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The critical 2d stochastic heat flow (SHF) is a stochastic process of ran-
dom measures on R

2, recently constructed in (Invent. Math. 233 (2023) 325–
460). We show that this process falls outside the class of Gaussian multiplica-
tive chaos (GMC), in the sense that it cannot be realised as the exponential
of a (generalised) Gaussian field. We achieve this by deriving strict lower
bounds on the moments of the SHF that are of independent interest.

1. Introduction. The critical 2d stochastic heat flow (SHF) is a stochastic process of
random measures on R

2, constructed in [9] as a universal limit of random polymer models.
It is the natural candidate solution of the (ill-defined) critical 2d stochastic heat equation,

∂tu(t, x) = 1

2
�u(t, x) + βξ(t, x)u(t, x), t > 0, x ∈ R

2,(1.1)

where ξ(t, x) represents space-time white noise, that is a Gaussian field, delta-correlated
in space and time. The term critical refers both to the fact that dimension 2 is a critical
dimension, in the sense of singular stochastic PDEs [18, 19] and renormalisation theory [21],
and that a critical scaling in the noise strength β is needed; see (1.21) below.

The criticality of dimension d = 2 for the stochastic heat equation (1.1) can be seen
through a scaling argument in the spirit of renormalisation. Indeed, in general dimension
d ≥ 1, one can note that the rescaled function ũ(t, x) := u(ε2t, εx) solves

∂t ũ = 1

2
�ũ + βε1− d

2 ξ̃ ũ, t̃ > 0, x̃ ∈ R
d,

where ξ̃ (t, x) := ε1+ d
2 ξ(ε2t, εx) is a new space-time white noise. One now sees that, as ε →

0, when d < 2 the multiplicative factor ε1−d/2 attenuates the small scale effects of the noise,
while these effects are amplified when d > 3. On the other hand, when d = 2, the exponent
1 − d

2 vanishes, and the extent to which the noise influences the solution is not apparent.
In this paper we obtain explicit lower bounds on the moments of the SHF. Besides their

own interest, these bounds imply that the SHF is not the “exponential of a Gaussian field” in
the sense of Gaussian multiplicative chaos (GMC). This result provides insight on the critical
2d Kardar–Parisi–Zhang (KPZ) equation,

∂th(t, x) = 1

2
�h(t, x) + 1

2

∣∣∇h(t, x)
∣∣2 + βξ(t, x), t > 0, x ∈ R

2.(1.2)

Indeed, when the solution u(t, x) of the stochastic heat equation (1.1) is function valued, its
logarithm h(t, x) := logu(t, x) is a solution of the KPZ equation (1.2). Since the critical 2d
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SHF is the candidate solution of (1.1), the fact that it is not a GMC suggests that the critical
2d KPZ solution (yet to be constructed) is likely not a Gaussian field.

In the rest of this introduction, we first recall the construction of the SHF from [9]; then
we state our main results on the moments of the SHF and the comparison with GMC; finally,
we discuss related results from the literature and outline future directions of research.

1.1. Reminder: The critical 2d SHF. A key difficulty in making sense of equation (1.1)
is that its solution u(t, x) is expected to be a genuine distribution on R

2, not a function, so
the product ξ(t, x)u(t, x) is not well defined. A natural strategy to make sense of it is to:

(1) regularise the equation, so that a well-defined approximating solution exists,
(2) prove that the approximating solution has a nontrivial limit, as the regularisation is

removed (and the noise strength β is suitably rescaled).

This approach was recently carried out in [9], where equation (1.1) is regularised via dis-
cretisation of space and time, that is, white noise ξ is replaced by a family of i.i.d. random
variables ω = (ω(n, x))n∈N,x∈Z2 with law P, called disorder, which satisfy

(1.3) E[ω] = 0, E
[
ω2] = 1, ∃β0 > 0 : λ(β) := logE

[
eβω]< ∞ ∀β ∈ [0, β0].

Replacing derivatives in the stochastic heat equation (1.1) by suitable difference operators,
the solution is the partition function of directed polymers in random environment,

Z
β
M,N(x, y) = E

[
e
∑N −1

n=M+1 {βω(n,Sn)−λ(β)}1{SN =y} |SM = x
]
,(1.4)

where E is the expectation with respect to S = (Sn), the simple random walk on Z
2. Note

that (1.4) is a discretised Feynman–Kac formula for (1.1) on the time interval [M,N ], up
to time-reversal and with a delta initial condition at time M . An alternative regularisation of
(1.1), via mollification, is discussed in Section 1.4 below.

The main result of [9] is that the random field of partition functions Z
β
M,N(x, y), under

diffusive rescaling of space and time and for a suitable critical scaling of β = βN , converges
in law as N → ∞ to a unique measure valued random field Z ϑ

s,t (dx,dy). More precisely, we
define the diffusively rescaled random field of partition functions,1

(1.5) Zβ
N =

(
Zβ

N ;s,t (dx,dy) := N

4
Z

β,ω
[[Ns]],[[Nt ]]

([[√
Nx]], [[√

Ny]])dx dy

)
0≤s≤t<∞

,

where dx dy is the Lebesgue measure on R
2 × R

2 and [[Ns]] is the even integer closest to
Ns, while [[√

Nx]] is the point closest to
√

Nx ∈ R
2 in the lattice Z

2
even, where we set

(1.6) Z
d
even := {

(z1, . . . , zd) ∈ Z
d : z1 + · · · + zd is even

}
.

We next rescale β = (βN)N ∈N in a critical window, defined by (A.1)–(A.2) in the Ap-
pendix, which separates the weak and strong disorder phases of 2d directed polymers [5].
When the disorder ω has a symmetric distribution (for simplicity), this reads as follows:

(1.7) β2
N = π

logN

(
1 + � + o(1)

logN

)
for some � ∈ R.

To have a universal parametrisation, our results will be formulated using a slightly different
parameter ϑ , see (A.1), which differs from � in (1.7) by a constant; see [7], equation (1.17).

We can now state the main result of [9].

1The factor 1
4 in (1.5) is due to the periodicity of the simple random walk, while the multiplication by N is due

to the local limit theorem, E[ZβN

M,N (w, z)] = P(SN = z|SM = w) = O( 1
N −M

) = O( 1
N

) for M/N ≤ c < 1.
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THEOREM 1.1 (The critical 2d SHF [9]). Fix βN in the critical window (A.1)–(A.2) for
a given ϑ ∈ R. The process of random measures ZβN

N = (ZβN

N ;s,t (dx,dy))0≤s≤t<∞, defined in
(1.5), converges in finite dimensional distributions (as N → ∞) to a unique limit

Z ϑ = (
Z ϑ

s,t (dx,dy)
)
0≤s≤t<∞,

called the critical 2d stochastic heat flow.

The convergence in distribution in Theorem 1.1 takes place in the space of locally finite
measures on R

2 × R
2, equipped with the topology of vague convergence,

μN → μ ⇐⇒
∫

φ(x, y)μN(dx,dy) →
∫

φ(x, y)μ(dx,dy) ∀φ ∈ Cc

(
R

2 × R
2).

1.2. Main result I: SHF vs. GMC. We focus on the SHF’s one-time marginal,

(1.8) Z ϑ
t (dx) :=

∫
y∈R2

Z ϑ
0,t (dx,dy).

This is a stochastic process of log-correlated random measures on R
2; see (1.10)–(1.11)

below. Higher moments of the SHF admit explicit series expansions; see (2.15)–(2.16) below,
which stem from the works [3, 7, 10, 17]. However, as we will show below, the SHF moments
grow too fast to uniquely determine the field.

In the subcritical regime β2
N ∼ β̂π/ logN with β̂ < 1, that is, strictly below the critical

window (1.7) that we consider here, the logarithm of the directed polymer partition func-
tion displays Gaussian fluctuations [5, 8, 16]. This suggests that, in the subcritical regime,
partition functions should be close to the exponential of a Gaussian field.

It is natural to wonder whether a similar picture still holds true at criticality: is the critical
2d SHF the exponential of a Gaussian field in the sense of Gaussian multiplicative chaos
(GMC)? Our first main result shows that this is not the case.

THEOREM 1.2. The critical 2d stochastic heat flow is not a Gaussian multiplicative
chaos.

We will recall the definition of GMC in Section 3. We point out that GMC has been studied
extensively and has applications in many contexts, including Liouville quantum gravity, tur-
bulence, zeroes of characteristic polynomials etc. A comprehensive review of its connections
to various fields in probability and mathematical physics as well as a nice introduction to its
properties is given in [24].

Theorem 1.2 suggests that, in the critical window (1.7), the logarithm of the partition func-
tions has a non-Gaussian limit. Such a limit would then be the natural candidate solution of
the critical 2d KPZ equation (1.2). Of course, putting this conjecture on firm ground will
require further work (we cannot just take the logarithm of the SHF, which is a random mea-
sure), but our results provide an indication for the emergence of non-Gaussianity in the 2d

KPZ equation.
It is also an interesting question whether the critical 2d stochastic heat flow is absolutely

continuous w.r.t. some GMC. Our current techniques (based on comparison of moments)
seem insufficient to resolve this question.

1.3. Main results II: Lower bounds for the SHF moments. Our next main results are
explicit lower bounds on the moments of the critical 2d SHF. These bounds are the key to
proving Theorem 1.2, because they show that the moments of the SHF are strictly larger than
those of a corresponding GMC, in a sense that we now make precise.
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The one-time marginal Z ϑ
t (dx) of the SHF (see (1.8)) is a random measure on R

2. Let us
denote by M ϑ

t (dx) the GMC on R
2 with the same first and second moments of the SHF

E
[
M ϑ

t (dx)
] = E

[
Z ϑ

t (dx)
] = 1

2
dx,(1.9)

E
[
M ϑ

t (dx)M ϑ
t (dy)

] = E
[
Z ϑ

t (dx)Z ϑ
t (dy)

] = 1

4
K (2)

t,ϑ (x, y)dx dy,(1.10)

where K (2)
t,ϑ (x, y) is known; see (2.7) and it is log-divergent along the diagonal (see (5.27)),

(1.11) K (2)
t,ϑ (x, y) ∼ Ct,ϑ log

1

|y − x| as |y − x| → 0.

As will be noted after (3.7), the Gaussian field underlying such a GMC is log-log-correlated,
that is, its covariance kernel satisfies kt (x, y) ∼ log log 1

|y−x| as |y − x| → 0.2

We first compare the third moment of the SHF Z ϑ
t (ϕ) := ∫

R2 ϕ(x)Z ϑ
t (dx) with that of

the GMC M ϑ
t (ϕ) := ∫

R2 ϕ(x)M ϑ
t (dx) averaged over integrable functions ϕ : R2 → R.

THEOREM 1.3 (Third moment lower bound). For t > 0 and ϑ ∈ R, let M ϑ
t (dx) be the

GMC with the same first and second moments as the SHF Z ϑ
t (dx); see (1.9)–(1.10). If ϕ is

the indicator function of a ball or the heat kernel on R
2 (see (2.1)), we have

(1.12) E
[
Z ϑ

t (ϕ)3]> E
[
M ϑ

t (ϕ)3];
hence, Z ϑ

t (dx) �= M ϑ
t (dx).

REMARK 1.4. The bound (1.12) actually holds for all radially symmetric and nonin-
creasing functions ϕ that satisfy a basic inequality; see (4.11) below. These include, in par-
ticular, the indicator function of a ball and the heat kernel that we single out in Theorem 1.3.

We next turn to moments of any order m ≥ 3. Since M ϑ
t (dx) is a GMC with a log-

divergent second moment kernel (see (1.11)), one can show that (see Proposition 5.1 below)

(1.13) E
[(

2M ϑ
t (gδ)

)m] ∼ E
[(

2M ϑ
t (gδ)

)2](m2) as δ ↓ 0,

where gδ is the heat kernel on R
2 at time δ, the multiplicative factor 2 arises from (1.9), and

the notation φ(δ) ∼ ψ(δ) as δ ↓ 0 means limδ↓0 φ(δ)/ψ(δ) = 1. We show that for the SHF
Z ϑ

t this asymptotic factorisation does not hold.

THEOREM 1.5 (Higher moments lower bound). Given any t > 0 and ϑ ∈ R, there exists
η = ηt,ϑ > 0 such that, for any h ∈ N with h ≥ 3, we have

(1.14) E
[(

2Z ϑ
t (gδ)

)h] ≥ (1 + η)E
[(

2Z ϑ
t (gδ)

)2](h2) ∀δ ∈ (0,1).

As a consequence and by (1.13), for any h ∈ N with h ≥ 3, we have

(1.15) lim inf
δ↓0

E[Z ϑ
t (gδ)

h]
E[M ϑ

t (gδ)h] ≥ 1 + η > 1;

hence, Z ϑ
t (dx) �= M ϑ

t (dx).

2For a comparison the much studied Gaussian Free Field on R
2 is log-correlated; hence, the corresponding

GMC is polynomially correlated.
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REMARK 1.6. For the directed polymer partition functions in the whole subcritical
regime, a lower bound qualitatively similar to (1.14), but with η = 0, is also valid and matches
the asymptotic behaviour of the upper bounds obtained in [14, 23].

Theorem 1.3 will be proved in Section 4 by exploiting a series expansion for the moments
(2.15)–(2.16), which in the case of the third moment admits a renewal-type form [7]; see
(2.8)–(2.11). This is quite involved and can be represented as a series of complicated dia-
grams. Through an explicit computation, we are able to integrate out the spatial variables in
these diagrams. What remains is a multiple integral of time variables that have monotonicity
properties, which we exploit in order to obtain the lower bound (1.12).

Theorem 1.5 will be proved in Section 5 via a very different approach, inspired by the work
of Feng [15]. A key role here is played by the Gaussian correlation inequality [22, 25], which
saves us from analysing the complicated diagrammatic representation of the moments. By
means of probabilistic arguments, such as bounding the variance of suitable random variables,
we obtain the lower bound (1.14), which then yields (1.15).

1.4. Background. We recall here some results that led to the critical 2d SHF.
To regularise the 2d stochastic heat equation (1.1), in Section 1.1 we used a discretisation

of space and time, which led to the directed polymer partition functions. Alternatively, one
can mollify the white noise ξ in space on scale ε > 0 by defining ξε(t, x) := (ξ(t, ·) ∗ jε)(x),
where jε(x) := ε−2j (x/ε) and j (·) is a smooth probability kernel, say compactly supported.
This leads to the mollified stochastic heat equation,

(1.16) ∂tu
ε(t, x) = 1

2
�uε(t, x) + βuε(t, x)ξε(t, x).

The solution admits a Feynman–Kac representation [2, 3],

(1.17) uε(t, x) = Ex

[
eβ
∫ t

0 ξε(t −s,Bs)ds− 1
2 β2 ‖jε ‖2

2t
] dist= Ex

[
eβ
∫ t

0 ξε(s,Bs)ds− 1
2 β2 ‖jε ‖2

2t
]
,

where Ex denotes expectation for a standard Brownian motion B starting at x (for simplicity,
we consider a flat initial condition uε(0, x) ≡ 1). The goal is then to make sense of the limit
of uε(·, ·), as ε → 0, for suitable rescaling of β = βε .

REMARK 1.7. Comparing (1.17) with (1.4), we can see uε(t, x) as the partition function
of a Brownian directed polymer in the random environment ξε . Thus, the two schemes of reg-
ularisation, discretisation, and mollification, are conceptually (if not technically) analogous
with the correspondence ε � 1/

√
N (see Section A.3 for more details). Most existing results

apply to both schemes [5, 7, 8], so we will focus on the mollified stochastic heat equation in
what follows.

Denote by u
(β̂)
ε (t, x) the solution (1.17) with β = β̂

√
4π/

√
log ε−2 for β̂ > 0. A phase

transition on this scale with critical point β̂c = 1 was first identified in [5], where it was
shown that, for any fixed (t, x), the following limit in distribution holds:

u(β̂)
ε (t, x)

d−−→
ε→0

{
eσ(β̂)X− 1

2 σ(β̂)2
if β̂ < 1,

0 if β̂ ≥ 1,
(1.18)

where X is a standard normal random variable and σ(β̂)2 := log(1/(1 − β̂2)).

For β̂ < 1, known as the subcritical regime, the solution u
(β̂)
ε , viewed as a random field,

suitably centred and normalised, was shown in [5] to converge in distribution to a Gaussian
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free field, given by the solution v(β̂) of the additive stochastic heat equation (a.k.a. Edwards–
Wilkinson equation),

∂tv
(β̂)(t, x) = 1

2
�v(β̂)(t, x) +

√
1

1 − β̂2
ξ(t, x) with v(β̂)(0, x) = 0,(1.19)

where the noise coefficient diverges as β̂ ↑ 1. More precisely, if we define

u(β̂)
ε (t, x) :=

√
log ε−2

√
4πβ̂

(
u(β̂)

ε (t, x) − 1
)
,(1.20)

then for every test function φ ∈ Cc(R
2) we have 〈u(β̂)

ε , φ〉 d−→ 〈v(β̂), φ〉 as ε → 0.
A similar result has been established for the solution of the mollified 2d KPZ equation,

with u
(β̂)
ε (t, x) − 1 in (1.20) replaced by logu

(β̂)
ε (t, x) − E[logu

(β̂)
ε (t, x)]; see [8, 16]. This

may be viewed as an indication that, in the subcritical regime β̂ < 1, the solution of the
mollified 2d stochastic heat equation is close to the exponential of a Gaussian field (as we
already discussed before Theorem 1.2 in the directed polymer setting). This breaks down at
criticality, as we show in Theorem 1.2.

We next review the results when β = βε is scaled in a critical window around the critical
point β̂c = 1, which for the mollified stochastic heat equation reads as follows:

β2
ε = 4π

log ε−2

(
1 + �̃ + o(1)

log ε−2

)
= 2π

log ε−1

(
1 + �̃ + o(1)

log ε−2

)
.(1.21)

Note that this is similar to (1.7) with N = ε−2 (the different factor 4π vs. π is because the
simple symmetric random walk on Z

2 has period 2 and covariance matrix 1
2I ; see Section 5.1

and the Appendix for a more detailed comparison).
The study of the mollified stochastic heat equation, with β = βε chosen in the critical

window (1.21), was initiated in [3], where they identified the limit of the second moment of
the solution uε(t, ·); see (1.17). Subsequently, [7] computed the limit of the third moment of
uε(t, ·), and [17] identified the limit of all higher moments (see also the more recent work
[10]). These results ensure that the mollified solutions (uε(t, ·))ε>0 are tight as random mea-
sures on R

2; hence, they admit subsequential limits in distribution as ε ↓ 0, and any such
limit has the same moments as identified in [3, 7, 10, 17]. However, these moments grow too
fast to uniquely determine the limiting random measure.

Existence of a unique limit, which was named the critical 2d stochastic heat flow, was fi-
nally established in [9] in the directed polymer setting, that is, for the solution of the stochastic
heat equation regularised via discretisation. It is expected that the same holds for the regular-
isation via mollification, that is, that uε(t, ·) in (1.17) converges to the critical 2d stochastic
heat flow as ε ↓ 0, although the proof of [9] needs to be adapted.

1.5. Future perspectives. We now discuss some related works and open questions.
We proved in Theorem 1.2 that the (one-time marginal of the) SHF, as a random measure

on R
2, is not a GMC. There is, however, a very different sense in which a GMC structure

emerges naturally. In the Feynman–Kac formula (1.17) for the solution uε(t, x) of the mol-
lified stochastic heat equation, the exponent

∫ t
0 ξε(s,Bs)ds may be viewed as a Gaussian

process (w.r.t. the randomness of the white noise ξε) indexed by (Bs)s∈[0,t ] ∈ C[0, t ], the
space of continuous functions defined on [0, t ]. As a consequence, on the path space C[0, t ],
we can consider the GMC measure Mε

x(dB), defined by

(1.22) Mε
x(dB) := eβ

∫ t
0 ξε(s,Bs)ds− 1

2 β2 ‖jε ‖2
2tWx(dB),
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where Wx(·) denotes the Wiener measure on paths B ∈ C[0, t ] with B0 = x. Note that
uε(t, x) = Mε

x(C[0, t ]) in (1.17) is the total mass of Mε
x(·).

This was the perspective taken in [11, 12], where an analogue of the critical 2d directed
polymer on the diamond hierarchical lattice was studied (see also [4] for the Euclidean set-
ting). In [11, 12], partition functions were shown to have a nontrivial limit and then used to
construct a family of critical continuum polymer measures indexed by the analogue of �̃ in
(1.21). Interestingly, these continuum polymer measures are related to each other through a
conditional GMC structure, even though they cannot be defined as a GMC w.r.t. the analogue
of the Wiener measure on the continuum hierarchical lattice.

This raises the natural question whether similar results hold for the analogue of the critical
2d SHF in path space, namely, whether the measures Mε

x on C[0, t ] converge as ε → 0, at
least when integrated over x, and whether the limits corresponding to different �̃ in (1.21)
are related to each other through a conditional GMC structure. There is ongoing work in this
direction in [13], where the authors study the second moment measure of subsequential limits
of Mε

x dx and found properties that are consistent with the conditional GMC structure.
Another interesting direction of research concerns the asymptotic behavior of the moments

of the critical 2d SHF. Theorems 1.3 and 1.5 provide lower bounds, and it is natural to ask
whether these can be improved. The works [7, 10, 17] show that, for each integer h ≥ 3, there
is a well-defined h-point kernel K (h) : (R2)h → R ∪ {+∞} such that, for any ϕ ∈ Cc(R

2),

E
[
Z ϑ

t (ϕ)h
] = 1

2h

∫
· · ·
∫
(R2)h

(
h∏

i=1

ϕ(xi)

)
K (h)

t (x1, . . . , xh)d �x;

see Theorem 2.3 below. In light of Theorem 1.5 and (1.11), it is natural to conjecture that

(1.23) K (h)
t (x1, . . . , xh) ∼ Ct,ϑ ;h

∏
1≤i<j ≤h

log
1

|xi − xj | as max
1≤i≤j

|xi − xj | → 0,

for some constant Ct,ϑ ;h > (Ct,ϑ)

(h
2

)
, where Ct,ϑ is the constant which determines the

asymptotic behavior of the second moment kernel; see (1.10)–(1.11).

1.6. Organization of the paper. The rest of the paper is structured as follows:

• In Section 2 we recall the moments formulas for the critical 2d SHF.
• In Section 3 we review the construction of GMC and recall its moments.
• In Sections 4 and 5, we prove our main results Theorems 1.3 and 1.5.
• In the Appendix we compare the critical windows (1.7) and (1.21).

2. Moments of the critical 2d SHF. In this section we recall the moments formulas for
the critical 2d stochastic heat flow from [3, 6, 7, 17]. We denote by gt (x) the heat kernel on
R

2,

(2.1) gt (x) := 1

2πt
e− |x|2

2t .

An important role is played by the following special function, defined for any ϑ ∈ R:

(2.2) Gϑ(t) =
∫ ∞

0

e(ϑ −γ )uutu−1

�(u + 1)
du,

where γ = − ∫∞
0 logue−u du � 0.577 is the Euler–Mascheroni constant.
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REMARK 2.1. The function Gϑ has a probabilistic interpretation. Denote by Y =
(Yu)u≥0 the Dickman subordinator, defined as the pure jump process with Lévy measure
1(0,1)(x)x−1 dx; see [6]. Then Gϑ is the exponentially weighted renewal density of Y ,

Gϑ(t) =
∫ ∞

0
eϑu P(Yu ∈ dt)

dt
du for t ∈ [0,1].

2.1. First and second moments. The first moment of the SHF is

(2.3) E
[
Z ϑ

s,t (dx,dy)
] = 1

2
g 1

2 (t −s)
(y − x)dx dy,

while its covariance is given by

(2.4) Cov
[
Z ϑ

s,t (dx,dy),Z ϑ
s,t

(
dx′,dy′)] = 1

2
Kϑ

t −s

(
x, x′ ; y, y′)dx dy dx′ dy′,

where

Kϑ
t

(
x, x′ ; y, y′)

(2.5)

:= πg t
4

(
y + y′

2
− x + x′

2

)∫∫
0<s<u<t

gs

(
x′ − x

)
Gϑ(u − s)gt −u

(
y′ − y

)
ds du.

These formulas were derived from the asymptotic results in [6] connected to the Dickman
subordinator; see [9], Proposition 3.5.

We will focus on the one-time marginal Zt (dx) of the SHF (see (1.8)), which we also call
the SHF with flat initial data. The first moment of the averaged field is then

(2.6) E
[
Z ϑ

t (ϕ)
] = 1

2

∫
R2

ϕ(z)dz,

while its centered second moment can be derived from (2.4)–(2.5) and equals

E
[(

Z ϑ
t (ϕ) − E

[
Z ϑ

t (ϕ)
])2] = 1

4

∫
(R2)2

ϕ(z1)ϕ(z2)K
(2)
t (z1, z2)dz1 dz2

with K
(2)
t (z1, z2) := 2π

∫∫
0<s<u<t

gs(z1 − z2)Gϑ(u − s)ds du,

(2.7)

a formula that was first derived in [3] in the context of the mollified stochastic heat equation
(see Section 5.1 below).

2.2. Third moment. The centered third moment of the SHF can be written as follows:

E
[(

Z ϑ
t (ϕ) − E

[
Z ϑ

t (ϕ)
])3] = 1

8

∫
(R2)3

ϕ(z1)ϕ(z2)ϕ(z3)K
(3)
t (z1, z2, z3)dz1 dz2 dz3,(2.8)

where the kernel K
(3)
t (z1, z2, z3), first obtained in [7], Theorem 1.4, admits the following

explicit but quite involved expression (see Figure 1 for a pictorial representation):3

K
(3)
t (z1, z2, z3)

(2.9)

:=
∞∑

m=2

2m−1(2π)m
{
I(m)

t (z1, z2, z3) + I(m)
t (z2, z3, z1) + I(m)

t (z3, z1, z2)
}
,

3We remark that in [7], equation (1.25), we have πm, whereas in (2.9) we have (2π)m. The main source of

this discrepancy is a missing factor 2m−2 in [7], equation (1.25): indeed, a factor 21{(n,x)∈Z3 } , due to periodicity,
was omitted in [7], equation (5.40), which plugged in [7], equation (5.30), yields a factor 2 for each i = 3, . . . ,m,
hence the claimed factor 2m−2 in [7], equation (1.25). Since the third moment in (2.8) is half the one in [7],
Theorem 1.4, (see Remark 2.2), we have a global factor 1

2 · 2m−2 = 1
8 2m: this turns πm from [7], equation (1.25),

into (2π)m in (2.9) and accounts for the extra factor 1
8 in (2.8).
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FIG. 1. Graphical representation of the kernel K
(3)
t (z1, z2, z3) for the centered third moment, see (2.9)–(2.11).

Solid-curved lines from (b, y) to (a, x) are assigned weights g a−b
2

(x − y), while wiggle lines from (a, x) to (b, y)

are assigned weights Gϑ(b − a)g b−a
4

(y − x).

where the kernel I(m)
t (z1, z2, z3) is defined by

I(m)
t (z1, z2, z3)

(2.10)

:=
∫

· · ·
∫

0<a1<b1<· · ·<am<bm<t
g(m)
a1,b1,...,am,bm

(z1, z2, z3)

{
m∏

�=1

Gϑ(b� − a�)

}
d�a d �b,

and ga1,b1,...,am,bm(z1, z2, z3) denotes the following convolution of heat kernels:

g(m)
a1,b1,...,am,bm

(z1, z2, z3)

:=
∫∫

(R2)m×(R2)m
d �x d �yga1

2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4
(y1 − x1)

(2.11)
· ga2

2
(x2 − z3)ga2 −b1

2
(x2 − y1) · gb2 −a2

4
(y2 − x2)

·
m∏

�=3

{
ga�−b�−2

2
(x� − y�−2)ga�−b�−1

2
(x� − y�−1) · gb�−a�

4
(y� − x�)

}
(we agree that

∏m
�=3{. . .} := 1 for m = 2). We refer again to Figure 1.

We stress that formulas (2.8)–(2.11) are the key to our proof of Theorem 1.3.

REMARK 2.2. The normalisation chosen in [9] to construct the critical 2d SHF is slightly
different from the one in [7], due to the restriction to even parity sites; see (1.5)–(1.6). As a

consequence, the limiting field in [7] corresponds to Z ϑ,mix
t (ϕ)

d= Z ϑ
t (ϕ) + Z ′,ϑ

t (ϕ), where
Z ϑ

t (ϕ) and Z ′,ϑ
t (ϕ) denote two independent copies of the SHF. It follows that

E
[(

Z ϑ
t (ϕ) − E

[
Z ϑ

t (ϕ)
])3] = 1

2
E
[(

Z ϑ,mix
t (ϕ) − E

[
Z ϑ,mix

t (ϕ)
])3];

that is, the third moment in (2.8) is half of that computed in [7], Theorem 1.4.

2.3. Higher moments. A formula for higher moments of the SHF was first identified in
[17]. For completeness we recall this formula in our framework.

Fix an integer h ∈ N with h ≥ 2. For t > 0 and a pair {i, j } ⊂ {1, . . . , h} of distinct elements
i < j , we define two measure kernels mapping from (R2)h to measures supported on the
subspace

(2.12)
(
R

2)h
{i,j } := {

x = (x1, . . . , xh) ∈ (R2)h : xi = xj

}
:
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• The first measure kernel (actually a probability kernel) is called constrained evolution,

Q
{i,j }
t (y,dx) :=

(
h∏

�=1

g t
2
(x� − y�)

)
·
( ∏

�∈{1,...,h}\{i,j }
dx�

)
· dxi · δxi

(dxj ),(2.13)

where δxi
(·) denotes the Dirac mass at xi ∈ R

2 and gt (·) is the heat kernel; see (2.1).
• The second measure kernel is called replica evolution,

G
{i,j }
ϑ,t (x,dy) :=

( ∏
�∈{1,...,h}\{i,j }

g t
2
(y� − x�)dy�

)
Gϑ(t)g t

4
(yi − xi)dyi · δyi

(dyj ),(2.14)

where Gϑ(t) is the function in (2.2). We will only need G
{i,j }
ϑ,t (x,dy) with xi = xj .

We now give the higher moments formula.

THEOREM 2.3. Fix h ∈ N with h ≥ 2. The hth moment of the SHF Z ϑ
t with flat initial

data, averaged over a test function ϕ ∈ Cc(R
2), admits the expression

E
[
Z ϑ

t (ϕ)h
] = 1

2h

∫
(R2)h

ϕ(z1) · · · ϕ(zh)K
(h)

t (z1, . . . , zh)dz1 · · · dzh,(2.15)

with

K (h)
t (z1, . . . , zh)

:= 1 +
∞∑

m=1

(2π)m
∑

{i1 �=j1 },...,{im �=jm}⊂{1,...,h}
with {i�,j�}�={i�−1,j�−1 } ∀�≥2

∫
· · ·
∫

0<a1<b1<· · ·<am<bm<t
d�a d �b

(2.16)
·
∫

· · ·
∫
(�x,�y)∈((R2)h)2m

Q{i1,j1 }
a1

(z,dx1)G
{i1,j1 }
ϑ,b1 −a1

(x1,dy1)

·
m∏

�=2

Q
{i�,j�}
a�−b�−1

(y�−1,dx�)G
{i�,j�}
ϑ,b�−a�

(x�,dy�).

This result can be proved by arguing as in [9], Section 6, exploiting the local limit theory
for the Dickman subordinator, as developed in [6]. Formula (2.16) coincides with the one
obtained in [17] up to a simple scaling; see Proposition 5.3 below.

REMARK 2.4. The integral over the space variables �x, �y in (2.16) can be restricted to
the subspace ((R2)h{i1,j1 })2 × · · · × ((R2)h{im,jm})2 ⊆ ((R2)h)2m; see (2.12). This is because the

kernels Q
{i,j }
t and G

{i,j }
ϑ,t in (2.13)–(2.14) are measures supported on (R2)h{i,j }.

REMARK 2.5. Centered moments E[(Z ϑ
t (ϕ) −E[Z ϑ

t (ϕ)])h] admit formulas analogous
to (2.15)–(2.16), with a correlation kernel K

(h)
t (z1, . . . , zh), which is obtained from (2.16) by

removing the constant term “1+” and imposing the constraint
⋃m

�=1{i�, j�} = {1, . . . , h} in
the sum over {i1 �= j1}, . . . , {im �= jm} ⊂ {1, . . . , h} (incidentally, this requires m ≥ � h

2 �).

REMARK 2.6. In the special case h = 3, formulas (2.15)–(2.16) are consistent with for-
mulas (2.8)–(2.11) for the centered third moment. To check this, it suffices to decompose the
heat kernels ga�−b�−2

2
(x� − y�−2) in (2.11) at times a�−1, b�−1 by Chapman–Kolmogorov,

ga�−b�−2
2

(x� − y�−2)

=
∫∫

(R2)2
dx′ dy′ga�−1 −b�−2

2

(
x′ − y�−2

)
gb�−1 −a�−1

2

(
y′ − x′)ga�−b�−1

2

(
x� − y′),
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FIG. 2. Graphical representation of the kernel K
(4)

t (z1, z2, z3, z4) for the fourth moment, see (2.16). The
solid-curved and wiggle lines are assigned the same weights as in Figure 1. The hollow circles on the vertical
dashed lines are where we apply the Champman–Kolmogorov decomposition (see also Remark 2.6).

which gives rise to the operators Q
{i�,j�}
a�−b�−1

, G
{i�−1,j�−1 }
ϑ,b�−1 −a�−1

and Q
{i�−1,j�−1 }
a�−b�−1

; see (2.13) and (2.14).
See also Figure 2 for the application of Chapman–Kolmogorov (in the case h = 4).

3. GMC and its moments. As already mentioned in the Introduction, a nice review of
the Gaussian multiplicative chaos (GMC) and its various connections can be found in [24].
Here we present its definition and the structure of its moments, which is relevant toward our
goals.

3.1. Construction of GMC. Let k : R2 × R
2 → R ∪ {+∞} be a kernel which is symmet-

ric, locally integrable and positive definite, that is,
∫∫

R2 ×R2 ϕ(x)k(x, y)ϕ(y)dx dy ≥ 0 for all
ϕ ∈ Cc(R

2). Let X = (X (ϕ))ϕ∈Cc(R2) be the centered Gaussian field with covariance

k(ϕ,ψ) :=
∫∫

R2 ×R2
ϕ(x)k(x, y)ψ(y)dx dy for ϕ,ψ ∈ Cc

(
R

2).
Let us fix a locally finite measure μ on R

2. The Gaussian multiplicative chaos (GMC),
associated to X with respect to the measure μ and denoted by M (dx), is formally given by

M (dx) =: exp
(
X (x)

)
μ(dx) : .

For a precise definition, for ε > 0 we take a continuous regularization kε(x, y) of k(x, y), still
positive definite, such that limε↓0 kε(x, y) = k(x, y) locally uniformly in x �= y. We can then
consider the centered Gaussian process Xε = (Xε(x))x∈R2 with covariance kε(x, y), which
is well defined pointwise, and we define, for ε > 0,

Mε(dx) := eXε(x)− 1
2E[Xε(x)2 ]μ(dx) = eXε(x)− 1

2 kε(x,x)μ(dx).

The GMC M (dx) is then defined as the following limit in distribution:

M (dx) := lim
ε↓0

Mε(dx),

assuming that it exists in the vague sense: for ϕ ∈ Cc(R
2),

Mε(ϕ) :=
∫
R2

ϕ(x)Mε(dx) −−→
ε↓0

M (ϕ) :=
∫
R2

ϕ(x)M (dx).
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3.2. Moments of GMC. By construction and for ε > 0, we have

(3.1) E
[
Mε(ϕ)

] =
∫
R2

ϕ(z)μ(dz).

Since E[eXε(x)+Xε(y)] = E[e
1
2 Var[Xε(x)+Xε(y)] ] = e

1
2 {kε(x,x)+kε(y,y)+2kε(x,y)}, we obtain

(3.2) E
[
Mε(ϕ)2] =

∫∫
R2 ×R2

ϕ(z1)ϕ(z2)e
kε(z1,z2)μ(dz1)μ(dz2).

Similarly, since E[eXε(z1)+···+Xε(zm)] = e
1
2
∑m

i,j =1 kε(zi ,zj ), we have

E
[
Mε(ϕ)m

] =
∫
(R2)m

ϕ(z1) · · · ϕ(zm)e
∑

1≤i<j ≤m kε(zi ,zj )μ(dz1) · · · μ(dzm).(3.3)

When we let ε ↓ 0, these formulas apply to M (ϕ) once we replace kε(zi, zj ) by k(zi, zj ).
Let us now record the centered second and third moments of GMC:

• Centered second moment:

E
[(

M (ϕ) − E
[
M (ϕ)

])2] =
∫
(R2)2

ϕ(z1)ϕ(z2)K
(2)
GMC(z1, z2)μ(dz1)μ(dz2)

(3.4)
where K

(2)
GMC(z1, z2) := ek(z1,z2) − 1.

• Centered third moment:

E
[(

M (ϕ) − E
[
M (ϕ)

])3]
=
∫
(R2)3

ϕ(z1)ϕ(z2)ϕ(z3)K
(3)
GMC(z1, z2, z3)μ(dz1)μ(dz2)μ(dz3)(3.5)

where K
(3)
GMC(z1, z2, z3) := ∏

1≤i<j ≤3

ek(zi ,zj ) − ∑
1≤i<j ≤3

ek(zi ,zj ) + 2.

Comparing (3.5) with (3.4), we see that the following structural relation holds:

K
(3)
GMC(z1, z2, z3) = K

(2)
GMC(z1, z2)K

(2)
GMC(z2, z3)K

(2)
GMC(z1, z3)

+ K
(2)
GMC(z1, z2)K

(2)
GMC(z2, z3)

(3.6)
+ K

(2)
GMC(z1, z2)K

(2)
GMC(z1, z3)

+ K
(2)
GMC(z1, z3)K

(2)
GMC(z2, z3).

3.3. A GMC matching the first two moments of SHF. Henceforth, we denote by M ϑ
t (dx)

the GMC with the same first and second moments as the SHF Z ϑ
t (dx). Comparing (3.1) and

(3.4) with (2.6) and (2.7), we see that this can be obtained once we fix

(3.7) μ(dx) := 1

2
dx, kt (z1, z2) = log

(
1 + K

(2)
t (z1, z2)

)
,

where K
(2)
t is defined in (2.7). This ensures that K

(2)
GMC(z1, z2) = K

(2)
t (z1, z2).4 To show that

Z ϑ
t (dx) is not a GMC, it suffices to show that the higher moments of M ϑ

t (dx) and Z ϑ
t (dx)

do not match.

4By (1.10)–(1.11) for the uncentered correlation function 1
4K

(2)
t,ϑ (z1, z2) = ekt (z1,z2), the covariance kernel of

the Gaussian field underlying the GMC satisfies kt (z1, z2) ∼ log log 1|z1 −z2 | as |z1 − z2 | → 0.
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4. Proof of Theorem 1.3: Lower bounds via Gaussian integrals. In this section we
prove Theorem 1.3: the third moment of the critical 2d SHF Z ϑ

t (ϕ) is strictly larger than
that of a GMC M ϑ

t (ϕ) with matching first and second moments, when averaged over suitable
integrable functions ϕ : R2 → [0, ∞).

REMARK 4.1. Most steps of our analysis cover any integrable function ϕ : R2 → [0, ∞),
which is radially symmetric and nonincreasing, that is, ϕ(x) = �(|x|) for some nonincreasing
function � : [0, ∞) → [0, ∞ ] with | · | the Euclidean norm. Only in the last step we need a
basic inequality (see Proposition 4.4) that we prove when ϕ is the heat kernel or the indicator
function of a ball, as in Theorem 1.3. We believe that Proposition 4.4 should hold in greater
generality—possibly, as soon as � is log-concave—but this remains open.

Let us fix an integrable function ϕ, t > 0 and ϑ ∈ R. Our goal is to prove that

E
[
Z ϑ

t (ϕ)3]> E
[
M ϑ

t (ϕ)3].
Since first and second moments match, it is equivalent to work with centered third mo-
ments,

(4.1) E
[(

Z ϑ
t (ϕ) − E

[
Z ϑ

t (ϕ)
])3]

> E
[(

M ϑ
t (ϕ) − E

[
M ϑ

t (ϕ)
])3]

.

In view of (2.8) and (3.5) (see also (3.7)), we can rewrite (4.1) as

(4.2) K
(3)
t (ϕ) > K

(3)
GMC(ϕ),

where, given a kernel H(z1, z2, z3), we use the shorthand

(4.3) H(ϕ) :=
∫∫∫

(R2)3
ϕ(z1)ϕ(z2)ϕ(z3)H(z1, z2, z3)dz1 dz2 dz3.

It remains to prove (4.2). The kernel K
(3)
t is complicated, but we can perform an almost

exact computation of the function g(m)
a1,b1,...,am,bm

(z1, z2, z3) in (2.11); see Proposition 4.6 be-

low. From this we obtain a lower bound on K
(3)
t (ϕ) (Proposition 4.2) that we complement

with an upper bound on K
(3)
GMC(ϕ) (Proposition 4.3). At last, we will show that these bounds

are compatible (Proposition 4.4), which yields our goal (4.2).
Let us introduce two key quantities Ga1,a2(ϕ) and G̃a1,a2(ϕ) that enter our bounds,

Ga1,a2(ϕ) := (2π)2
∫∫∫

(R2)3
ϕ(z1)ϕ(z2)ϕ(z3)Ga1(z2 − z1)ga2

(
z3 − z1 + z2

2

)
d�z,(4.4)

G̃a1,a2(ϕ) := (2π)2
∫∫∫

(R2)3
ϕ(z1)ϕ(z2)ϕ(z3)ga1(z2 − z1)ga2(z3 − z2)d�z,(4.5)

where gt (z) denotes the heat kernel; see (2.1). We can now state our lower bound on K
(3)
t (ϕ),

which involves the quantity Ga1,a2(ϕ).

PROPOSITION 4.2 (Third moment lower bound for the SHF). Fix ϑ ∈ R and t > 0. Let
K

(3)
t be the centered third moment kernel of the critical 2d SHF Z ϑ

t ; see (2.8)–(2.9). For
any integrable function ϕ : R2 → [0, ∞) which is radially symmetric and nonincreasing (see
Remark 4.1), we have the strict lower bound

(4.6) K
(3)
t (ϕ) > I

(3)
t (ϕ),
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FIG. 3. Graphical representation of I
(3)
t (ϕ) (see (4.7)) when ϕ = gr is the heat kernel; see (4.13). More specif-

ically, we represent the term m = 4 in the series in (4.7). Double solid lines from bi−2 to ai are assigned weights
(ai − bi−2)−1, while wiggle lines from ai to bi are assigned weights Gϑ(bi − ai).

where we define

I
(3)
t (ϕ) := 3

∞∑
m=2

2m−1
∫

· · ·
∫

0<a1<b1<· · ·<am<bm<t
Ga1,a2(ϕ)Gϑ(b1 − a1)Gϑ(b2 − a2)

(4.7)

×
m∏

i=3

Gϑ(bi − ai)

ai − bi−2
d�a d �b

with Ga1,a2(ϕ), as in (4.4), and Gϑ , as in (2.2).

We refer to Figure 3 for a graphical representation of I
(3)
t (ϕ) when ϕ = gr is the heat

kernel, in which case Ga1,a2(ϕ) can be computed explicitly (see Remark 4.5).
We next state an upper bound on K

(3)
GMC(ϕ) which involves the quantity G̃a1,a2(ϕ). Inter-

estingly, this bound applies to any positive integrable function ϕ.

PROPOSITION 4.3 (Third moment upper bound for GMC). Fix ϑ ∈ R and t > 0. Let
K

(3)
GMC be the centered third moment kernel of the GMC M ϑ

t ; see (3.5) and (3.7). For any
integrable function ϕ : R2 → [0, ∞), we have the strict upper bound

(4.8) K
(3)
GMC(ϕ) < Ĩ

(3)
t (ϕ),

where we define

Ĩ
(3)
t (ϕ) := 3

∞∑
m=2

2m−1
∫

· · ·
∫

0<a1<b1<· · ·<am<bm<t
G̃a1,a2(ϕ)Gϑ(b1 − a1)Gϑ(b2 − a2)

(4.9)

×
m∏

i=3

Gϑ(bi − ai)

ai − bi−2
d�a d �b

with G̃a1,a2(ϕ), as in (4.5), and Gϑ , as in (2.2).

Note that Ĩ
(3)
t (ϕ) in (4.9) is like I

(3)
t (ϕ) in (4.7), just with G̃a1,a2(ϕ) in place of Ga1,a2(ϕ).

If Ga1,a2(ϕ) > G̃a1,a2(ϕ), then we can combine the bounds (4.6) and (4.8) to yield our goal
(4.2). We finally show that this indeed holds when ϕ is the indicator function of a ball or the
heat kernel, which completes the proof of Theorem 1.3.

PROPOSITION 4.4 (Comparison of bounds). Recall Ga1,a2(ϕ) and G̃a1,a2(ϕ) from (4.4)–
(4.5). Let ϕ be the indicator function of a ball or the heat kernel; see (2.1),

(4.10) ϕ = 1{x∈R2 :|x|≤r} or ϕ = gr, r > 0.

Then we have

(4.11) Ga1,a2(ϕ) > G̃a1,a2(ϕ) ∀a1, a2 > 0.
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Recalling (4.7) and (4.9), it follows that, for any ϑ ∈ R and t > 0,

(4.12) I
(3)
t (ϕ) > Ĩ

(3)
t (ϕ);

therefore, in view of (4.6) and (4.8), one has K
(3)
t (ϕ) > K

(3)
GMC(ϕ).

REMARK 4.5. When ϕ = gr is the heat kernel, Ga1,a2(ϕ) and G̃a1,a2(ϕ) in (4.4)–(4.5)
can be computed by an explicit Gaussian integration (see Section 4.3),

(4.13) Ga1,a2(gr) = 1

a1 + 2r

1

a2 + 3
2r

, G̃a1,a2(gr) = 1

a1a2 + 2r(a1 + a2) + 3r2 ,

and in this case one sees easily that Ga1,a2(gr) > G̃a1,a2(gr) in agreement with (4.12).
A graphical representation of I

(3)
t (ϕ) for ϕ = gr is given in Figure 3.

It only remains to prove Propositions 4.2, 4.3 and 4.4, to which Sections 4.1, 4.2 and 4.3
are devoted.

4.1. Proof of Proposition 4.2. The heart of the proof is the following “computation” of
the function g(m)

a1,b1,...,am,bm
(z1, z2, z3) in (2.11), which we will prove below.

PROPOSITION 4.6. For m ≥ 2, 0 < a1 < b1 < · · · < am < bm, z1, z2, z3 ∈ R
2 and

g(m)
a1,b1,...,am,bm

(z1, z2, z3), as in (2.11), we have

(4.14) g(m)
a1,b1,...,am,bm

(z1, z2, z3) = ga1(z1 − z2) · ga2
(m)

(
z3 − z1 + z2

2

)
·

m∏
i=3

g
ai −bi−2

(m)(0)

for suitable variables a2
(m) and ai − bi−2

(m)
(depending on a1, b1, . . . , am, bm), which satisfy

a2
(m) ≤ a2 − b1

4
< a2,

(4.15)

ai − bi−2
(m) ≤ ai − bi−2 − bi−1 − ai−1

4
< ai − bi−2.

We will also need a basic monotonicity property for the function Ga1,a2(ϕ) in (4.4).

LEMMA 4.7. If ϕ : R2 → [0, ∞) is integrable, radially symmetric and nonincreasing
(see Remark 4.1), then the function Ga1,a2(ϕ) in (4.4) is strictly decreasing in a2 > 0.

PROOF. By the change of variables x := z1, y := z3 − z1 +z2
2 , z := z3, we can write

(4.16) Ga1,a2(ϕ) := (2π)2
∫
R2

f (y)ga2(y)dy,

where we define

f (y) :=
∫
R2

h(z − y)ϕ(z)dz, h(w) :=
∫
R2

ϕ(x)ϕ(2w − x)ga1(2w − 2x)dx.(4.17)

By (4.16) we can write Ga1,a2(ϕ) = (2π)2E[f (a2Z)], where Z is a standard Gaussian random
variable on R

2 (with density g1). Then, to prove that a2  → Ga1,a2(ϕ) is strictly decreasing,
it is enough to prove that f is radially nonincreasing and integrable (see Remark 4.1). The
integrability of f is easily seen from (4.17), which ensures that the volumes of the level sets
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of f (a2y) are finite and strictly decrease as a2 increases. We then show that both f and h are
radially symmetric and nonincreasing, which completes the proof.

We recall the layer cake decomposition of a radially symmetric and nonincreasing func-
tion,

(4.18) for a.e. x ∈ R
2 : ϕ(x) =

∫ ∞
0

1{|x|<r}μϕ(dr),

where μϕ is a positive measure on (0, ∞), defined by μϕ((r, ∞)) := ϕ((r,0)). Using a simi-
lar decomposition for ga1 , we replace the three factors ϕ, ϕ and ga1 in the definition of h by
1{|·|<r1 }, 1{|·|<r2 } and 1{|·|<s} and show that, for any r1, r2, s > 0, the resulting function ĥ is
radially symmetric and nonincreasing,

ĥ(w) :=
∫
R2

1{|x|<r1 }1{|x−2w|<r2 }1{|x−w|< s
2 } dx

= Leb
(
B(0, r1) ∩ B

(
w,

s

2

)
∩ B(2w, r2)

)
= Leb

(
B(−w, r1) ∩ B

(
0,

s

2

)
∩ B(w, r2)

)
,

(4.19)

where B(z, r) := {x ∈ R
2 : |x| < r} is the ball of radius r centered at z. It is clear that ĥ is

radially symmetric and nonincreasing and so is h since it is a mixture of ĥ with different
values of r1, r2 and s.

Note that we can write f = ϕ ∗ h as the convolution of two radially symmetric and nonin-
creasing functions. If we replace h and ϕ by 1{|·|<t } and 1{|·|<r}, by the layer cake decompo-
sition we get the function

f̂ (y) =
∫
R2

1{|z−y|<t }1{|z|<r} dz = Leb
(
B(0, r) ∩ B(y, t)

)
,

which is clearly radially symmetric and nonincreasing, hence the same holds for f . �

It is now easy to prove Proposition 4.2. When we average g(m)
a1,b1,...,am,bm

(z1, z2, z3) with
respect to the function ϕ, as in (4.3), we can apply (4.14) to write, recalling (4.4),

g(m)
a1,b1,...,am,bm

(ϕ) = 1

(2π)2 Ga1,a2
(m)(ϕ)

m∏
i=3

g
ai −bi−2

(m)(0).

Since t  → gt (0) and a2  → Ga1,a2(ϕ) are strictly decreasing functions, we obtain the bound

g(m)
a1,b1,...,am,bm

(ϕ) >
1

(2π)2 Ga1,a2(ϕ)

m∏
i=3

gai −bi−2(0) = 1

(2π)m
Ga1,a2(ϕ)

m∏
i=3

1

ai − bi−2
.

In fact for m ≥ 3, this strict inequality already follows from the fact that t → gt (0) is strictly
decreasing and a2  → Ga1,a2(ϕ) is nondecreasing. Plugging this into (2.9)–(2.10), we obtain
K

(3)
t (ϕ) > I

(3)
t (ϕ) with I

(3)
t (ϕ) defined in (4.7). This completes the proof of Proposition 4.2.

We are left with proving Proposition 4.6. A key tool is the following elementary lemma.

LEMMA 4.8 (Triple Gaussian integral). Let gt (x) be the two-dimensional heat kernel;
see (2.1). For all s, t > 0 and x, a, b ∈ R

2, we have

(4.20) gs(x − a)gt (x − b) = gs+t (a − b)gh(s,t)

(
x − mt,s(a, b)

)
,

where we set

(4.21) h(s, t) :=
(

1

s
+ 1

t

)−1
= st

s + t
, mt,s(x, y) := t

s + t
x + s

s + t
y.
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It follows that, for all s, t, u > 0 and a, b, c ∈ R
2, we have

(4.22)
∫
R2

gs(x − a)gt (x − b)gu(x − c)dx = gs+t (a − b)gh(s,t)+u

(
c − mt,s(a, b)

)
.

PROOF. (4.20) follows directly from the definition (2.1) of the heat kernel and an easy
algebraic manipulation. Then (4.22) follows by (4.20) and a simple Gaussian convolution.

