We review and elaborate on recent work of Chang and Rabinowitz on scaling asymptotics of Poisson and Szegö kernels on Grauert tubes, providing additional results that may be useful in applications. In particular, focusing on the near-diagonal case, we give an explicit description of the leading order coefficients, and an estimate on the growth of the degree of certain polynomials describing the rescaled asymptotics. Furthermore, we allow rescaled asymptotics in a range Oλδ-1/2 in all the variables involved, where λ→+∞ is the asymptotic parameter, rather than rescale according to Heisenberg type.

Paoletti, R. (2024). Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz). BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 17(4), 767-824 [10.1007/s40574-024-00412-z].

Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz)

Paoletti, R
2024

Abstract

We review and elaborate on recent work of Chang and Rabinowitz on scaling asymptotics of Poisson and Szegö kernels on Grauert tubes, providing additional results that may be useful in applications. In particular, focusing on the near-diagonal case, we give an explicit description of the leading order coefficients, and an estimate on the growth of the degree of certain polynomials describing the rescaled asymptotics. Furthermore, we allow rescaled asymptotics in a range Oλδ-1/2 in all the variables involved, where λ→+∞ is the asymptotic parameter, rather than rescale according to Heisenberg type.
Articolo in rivista - Articolo scientifico
Grauert tube, Szego kernel, Poisson kernel, scaling asymptotics
English
6-mag-2024
2024
17
4
767
824
open
Paoletti, R. (2024). Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz). BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 17(4), 767-824 [10.1007/s40574-024-00412-z].
File in questo prodotto:
File Dimensione Formato  
Paoletti-2024-Bollettino dell'Unione Matematica Italiana-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 875.84 kB
Formato Adobe PDF
875.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/475268
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact