The critical 2d stochastic heat flow (SHF) is a stochastic process of random measures on ℝ2, recently constructed in (Invent. Math. 233 (2023) 325–460).We show that this process falls outside the class of Gaussian multiplicative chaos (GMC), in the sense that it cannot be realised as the exponential of a (generalised) Gaussian field. We achieve this by deriving strict lower bounds on the moments of the SHF that are of independent interest.

Caravenna, F., Sun, R., Zygouras, N. (2023). The critical 2d stochastic heat flow is not a Gaussian multiplicative chaos. ANNALS OF PROBABILITY, 51(6), 2265-2300 [10.1214/23-aop1648].

The critical 2d stochastic heat flow is not a Gaussian multiplicative chaos

Caravenna, F;
2023

Abstract

The critical 2d stochastic heat flow (SHF) is a stochastic process of random measures on ℝ2, recently constructed in (Invent. Math. 233 (2023) 325–460).We show that this process falls outside the class of Gaussian multiplicative chaos (GMC), in the sense that it cannot be realised as the exponential of a (generalised) Gaussian field. We achieve this by deriving strict lower bounds on the moments of the SHF that are of independent interest.
Articolo in rivista - Articolo scientifico
Directed polymer in random environment; Gaussian correlation inequality; Gaussian multiplicative chaos; KPZ equation; stochastic heat equation; stochastic heat flow;
English
12-nov-2023
2023
51
6
2265
2300
open
Caravenna, F., Sun, R., Zygouras, N. (2023). The critical 2d stochastic heat flow is not a Gaussian multiplicative chaos. ANNALS OF PROBABILITY, 51(6), 2265-2300 [10.1214/23-aop1648].
File in questo prodotto:
File Dimensione Formato  
Caravenna-2023-Ann Probability-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Altro
Dimensione 549.82 kB
Formato Adobe PDF
549.82 kB Adobe PDF Visualizza/Apri
Caravenna-2023-Ann Probability-AAM.pdf

accesso aperto

Descrizione: Il file è presente su arXiv: https://arxiv.org/abs/2206.08766
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 602.11 kB
Formato Adobe PDF
602.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/469478
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
Social impact