�

PROOF OF PROPOSITION 4.6. We first prove (4.14)–(4.15) for m = 2. Recall that, by
(2.11),

g(2)
a1,b1,a2,b2

(z1, z2, z3)

=
∫∫∫∫

(R2)4
ga1

2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4
(y1 − x1)(4.23)

· ga2
2
(x2 − z3)ga2 −b1

2
(x2 − y1) · gb2 −a2

4
(y2 − x2)dx1 dy1 dx2 dy2.

Since
∫
R2 gs(x − a)gt (x − b)dx = gs+t (a − b), we can integrate y2, then x2, then y1 to get∫∫

(R2)2
ga1

2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4
(y1 − x1) · ga2

2 + a2 −b1
2

(y1 − z3)dx1 dy1

=
∫
R2

ga1
2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4 + a2
2 + a2 −b1

2
(x1 − z3)dx1.

Applying (4.22) to compute the last integral over x1, we finally obtain

(4.24) g(2)
a1,b1,a2,b2

(z1, z2, z3) = ga1(z1 − z2)ga2
(2)

(
z3 − z1 + z2

2

)
,

where we set

(4.25) a2
(2) := a2

2
+ a2 − b1

2
+ b1

4
= a2 − b1

4
.

This completes the proof of (4.14)–(4.15) for m = 2.
We next move to m ≥ 3. In formula (2.11) the terms, depending on xm and ym, are

gam−bm−2
2

(xm − ym−2)gam−bm−1
2

(xm − ym−1) · gbm−am
4

(ym − xm),(4.26)

which after integration over ym and xm give

(4.27) gam−bm−2
2 + am−bm−1

2
(ym−1 − ym−2) = g

am− bm−1 +bm−2
2

(ym−1 − ym−2).

This shows that we can rewrite (2.11) for m ≥ 3 as follows:

g(m)
a1,b1,...,am

(z1, z2, z3)

:=
∫∫

(R2)m−1 ×(R2)m−1
d �x d �yga1

2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4
(y1 − x1)

· ga2
2
(x2 − z3)ga2 −b1

2
(x2 − y1) · gb2 −a2

4
(y2 − x2)(4.28)

·
m−1∏
i=3

{
gai −bi−2

2
(xi − yi−2)gai −bi−1

2
(xi − yi−1) · gbi −ai

4
(yi − xi)

}
· g

am− bm−1 +bm−2
2

(ym−1 − ym−2),
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where we agree that
∏m−1

i=3 {· · · } := 1 for m = 3. We note that bm does not appear in the

right-hand side of (4.28); hence, we dropped it from the notation g(m)
a1,b1,...,am

(z1, z2, z3).
We are ready to prove (4.14)–(4.15) for m ≥ 3 by induction. For m = 3, (4.28) becomes

g(3)
a1,b1,a2,b2,a3

(z1, z2, z3) =
∫∫∫∫

(R2)4
ga1

2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4
(y1 − x1)

· ga2
2
(x2 − z3)ga2 −b1

2
(x2 − y1) · gb2 −a2

4
(y2 − x2)

· g
a3 − b1 +b2

2
(y2 − y1)dx1 dy1 dx2 dy2,

and integrating over y2, we obtain∫∫∫
(R2)3

ga1
2
(x1 − z1)ga1

2
(x1 − z2) · gb1 −a1

4
(y1 − x1)

· ga2
2
(x2 − z3)ga2 −b1

2
(x2 − y1) · g

a3 − b1
2 − a2 +b2

4
(x2 − y1)dx1 dy1 dx2.

(4.29)

When we integrate the last line over x2, by (4.22) we get

g
a3 − b1

2 − a2 +b2
4 + a2 −b1

2
(0)ga2

2 +h(
a2 −b1

2 ,a3 − b1
2 − a2 +b2

4 )
(y1 − z3) = g

a3 −b1
(3) (0) · g

a2
(3)− b1

4
(y1 − z3),

where we define

a3 − b1
(3) := (a3 − b1) − b2 − a2

4
,

a2
(3) := a2

2
+ b1

4
+ h

(
a2 − b1

2
, a3 − b1

2
− a2 + b2

4

)
.

(4.30)

We can then perform the integral over y1 in (4.29) to get

g
a3 −b1

(3) (0)

∫
R2

Ga1
2
(x1 − z1)ga1

2
(x1 − z2) · ga2

(3)− a1
4
(x1 − z3)dx1,

and a further application of (4.22) finally yields

(4.31) g(3)
a1,b1,a2,b2,a3

(z1, z2, z3) = ga1(z1 − z2)ga
(3)
2

(
z3 − z1 + z2

2

)
g

a3 −b1
(3) (0).

This proves (4.14) for m = 3. To prove (4.15), we note that h(s, t) < s (see (4.21)); hence,

a2
(3) <

a2

2
+ b1

4
+ a2 − b1

2
= a2 − b1

4
.

We finally fix m ≥ 3, we assume that formulas (4.14)–(4.15) hold for g(m) and we prove
that they hold for g(m+1). To this purpose, it is enough to show that

(4.32)

g(m+1)
a1,b1,...,am,bm,am+1

(z1, z2, z3) = g
am+1 −bm−1

(m+1) (0) · g(m)
a1,b1,...,am−1,bm−1,ãm

(z1, z2, z3)

for suitable am+1 − bm−1
(m+1) ≤ am+1 − bm−1 − bm − am

4
and ãm < am.

Indeed, by the induction step we can apply (4.14)–(4.15) to g(m) in the right-hand side, and
since ãm < am, we obtain (4.14)–(4.15) for g(m+1).

It only remains to prove (4.32). If we write formula (4.28) for g(m+1)
a1,b1,...,am,bm,am+1

(z1, z2,

z3), we see that the terms which depend on xm and ym are

gam−bm−2
2

(xm − ym−2)gam−bm−1
2

(xm − ym−1) · gbm−am
4

(ym − xm)

· g
am+1 − bm+bm−1

2
(ym − ym−1),
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which after integration over ym yield

gam−bm−2
2

(xm − ym−2)gam−bm−1
2

(xm − ym−1) · g
am+1 − bm−1

2 − am+bm
4

(xm − ym−1).

A further integration over xm gives, by (4.22),

g
am+1 − bm−1

2 − am+bm
4 + am−bm−1

2
(0) · g

h(
am−bm−1

2 ,am+1 − bm−1
2 − am+bm

4 )+ am−bm−2
2

(ym−1 − ym−2)

= g
am+1 −bm−1

(m+1) (0) · g
ãm− bm−1 +bm−2

2
(ym−1 − ym−2),

where we define

am+1 − bm−1
(m+1) := (am+1 − bm−1) − bm − am

4
,

ãm := am + bm−1

2
+ h

(
am − bm−1

2
, am+1 − bm−1

2
− am + bm

4

)
.

Recalling (4.28), we see that (4.32) holds (note that ãm < am because h(s, t) < s). �

4.2. Proof of Proposition 4.3. We recall relation (3.6) satisfied by any GMC. Our choice
(3.7) ensures that K

(2)
GMC(z1, z2) = K

(2)
t (z1, z2) (see (2.7)); hence, (3.6) becomes

K
(3)
GMC(z1, z2, z3) = K

(2)
t (z1, z2)K

(2)
t (z2, z3)K

(2)
t (z1, z3) + K

(2)
t (z1, z2)K

(2)
t (z2, z3)

+ K
(2)
t (z1, z2)K

(2)
t (z1, z3)

+ K
(2)
t (z1, z3)K

(2)
t (z2, z3).

(4.33)

We first give an alternative expression that we prove below for the product of two covari-
ance kernels which appear in the right-hand side of (4.33).

LEMMA 4.9 (Double correlation product). The following equality holds:

K
(2)
t (z1, z2)K

(2)
t (z2, z3) = (2π)2

∞∑
m=2

∫
· · ·
∫

0<a1<b1<· · ·<am<bm<t
d�a d �b

· {ga1(z2 − z1)ga2(z3 − z2) + ga1(z3 − z2)ga2(z2 − z1)
}

· Gϑ(b1 − a1)Gϑ(b2 − a2)

m∏
i=3

Gϑ(bi − ai)

ai − bi−2
;

(4.34)

see Figure 4 for a graphical representation.

FIG. 4. Graphical representation of the term m = 6 in the series (4.34), which represents

K
(2)
t (z1, z2)K

(2)
t (z2, z3). The total weight of the dashed lines from z1 and z2 to a1 is assigned weight

ga1 (z2 − z1), and the total weight of the dashed lines from z2 and z3 to a2 is assigned weight ga2 (z3 − z2); a
double solid line from bi−2 to an ai is assigned weight (ai − bi−2)−1; a wiggle line from an ai to bi is assigned
weight Gϑ(bi − ai).
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When we average K
(2)
t (z1, z2)K

(2)
t (z2, z3) with respect to a function ϕ as in (4.3), recalling

the quantity G̃a1,a2(ϕ) from (4.5), we obtain the equality∫
(R2)3

ϕ(z1)ϕ(z2)ϕ(z3)K
(2)
t (z1, z2)K

(2)
t (z2, z3)d�z

= 2
∞∑

m=2

∫
· · ·
∫

0<a1<b1<· · ·<am<bm<t
d�a d �b

· G̃a1,a2(ϕ)Gϑ(b1 − a1)Gϑ(b2 − a2)

m∏
i=3

Gϑ(bi − ai)

ai − bi−2
.

(4.35)

Note that this expression resembles Ĩ
(3)
t (ϕ) in (4.9), except that 3 · 2m−1 is replaced by 2.

We next consider the product of three covariance kernels, as in (4.33). The following result
is also proved below.

LEMMA 4.10 (Triple correlation product). The following equality holds:

(4.36) K
(2)
t (z1, z2)K

(2)
t (z2, z3)K

(2)
t (z1, z3) = ∑

α,β,γ ∈{12,23,13}
α �=β,β �=γ,α �=γ

I(α,β, γ ),

where we set

I(12,23,13) := (2π)3
∞∑

m=3

m∑
�=3

∫
· · ·
∫

0<a1<b1<· · ·<am<bm<t
d�a d �b

· ga1(z1 − z2)ga2(z2 − z3)Gϑ(b1 − a1)Gϑ(b2 − a2)

�−1∏
i=3

Gϑ(bi − ai)

ai − bi−2
(4.37)

· ga�
(z1 − z3)Gϑ(b� − a�)

∑
σ�+1,...,σm∈{12,23,13}
σ�+1 �=13,σi �=σi−1 ∀i

m∏
i=�+1

Gϑ(bi − ai)

ai − bprev(i)

;

see Figure 5 for a graphical representation, where we define

(4.38) prev(i) := max
{
j ∈ {1, . . . , i − 2} : σj = σi

}
,

and we set σj = 12 for odd j ≤ � − 1, σj = 23 for even j ≤ � − 1 and σ� := 13.

The definition of I(12,23,13) in (4.37) is complicated, but a much simpler bound will be
enough for us: if we shorten the gaps ai − bprev(i) ≥ ai − bi−2 (see (4.38)) and we bound

ga�
(z1 − z3) ≤ ga�

(0) = 1

2πa�

<
1

2π(a� − b�−2)
,

then we can estimate

I(12,23,13) < (2π)2
∞∑

m=3

m∑
�=3

2m−�
∫

· · ·
∫

0<a1<b1<· · ·<am<bm<1
d�a d �b

· ga1(z1 − z2)ga2(z2 − z3)Gϑ(b1 − a1)Gϑ(b2 − a2)

m∏
i=3

Gϑ(bi − ai)

ai − bi−2
,
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FIG. 5. Graphical representation of the term m = 7 in the series (4.37), which describes

K
(2)
t (z1, z2)K

(2)
t (z2, z3)K

(2)
t (z1, z3), see (4.36). Pairs of dashed lines from zi , zj to an a are assigned

total weight ga(zi − zj ); double solid lines from bi−2 to ai are assigned weight (ai − bi−2)−1; wiggle lines from
ai to bi are assigned weight Gϑ(bi − ai). Referring to (4.37), we have � = 5 and prev(6) = 3, prev(7) = 4.

where 2m−� is the number of choices of σ�+1, . . . , σm in (4.37). Recalling (4.5), we obtain∫
(R2)3

ϕ(z1)ϕ(z2)ϕ(z3)K
(2)
t (z1, z2)K

(2)
t (z2, z3)K

(2)
t (z1, z3)d�z

< 6
∞∑

m=3

m∑
�=3

2m−�
∫

· · ·
∫

0<a1<b1<· · ·<am<bm<1
d�a d �b

· G̃a1,a2(ϕ)Gϑ(b1 − a1)Gϑ(b2 − a2)

m∏
i=3

Gϑ(bi − ai)

ai − bi−2
(4.39)

= 6
∞∑

m=2

(
2m−2 − 1

) ∫ · · ·
∫

0<a1<b1<· · ·<am<bm<1
d�a d �b

· G̃a1,a2(ϕ)Gϑ(b1 − a1)Gϑ(b2 − a2)

m∏
i=3

Gϑ(bi − ai)

ai − bi−2
,

where in the last line we added the term m = 2 because the factor (2m−2 − 1) vanishes.
We finally plug (4.39) and (three times) (4.35) into (4.33). Since 6(2m−2 − 1) + 3 · 2 =

3 · 2m−1, we obtain K
(3)
GMC(ϕ) < Ĩ (3)(ϕ); see (4.9). This completes the proof of Proposi-

tion 4.3.

