing components of the Weyl tensor
contraction with the normalized velocity are the ones
with ρ ≠ σ:

CραρβuαðσÞuβðσÞ

¼ qρ

�
Kðρ; σÞ − Rρ þ Rσ

d − 2
þ R
ðd − 1Þðd − 2Þ

�
ðE6Þ

FIG. 8. Comparison of KSðh̃1; h̃2Þ, Kðh1; h2Þ, and ΔK as a function of ðθ;ϕÞ. The numerical values P ¼ 6,Q ¼ 3 have been used for
illustrative purposes.
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A direct calculation gives that R̄μν is nonvanishing only if
μ ¼ ν ¼ ρ ≠ σ:

R̄ρρ ¼ qρ

�
Rρ −

1

d − 1
ðR − RσÞ

�
: ðE7Þ

The nonvanishing components of the tensor entering
into the shear equation (E1) are thus the ones with
ρ ≠ σ:

CραρβuαðσÞuβðσÞ þ
1

d − 2
R̄ρρ ¼ qρ

�
Kðρ; σÞ − 1

d − 1
Rσ

�
:

ðE8Þ

Note that in the one qubit case (d ¼ 3), by means of
Eqs. (3.1) and (6.15), all the components of the above
tensor vanish for Gx if P ¼ Q, forGy if P ¼ 1 and for Gz if
Q ¼ 1. In these cases, from Eq. (E1) we get that if the shear
tensor σαβ ¼ 0, then it vanishes along all the geodesic.
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