PROOF OF LEMMA 4.9. Our basic strategy is to approximate K(2) by its lattice analogue.
Figure 4 provides a useful reference to the underlying structure that we will explain. In [6],
Theorem 1.4, we arrived at the Dickman renewal density Gϑ as the limit

UN(n) = logN

N
Gϑ

(
n

N

)(
1 + o(1)

)
as N → ∞,(4.40)

where for n ∈ N,

UN(n) := 1{n=0} + ∑
k≥1

(
σ 2

N

)k ∑
0=n0<n1<· · ·<nk =n

k∏
i=1

q2(ni −ni−1)(0)(4.41)

with σ 2
N := 1

RN
(1 + ϑ +o(1)

logN
), as in (A.1), and qn(0) denoting the n-step transition probability

from 0 to 0 for a simple symmetric random walk on Z
2. Moreover, the following uniform
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bound was established in [6], Theorem 1.4:

UN(n) ≤ C
logN

N
Gϑ

(
n

N

)
∀0 < n ≤ N(4.42)

for C ∈ (0, ∞). It will also be useful to recall the following asymptotic estimates for Gϑ from
[6], Proposition 1.6:

(4.43)

Gϑ(t) = 1

t (log 1
t
)2

{
1 + 2ϑ + o(1)

log 1
t

}
as t → 0 and

Gϑ(t) ≤ C

t(log 1
t
)2

for t ∈ [0,1].

Using the local limit theorem for random walks, the asymptotic (4.40) and the bound
(4.42), which allows us to apply dominated convergence, we have that (recall [[ ·]] from (1.5))

K(2)(z1, z2)

= lim
N → ∞ σ 2

N

∑
1≤m1<m2 ≤N

q2m1

([[
(z1 − z2)

√
N
]])

UN(m2 − m1)

= lim
N → ∞

∑
k≥1

∑
1≤m1<m2 ≤N

(
σ 2

N

)k+1

· ∑
m1 =n0<n1<· · ·<nk =m2

q2m1

([[
(z1 − z2)

√
N
]]) k∏

i=1

q2(ni −ni−1)(0)

= lim
N → ∞

∑
k≥1

(
σ 2

N

)k+1 ∑
0<n0<n1<· · ·<nk ≤N

q2n0

([[
(z1 − z2)

√
N
]]) k∏

i=1

q2(ni −ni−1)(0).

To lighten the notation below, we will drop the brackets [[ ·]]; that is, when we write z
√

N , we
refer to [[z√

N ]]. Using this expression for the product K(2)(z1, z2)K
(2)(z2, z3), we obtain

that

K(2)(z1, z2)K
(2)(z2, z3)

= lim
N → ∞

∑
k,k′ ≥1

(
σ 2

N

)k+k′ +2 ∑
0<n0<n1<· · ·<nk ≤N
0<n′

0<n′
1<· · ·<n′

k′ ≤N

q2n0

(
(z1 − z2)

√
N
)

(4.44)

· q2n′
0

(
(z2 − z3)

√
N
) k∏
i=1

q2(ni −ni−1)(0)

k′∏
i=1

q2(n′
i −n′

i−1)
(0).

Let us start by assuming that the sequences {0 < n0 < n1 < · · · < nk ≤ N } and {0 < n′
0 <

n′
1 < · · · < n′

k′ ≤ N } do not share common points, and let us look at all possible ways they
interlace, that is,

(4.45) 0 < n0 < · · · < nτ1 < n′
0 < · · · < n′

τ ′
1
< nτ1 +1 < · · · < nτ2 < n′

τ ′
1 +1 < · · · < n′

τ ′
2

· · ·
for integers τ1, τ2, . . . ∈ {1, . . . , k} and τ ′

1, τ
′
2, . . . ∈ {1, . . . , k′ }. The case n′

0 < n0 is similar.
We can now group together the blocks of primed or unprimed integers and sum over the
possible cardinalities of the blocks as well as the values of their elements after fixing first the
vector (a1, b1, a2, b2, . . .) = (n0, nτ1, n

′
0, n

′
τ ′

1
, . . .), which marks the boundaries of the blocks.



2D SHF AIN’T GMC 2287

Afterward, we sum over all possible values of (a1, b1, a2, b2, . . .). Using this decomposition
in expression (4.44), we can then see that

K(2)(z1, z2)K
(2)(z2, z3)

= lim
N → ∞

∞∑
m=2

∑
0<a1<b1<· · ·<am<bm<N

{
q2a1

(
(z1 − z2)

√
N
)
q2a2

(
(z2 − z3)

√
N
)

(4.46)
+ q2a1

(
(z2 − z3)

√
N
)
q2a2

(
(z1 − z2)

√
N
)}

· σ 2
NUN(b1 − a1) · σ 2

NUN(b2 − a2) ·
m∏

i=3

σ 2
NUN(bi − ai)q2(ai −bi−2)(0).

After passing to the limit using the local limit theorem for random walks and the asymptotic
(4.41), we arrive at expression (4.34).

It only remains to check that the interlacing blocks (4.45) are well defined, that is, con-
tribution to (4.44) from sequences {0 < n0 < n1 < · · · < nk ≤ N } and {0 < n′

0 < n′
1 < · · · <

n′
k′ ≤ N } that share common points is negligible due to the loss of some degrees of free-

dom. So let us look at (4.44) when the sum on the right-hand side is over configurations such
that

{0 < n0 < n1 < · · · < nk ≤ N } ∩ {0 < n′
0 < n′

1 < · · · < n′
k′ ≤ N

} �= ∅.

By summing over 1 ≤ n ≤ N where a coincidence between some n� and n′
�′ can occur, the

right-hand side of (4.44) can be bounded by∑
k,k′ ≥1

(
σ 2

N

)k+k′ +2 ∑
1≤n≤N

∑
0<n0<n1<· · ·<nk ≤N
0<n′

0<n′
1<· · ·<n′

k′ ≤N

1n∈{n1,...,nk }∩{n′
1,...,n

′
k′ }

· q2n0

(
(z1 − z2)

√
N
)
q2n′

0

(
(z2 − z3)

√
N
) k∏
i=1

q2(ni −ni−1)(0)

k′∏
i=1

q2(n′
i −n′

i−1)
(0).

Rearranging terms, this can be rewritten as

σ 4
N

∑
1≤n≤N

∑
1≤n0,n

′
0 ≤n

q2n0

(
(z1 − z2)

√
N
)
q2n′

0

(
(z2 − z3)

√
N
)

· UN(n − n0)UN

(
n − n′

0
) ∑
n≤n,n′ ≤N

UN(n − n)UN

(
n′ − n

)
,

(4.47)

where recall from (4.41) that UN(0) = 1. First, restrict to the case n0, n
′
0, n, n′ �= n. Using

(4.42), this can be bounded by

Cσ 4
N

∑
1≤n0,n

′
0 ≤N

q2n0

(
(z1 − z2)

√
N
)
q2n′

0

(
(z2 − z3)

√
N
)

· ∑
n0 ∨n′

0<n≤N

logN

N
Gϑ

(
n − n0

N

)
· logN

N
Gϑ

(
n − n′

0

N

)

· ∑
n<n,n′ ≤N

logN

N
Gϑ

(
n − n

N

)
logN

N
Gϑ

(
n′ − n

N

)
.
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We now show that this sum goes to 0 as N → ∞. Using the local limit theorem, we can
approximate the above sum by

Cσ 4
N

N2

∑
1≤n0,n

′
0 ≤N

g 2n0
N

(z1 − z2)g 2n′
0

N

(z2 − z3)

· ∑
n0 ∨n′

0<n≤N

logN

N
Gϑ

(
n − n0

N

)
· logN

N
Gϑ

(
n − n′

0

N

)

· ∑
n<n,n′ ≤N

logN

N
Gϑ

(
n − n

N

)
logN

N
Gϑ

(
n′ − n

N

)
.

Note that we have five independent summation variables n0, n′
0, n, n, n′, compared to six

factors of N −1. Using a Riemann sum approximation and that σ 4
N = O((logN)−2), we can

further bound the above sum by

C(logN)2

N

∫ 1

0
dt0

∫ 1

0
dt ′

0g2t0(z1 − z2)g2t ′
0
(z2 − z3)

·
∫ 1

t0 ∨t ′
0

dtGϑ(t − t0)Gϑ

(
t − t ′

0
) ∫ 1

t
dt

∫ 1

t
dt ′Gϑ(t − t)Gϑ

(
t ′ − t

)
.

The asymptotics of Gϑ from (4.43) show that all integrals involving Gϑ are finite and so are
the integrals involving the heat kernels for z1 �= z2 �= z3. Thus, the whole quantity vanishes

at the speed of O(
(logN)2

N
), as N tends to infinity.

Finally, we consider the sum in (4.47), when n coincides with at least one element in
{n0, n

′
0, n, n′ }, in which case a corresponding sum of UN in (4.47) is replaced by 1, which

yields a better bound. We illustrate this in the case n0 = n′
0 = n; the other cases are similar

and will be omitted. The quantity in (4.47) now becomes

σ 4
N

∑
1≤n≤N

q2n
(
(z1 − z2)

√
N
)
g2n
(
(z2 − z3)

√
N
) ∑
n<n,n′ ≤N

UN(n − n)UN

(
n′ − n

)

≤ Cσ 2
N

N2

∑
1≤n≤N

g 2n
N

(z1 − z2)g 2n
N

(z2 − z3)
∑

n<n,n′ ≤N

logN

N
Gϑ

(
n − n

N

)
logN

N
Gϑ

(
n′ − n

N

)

≤ C

N

∫ 1

0
dsg2s(z1 − z2)g2s(z2 − z3)

∫ 1

s
dt

∫ 1

s
dt ′Gϑ(t − s)Gϑ

(
t ′ − s

)
,

which is O(N −1), as all integrals above are finite by (4.43) and by the small time asymptotics
of the heat kernels for z1 �= z2 �= z3. �

PROOF OF LEMMA 4.10. The proof is similar to that of Lemma 4.9, so we will just give
a sketch.

For the product K(2)(z1, z2)K
(2)(z2, z3)K

(2)(z1, z3), we can write a formula analogous
to (4.44) and (4.46), where we now sum over three type of blocks: unprimed, primed and
double-primed and to each one of which we assign a label σi ∈ {12,23,13}. Due to the
interlacing of the blocks, the assignment of labels will have the constraint that σi �= σi−1 for
all i. Thus, the only difference with the analogous formula for K(2)(z1, z2)K

(2)(z2, z3) would
be that q2(ai −bi−2)(0) would be replaced by q2(ai −bprev(i))(0), where prev(i) corresponds to the
previous block with the same label σ . �
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4.3. Proof of Proposition 4.4. If ϕ = gr is the heat kernel (see (2.1)), we can compute
Ga1,a2(ϕ) and G̃a1,a2(ϕ), as in Remark 4.5. We start from the latter; see (4.5): integrating z3
by Gaussian convolution, then z2 by Lemma 4.8 and finally z1, we get

G̃a1,a2(gr) := (2π)2
∫∫

gr(z1)gr(z2)Ga1(z2 − z1)gr+a2(z2)dz1 dz2

= (2π)2g2r+a2(0)

∫
gr(z1)ga1 +h(r,r+a2)(z1)dz1

= (2π)2g2r+a2(0)g
r+a1 + r(r+a2)

2r+a2

(0) = 1

3r2 + 2(a1 + a2)r + a1a2
,

which proves the second relation in (4.13). We can compute Ga1,a2(gr) from (4.4) with similar
arguments, but it is easier to exploit the following basic fact: when z1, z2, z3 are independent
Gaussian random variables on R

2 with density gr , then x := z1 − z2 and y := z3 − z1 +z2
2 are

independent with densities g2r and g 3
2 r

; therefore,

Ga1,a2(gr) = (2π)2
∫∫

ga1(x)g2r (x)ga2(y)g 3
2 r

(y)dx dy

= (2π)2ga1 +2r (0)g
a2 + 3

2 r
(0) = 1

a1 + 2r

1

a2 + 3
2r

,

which proves the first relation in (4.13). The fact that Ga1,a2(gr) > G̃a1,a2(gr) then follows.
It remains to prove (4.11) when ϕ(z) = 1{|z|<r} is the indicator function of a ball. If we

define

ξ(z) := (ϕ ∗ ga2)(z) =
∫

ϕ
(
z′)ga2

(
z − z′)dz′,

then we can write, recalling (4.4) and performing a change of variables,

Ga1,a2(ϕ) := (2π)2
∫∫

(R2)2
ϕ(z1)ϕ(z2)Ga1(z2 − z1)ξ

(
z1 + z2

2

)
dz1 dz2,

= (2π)2
∫∫

(R2)2
ϕ

(
z − y

2

)
ϕ

(
z + y

2

)
ga1(y)ξ(z)dy dz.

Similarly, by (4.5)

G̃a1,a2(ϕ) := (2π)2
∫∫

(R2)2
ϕ(z − y)ϕ(z)Ga1(y)ξ(z)dy dz.

Note that ξ is a radially symmetric and strictly increasing function since the convolution of
two radially symmetric and nonincreasing functions (see the proof of Lemma 4.7). We can
apply a layer cake decomposition for ξ as in (4.18), thus replacing ξ(z) by 1{|z|<t } with t

integrated w.r.t. the measure μξ(dt), which has full support on [0, ∞). Plugging also ϕ(x) =
1{|x|<r}, we can write the contribution at each fixed t > 0 by

G (t)
a1,a2

(ϕ) − G̃ (t)
a1,a2

(ϕ) := (2π)2
∫
R2

{
Leb(B

(
y

2
, r

)
∩ B

(
− y

2
, r

)
∩ B(0, t)

− Leb(B(y, r) ∩ B(0, r) ∩ B(0, t)

}
ga1(y)dy,

where B(z, r) := {x ∈ R
2 : |x| < r} is the ball of radius r centered at z. Note that

Ar(y) := B

(
y

2
, r

)
∩ B

(
− y

2
, r

)
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is a symmetric convex set (possibly empty), which translated by y
2 gives

Ar(y) + y

2
= B(y, r) ∩ B(0, r).

Then it follows from Anderson’s inequality [1], Theorem 1, that we have the bound

Leb
(
Ar(y) ∩ B(0, t)

) ≥ Leb
((

Ar(y) + y

2

)
∩ B(0, t)

)
,

which can also be checked directly, and given r , the inequality is strict for a nonempty open
set of t and y. Integrating t w.r.t. μξ and y w.r.t. ga1(y)dy then gives Ga1,a2(ϕ) > G̃a1,a2(ϕ)

when ϕ is the indicator function of a ball.

5. Proof of Theorem 1.5: Lower bounds via collision local times and the Gaussian
correlation inequality. In this section we prove Theorem 1.5. The key point is the lower
bound (1.14) on the moments of the SHF Z ϑ

t : for a suitable η = ηt,ϑ > 0, we have, for any
m ∈ N with m ≥ 3,

(5.1) E
[(

2Z ϑ
t (gδ)

)m] ≥ (1 + η)E
[(

2Z ϑ
t (gδ)

)2](m2) ∀δ ∈ (0,1),

where gδ is the heat kernel on R
2; see (2.1). Then, in order to obtain (1.15) and complete the

proof, it suffices to show that (1.13) holds, which follows from the next result.

PROPOSITION 5.1 (Higher moments of GMC). Let M ϑ
t (dx) be the GMC with the same

first and second moments as the SHF Z ϑ
t (dx); see Section 3.3. Then, as δ ↓ 0, we have

(5.2) E
[(

2M ϑ
t (gδ)

)m] ∼
(
Ct,ϑ log

1√
δ

)(m
2

)
,

where Ct,ϑ = 1
π

∫ t
0 Gϑ(v)dv is the same constant which appears in (1.11).

The rest of this section is divided in three parts:

• First, we show that the moments of the SHF Z ϑ
t (dx), averaged over a test function ϕ, can

be obtained as the limit (as ε ↓ 0) of the moments of the solution uε(t, x) of the mollified
stochastic heat equation (1.16), based on [17].

• Then we prove the bound (5.1) by exploiting the Gaussian correlation inequality [22, 25],
adapting the approach in Feng’s Ph.D. thesis [15].

• Finally, we prove Proposition 5.1, which completes the proof of Theorem 1.5.

5.1. SHF and the mollified stochastic heat equation. We consider the mollified stochastic
heat equation (1.16) with spatially mollified space-time white noise

ξε(t, x) := (
ξ(t, ·) ∗ jε

)
(x) =

∫
R2

jε(z)ξ(t, x − z)dz,

where jε(x) := ε−2j (x/ε) and j (·) is a probability density on R
2 (usually taken compactly

supported). Assuming initial condition uε(0, ·) = 1, by the Feynman–Kac formula [2], Sec-
tion 3 and equation (3.22), the Itô solution uε(t, x) = uε

β(t, x) of (1.16), where we highlight
the dependence on β , has the representation

(5.3) uε
β(t, x) = Ex

[
eβ
∫ t

0 ξε(t −u,Bu)du− 1
2 β2 ‖jε ‖2

2t
] dist= Ex

[
eβ
∫ t

0 ξε(u,Bu)du− 1
2 β2 ‖jε ‖2

2t
]
,

where Ex denotes expectation for a standard Brownian motion B starting at x. We will omit
x from Ex if x = 0.
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We can directly compute the moments of uε
β(t, x), which do not depend on x by translation

invariance, thanks to the initial condition u(0, ·) ≡ 1. Given m ∈ N, let (B(i))1≤i≤m denote m

independent Brownian motions, and define Jε := ε−2J (x/ε) with J := j ∗ j . Note that

Var

[
m∑

i=1

∫ t

0
ξε(u,B(i)

u

)
du

]
= ∑

1≤i,j ≤m

L
i,j
ε,t where L

i,j
ε,t :=

∫ t

0
Jε

(
B(i)

u − B(j)
u

)
du,(5.4)

which can be viewed as a collision local time at scale ε between B(i) and B(j). Note that
L

i,i
ε,t = Jε(0)t = ‖jε ‖2

2t , where ‖ · ‖2 denotes the L2 norm. Given x1, . . . , xm ∈ R
2, if we

denote by P �x the law under which B(i) starts at B
(i)
0 = xi , a Gaussian computation yields

(5.5) E

[
m∏

i=1

uε
β(t, xi)

]
= EE �x

[
eβ
∑m

i=1
∫ t

0 ξε(u,B
(i)
u )du− m

2 β2 ‖jε ‖2
2t
] = E �x

[ ∏
1≤i<j ≤m

eβ2 ∫ t
0 L

i,j
ε,t

]
.

REMARK 5.2. In the critical window (1.21), we have β2
ε ∼ 2π/ log ε−1, hence β2

ε L
i,j
ε,t for

i �= j converges in law as ε ↓ 0 to an exponential random variable Y of mean 1, by a classical
result [20]. This explains why βε is critical, since E[eλY ] diverges precisely at λ = 1.

We now describe the link between the solution uε
β(t, x) of the mollified stochastic heat

equation and the SHF Z ϑ
t (dx). We recall that the latter was obtained in [9] from the directed

polymer random measure Zβ
N ;t (dx) = Zβ

N ;0,t (dx,R2) (see (1.5)), based on the simple random

walk (Sn) on Z
2, which has covariance matrix sI with s = 1

2 and is periodic (note that S2n

takes values in Z
2
even; see (1.6)). On the other hand, the solution uε

β(t, x) of the mollified

stochastic heat equation (see (5.3)) is based on a standard Brownian motion on R
2 with

covariance matrix I and, of course, with no periodicity issues.
For these reasons and to obtain the SHF Z ϑ

t (dx) from the solution uε
β(t, x) of the mollified

stochastic heat equation, we need an appropriate rescaling: given ϑ ∈ R, if we scale βε =
βε(ϑ) in the critical window (A.4)–(A.5) (see also (A.7)–(A.9)), we expect that

(5.6)
1

2
uε

βε
(t, x

√
2)dx

d−→ Z ϑ
t (dx);

see Section A.3 for a heuristic derivation. We refrain from proving such a convergence, which
we expect to follow from the same techniques as in the paper [9]. As a matter of fact, for our
goals it is enough to show that the two sides of (5.6) have asymptotically the same moments,
and this follows by [17] and [9], as we now describe.

PROPOSITION 5.3 (Moments of SHF and stochastic heat equation). Fix ϑ ∈ R, and set
β = βε , as in (A.9). Fix a mollification density j (·) which is radially symmetric and nonin-
creasing. For any integrable ϕ : R2 → R and for any h ∈ N, we have

E
[
Z ϑ

t (ϕ)h
] = 1

2h
lim
ε↓0

E

[(∫
R2

uε
βε

(t, x
√

2)ϕ(x)dx

)h]
.(5.7)

PROOF. It is enough to compare formulas (2.15)–(2.16) with Theorem 1.1 and equa-
tion (2.5) in [17]. �

REMARK 5.4. Recalling (2.7), we see that relation (5.7) for h = 2 reduces to

(5.8)
∫∫

(R2)2
ϕ(x)ϕ

(
x′)K(2)

t

(
x, x′)dx dx′ = lim

ε↓0
Var

[∫
R2

uε
βε

(t, x
√

2)ϕ(x)dx

]
.

The validity of such a relation was proved in [7], Theorem 1.7 (note that the choice of ϑ in
(A.8)–(A.9), which enters K

(2)
t = K

(2)
t,ϑ in (2.7), matches [7], equation (1.38)).
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5.2. Proof of the lower bound (5.1). Henceforth, we fix β = βε , as in (A.4)–(A.5), and
omit it from notation; that is, we set uε(t, x) := uε

βε
(t, x). It follows by (5.4)–(5.5) that

E

[(∫
uε(t, x

√
2)ϕ(x)dx

)m]
(5.9)

=
∫
(R2)m

m∏
i=1

ϕ(xi)E �x√
2

[ ∏
1≤i<j ≤m

eβ2
ε

∫ t
0 Jε(B

(i)
s −B

(j)
s )ds

]
d �x,

where we recall that E �y denotes expectation w.r.t. m independent Brownian motions with

B
(i)
0 = yi . We now take ϕ = gδ to be the heat kernel (see (2.1)) and note that by diffusive

scaling we can write gδ(x) = 2g2δ(x
√

2). Then, in view of (5.7) and by a change of variables,
to prove (5.1) it suffices to find η = ηt,ϑ > 0 such that, uniformly in m ≥ 3 and δ ∈ (0,1),

(5.10)

lim
ε↓0

∫
(R2)m

m∏
i=1

g2δ(xi)E �x
[ ∏

1≤i<j ≤m

eβ2
ε

∫ t
0 Jε(B

(i)
s −B

(j)
s )ds

]
d �x

≥ (1 + η) lim
ε↓0

(∫
(R2)2

g2δ(x1)g2δ(x2)E �x
[
eβ2

ε

∫ t
0 Jε(B

(1)
s −B

(2)
s )ds]dx1 dx2

)(m
2

)
.

We will adapt the approach in Feng’s thesis [15], which used the Gaussian correlation
inequality [22, 25] to prove an analogue of (5.10) for m = 3 with gδ(·) replaced by δ0(·).
Unfortunately, not much could be concluded in that case, because all moments E[uε(t,0)m]
of order m > 1 diverge as ε ↓ 0: this is due to the fact that uε(t,0) → 0 in distribution for
β = βε in the critical window (1.21) (see [5], Theorem 2.15), while E[uε(t,0)] ≡ 1 stays
constant. We will show that the Gaussian correlation inequality can still be applied when we
average uε(t, x) w.r.t. gδ , which will lead to the interesting bound (5.1).

Let Z
(1)
2δ , . . . ,Z

(m)
2δ be i.i.d. normal random variables on R

2 with probability density g2δ ,
independent of the Brownian motions B(1), . . . ,B(m) all starting from 0. Denoting by E ex-
pectation w.r.t. their joint law, we can rewrite (5.10) as

(5.11)

lim
ε↓0

E
[ ∏

1≤i<j ≤m

eβ2
ε

∫ t
0 Jε(Z

(i)
2δ +B

(i)
s −Z

(j)
2δ −B

(j)
s )ds

]

≥ (1 + η) lim
ε↓0

E
[
eβ2

ε

∫ t
0 Jε(Z

(1)
2δ +B

(1)
s −Z

(2)
2δ −B

(2)
s )ds](m2).

Next, we Taylor expand the exponential in the left-hand side: for each i < j , we write

eβ2
ε

∫ t
0 Jε(Z

(i)
2δ +B

(i)
s −Z

(j)
2δ −B

(j)
s )ds

= 1 +
∞∑

n=1

β2n
ε

∫
· · ·
∫

0<s1<· · ·<sn<t

n∏
l=1

Jε

(
Z

(i)
2δ + B(i)

sl
− Z

(j)
2δ − B(j)

sl

)
d�s

= 1 +
∞∑

n=1

β2n
ε

∫
· · ·
∫

0<s1<· · ·<sn<t
y1,...,yn>0

n∏
l=1

1Aε(yl)

(
Z

(i)
2δ + B(i)

sl
− Z

(j)
2δ − B(j)

sl

)
d�s d �y,

where we used the decomposition Jε(x) = ∫∞
0 1Aε(y)(x)dy with

(5.12) Aε(y) := {
x ∈ R

2 : Jε(x) ≥ y
}
.

Note that J := j ∗ j is a radially symmetric and nonincreasing function, as the convolu-
tion of two radially symmetric and nonincreasing functions, as we showed in the proof of
Lemma 4.7. It follows that the set Aε(y) is a ball centered at the origin for any y > 0.
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We can substitute this Taylor expansion into the left-hand side of (5.11) to obtain

E

[ ∏
1≤i<j ≤m

(
1 +

∞∑
n=1

β2n
ε

∫
· · ·
∫

0<s1<· · ·<sn<t
y1,...,yn>0

n∏
l=1

1Aε(yl)

(5.13)

· (Z(i)
2δ + B(i)

sl
− Z

(j)
2δ − B(j)

sl

)
d�s d �y

)]
,

which, upon expansion, leads to a positive mixture of terms of the form

(5.14) E

[ ∏
(i,j)∈I

n(i,j)∏
l=1

1
Aε(y

(i,j)
l )

(
Z

(i)
2δ + B

(i)

s
(i,j)
l

− Z
(j)
2δ − B

(j)

s
(i,j)
l

)]
,

where I ⊂ {(i, j) : 1 ≤ i < j ≤ m} and, for each (i, j) ∈ I , we have n(i,j) ∈ N as well as
0 < s

(i,j)
1 < · · · < s

(i,j)

n(i,j) < t and y
(i,j)
1 , . . . , y

(i,j)

n(i,j) > 0. Note that

WI,�s,�n := ((
Z

(i)
2δ

)
1≤i≤m,

(
B

(i)

s
(i,j)
l

,B
(j)

s
(i,j)
l

)
(i,j)∈I,1≤l≤n(i,j)

)
is a centered multidimensional Gaussian random vector. Since Aε(y) is a convex set sym-
metric about the origin (in fact, a ball), we can apply the celebrated Gaussian correlation
inequality [22, 25] to lower bound (5.14) by

(5.15)

E

[ ∏
(i,j)∈I∩{(1,2),(1,3)}

n(i,j)∏
l=1

1
Aε(y

(i,j)
l )

(
Z

(i)
2δ + B

(i)

s
(i,j)
l

− Z
(j)
2δ − B

(j)

s
(i,j)
l

)]

× ∏
(i,j)∈I

(i,j) �=(1,2),(1,3)

E

[
n(i,j)∏
l=1

1
Aε(y

(i,j)
l )

(
Z

(i)
2δ + B

(i)

s
(i,j)
l

− Z
(j)
2δ − B

(j)

s
(i,j)
l

)]
,

where we have kept the factors from (i, j) = (1,2) and (1,3) inside the same expectation,
while separating all other factors involving different (i, j) ∈ I .

Substituting the bound (5.15) back into the expansion of (5.13) gives a lower bound on the
left-hand side of (5.11), namely,

(5.16)

E
[ ∏

1≤i<j ≤m

eβ2
ε

∫ t
0 Jε(Z

(i)
2δ +B

(i)
s −Z

(j)
2δ −B

(j)
s )ds

]

≥ E
[ ∏
j =2,3

eβ2
ε

∫ t
0 Jε(Z

(1)
2δ +B

(1)
s −Z

(j)
2δ −B

(j)
s )ds

]
E
[
eβ2

ε

∫ t
0 Jε(Z

(1)
2δ +B

(1)
s −Z

(2)
2δ −B

(2)
s )ds](m2)−2

.

Then the proof of (5.10), and hence (5.1), is complete once we prove the following Lemma.

LEMMA 5.5. There exits η = ηt,ϑ > 0 such that, uniformly in δ ∈ (0,1), we have

(5.17) lim inf
ε↓0

E[∏j =2,3 eβ2
ε

∫ t
0 Jε(Z

(1)
2δ +B

(1)
s −Z

(j)
2δ −B

(j)
s )ds ]

E[eβ2
ε

∫ t
0 Jε(Z

(1)
2δ +B

(1)
s −Z

(2)
2δ −B

(2)
s )ds ]2

≥ 1 + η.

PROOF. Let us define W
(i)
s = Z

(i)
2δ + B

(i)
s and W(i) = (W

(i)
s )0≤s≤t . We introduce the

shortcuts

�ε,δ

(
W(1)) := E

[
eβ2

ε

∫ t
0 Jε(W

(1)
s −W

(2)
s )ds |W(1)],

#�ε,δ

(
W

(1)
0 ,W

(1)
t

) := E
[
�ε,δ

(
W(1))|W(1)

0 ,W
(1)
t

]
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so that the ratio in the left-hand side of (5.17) can be written as

E[�ε,δ(W
(1))2]

E[�ε,δ(W(1))]2 = E[E[�ε,δ(W
(1))2|W(1)

0 ,W
(1)
t ]]

E[E[�ε,δ(W(1))|W(1)
0 ,W

(1)
t ]]2

≥ E[ #�ε,δ(W
(1)
0 ,W

(1)
t )2]

E[ #�ε,δ(W
(1)
0 ,W

(1)
t )]2

by Jensen’s inequality. Therefore, it suffices to show that, uniformly for δ ∈ (0,1),

(5.18) lim inf
ε↓0

E
[( #�ε,δ(W

(1)
0 ,W

(1)
t )

E[ #�ε,δ(W
(1)
0 ,W

(1)
t )]

)2]
≥ 1 + η.

Let us show that the fraction in the left-hand side has a limit as ε ↓ 0. We treat separately
numerator and denominator, starting from the latter: by (5.9) with m = 2 and ϕ = gδ ,

E
[#�ε,δ

(
W

(1)
0 ,W

(1)
t

)] = E

[(∫
uε(t, x

√
2)gδ(x)dx

)2]
;

hence, by (5.7) with h = 2 and recalling (2.7), we get

(5.19)

#�δ := lim
ε↓0

E
[#�ε,δ

(
W

(1)
0 ,W

(1)
t

)] = 4E
[
Z ϑ

t (gδ)
2]

= 1 +
∫∫

(R2)2
gδ(x1)gδ(x2)K

(2)
t (x1, x2)dx1 dx2

= 1 + 2π

∫∫
0<s<u<t

g2δ+s(0)Gϑ(u − s)ds du ∼
δ↓0

(∫ t

0
Gϑ(u)du

)
log

1

δ
.

Next, we focus on the numerator: in analogy with (5.5), we can write

(5.20)
#�ε,δ(x1, y) := E

[
eβ2

ε

∫ t
0 Jε(W

(1)
s −W

(2)
s )ds |W(1)

0 = x1,W
(1)
t = y

]
=
∫
R2

g2δ(x2)E
[
uε(t, x1|y)uε(t, x2)

]
dx2,

where we define uε(t, x1|y) as a modification of the Feynman–Kac formula (5.3),

(5.21) uε(t, x1|y) := Ex1

[
eβ
∫ t

0 ξε(u,Bu)du− 1
2 β2 ‖jε ‖2

2t |Bt = y
]

(we recall that Ex1 is the expectation for a Brownian motion B , started at B0 = x1, so that
conditioning on Bt = y yields a Brownian bridge). In [7], Theorem 1.7 & Section 8, a for-
mula for limε↓0 E[(∫ φ(x)uε(t, x))2] was derived using chaos expansion and renewal type
arguments. The same arguments can be adapted to show that

lim
ε↓0

E
[
uε(t, x1|y)uε(t, x2)

]
= 1 + 4π

∫
· · ·
∫

z,w∈R
2

0<s<u<t

gs(z − x1)gs(z − x2)

· Gϑ(u − s)gu−s
2

(w − z)
gt −u(y − w)

gt (y − x1)
dz dw ds du,

where the integral is equal to (modulo some different constants, as explained in Section A.3)
the covariance kernel K(2)(x1, x2), defined in (2.7) and illustrated in Figure 4, if the factor
gt −u(y − w)/gt (y − x1) was not present.5 This factor is the conditional transition kernel from
(u,w) to (t, y), originating from the conditioning on Bt = y in the definition of uε(t, x1|y),

5For consistency, if we remove that factor, right-hand side becomes 1 + 4π
∫
0<s<u<t g2s (x1 − x2)Gϑ(u −

s)ds du, which is consistent with formula (5.7) once we plug in x1
√

2 and x2
√

2; see also (5.8).
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while (u,w) is the last time-space point of matching disorder between the chaos expansions
of uε(t, x1|y) and uε(t, x2). This factor disappears if we average over the law of y = Bt .
Therefore,

#�δ(x1, y) := lim
ε↓0

#�ε,δ(x1, y)

= 1 + 4π

∫
· · ·
∫

x2,z∈R
2

0<s<u<t

g2δ(x2)gs(z − x1)gs(z − x2)gt − u+s
2

(y − z)

gt (y − x1)
(5.22)

· Gϑ(u − s)dz dx2 ds du.

We can now combine (5.19) and (5.22), where #�δ(x1, y) and #�δ are defined: if we define

(5.23) �δ(x1, y) := #�δ(x1, y)

#�δ

,

then by Fatou’s lemma we can bound

lim inf
ε↓0

E
[( #�ε,δ(W

(1)
0 ,W

(1)
t )

E[ #�ε,δ(W
(1)
0 ,W

(1)
t )]

)2]
≥ E

[
�δ

(
W

(1)
0 ,W

(1)
t

)2]
.

It is easy to check that E[�δ(W
(1)
0 ,W

(1)
t )] = 1 (see (5.26) below). Since �δ(W

(1)
0 ,W

(1)
t ) is

clearly not a constant, it follows by Jensen’s inequality that, for any δ ∈ (0,1),

E
[
�δ

(
W

(1)
0 ,W

(1)
t

)2]
> 1.

Since δ  → E[�δ(W
(1)
0 ,W

(1)
t )2] is continuous, to prove (5.18) it only remains to show that

(5.24) lim
δ↓0

E
[
�δ

(
W

(1)
0 ,W

(1)
t

)2]
> 1.

Denote #�δ(W
(1)
t ) := E[�δ(W

(1)
0 ,W

(1)
t )|W(1)

t ]. By W
(1)
s = Z

(1)
2δ + B

(1)
s , we have

#�δ(y) = 1
#�δ

∫
#�δ(x1, y)

g2δ(x1)gt (y − x1)

gt +2δ(y)
dx1

= 1
#�δ

(
1 + 4π

gt +2δ(y)

∫
· · ·
∫
x1,x2,z∈R

2

0<s<u<t

g2δ(x1)g2δ(x2)gs(z − x1)gs(z − x2)

× gt − u+s
2

(y − z)Gϑ(u − s)dz dx1 dx2 ds du

)
= 1

#�δ

(
1 + 4π

gt +2δ(y)

∫∫∫
z∈R

2

0<s<u<t

g2δ+s(z)
2gt − u+s

2
(y − z)Gϑ(u − s)dz ds du

)
,

and since g2δ+s(z)
2 = g2(2δ+s)(0)gδ+ s

2
(z) by (4.20), we obtain

#�δ(y) = 1
#�δ

(
1 + 4π

gt +2δ(y)

∫∫
0<s<u<t

g2(2δ+s)(0)gt +δ− u
2
(y)Gϑ(u − s)ds du

)
(5.25)

= 1
#�δ

(
1 +

∫∫
0<s<u<t

1

2δ + s

gt +δ− u
2
(y)

gt +2δ(y)
Gϑ(u − s)ds du

)
.

Incidentally, this relation, together with (5.19), shows that

(5.26) E
[
�δ

(
W

(1)
0 ,W

(1)
t

)] = E
[#�δ

(
W

(1)
t

)] =
∫
R2

#�δ(y)gt +2δ(y)dy = 1.
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Note that, as δ ↓ 0, the dominant contribution to the integral in (5.19) for #�δ comes from
s $ 1, since we can restrict the integral to s < (log 1

δ
)−1 (say) without changing the asymp-

totic behavior. The same is true for the integral in (5.25); hence, we obtain

lim
δ↓0

#�δ(y) = #�0(y) :=
∫ t

0 gt − u
2
(y)Gϑ(u)du

gt (y)
∫ t

0 Gϑ(u)du
,

which implies that #�δ(W
(1)
t ) = #�δ(Z

(1)
2δ + B

(1)
t ) converges in law to #�0(B

(1)
t ) as δ ↓ 0. There-

fore, by Jensen’s inequality and Fatou’s lemma,

lim
δ↓0

E
[
�δ

(
W

(1)
0 ,W

(1)
t

)2] ≥ lim
δ↓0

E
[#�δ

(
W

(1)
t

)2] ≥ E
[#�0

(
B

(1)
t

)2]
> 1,

where the last inequality holds because E[ #�(B
(1)
t )] = 1 and #�(B

(1)
t ) is not a.s. equal to 1.

This concludes the proof of (5.24), hence of Lemma 5.5. �

5.3. Proof of Proposition 5.1. The log-divergence of the second moment kernel K (2)
t (x,

y) of the SHF (see (1.11)) plays a crucial role. Recall from (3.7) and (2.7) that

K (2)
t (x, y) = ekt (x,y) = 1 + K

(2)
t (x, y) = 1 + 2π

∫∫
0<s<u<t

gs(x − y)Gϑ(u − s)ds du,

which is a monotonically decreasing function of |x − y|. By a change of variable,

2π

∫∫
0<s<u<t

gs(x − y)Gϑ(u − s)ds du =
∫ t |x−y|−2

0

e− 1
2s̃

s̃

(∫ t −|x−y|2 s̃

0
Gϑ(v)dv

)
ds̃,

and note that, as |x − y| ↓ 0, the dominant contribution to the integral comes from the range
of values 1 $ s̃ $ |x − y| −2. Therefore, as |x − y| ↓ 0,

(5.27) K (2)
t (x, y) = ekt (x,y) ∼

(∫ t

0
Gϑ(v)dv

)
log

t

|x − y|2 ∼ Ct,ϑ log
1

|x − y| ,

where we set Ct,ϑ := 2
∫ t

0 Gϑ(v)dv.
Applying the moment formula (3.3) and (5.27) to the left-hand side of (5.2), we find that,

as δ ↓ 0,

E
[(

2M ϑ
t (gδ)

)m] =
∫
(R2)m

m∏
i=1

gδ(xi)e
∑

1≤i<j ≤m kt (xi ,xj ) d �x

= (
1 + o(1)

)
(Ct,ϑ )

(m
2

) ∫
(R2)m

m∏
i=1

gδ(xi)
∏

1≤i<j ≤m

log
1

|xi − xj | d �x.

Via the change of variable yi = xi/
√

δ, the integral in the right-hand side can be written as∫
(R2)m

m∏
i=1

g1(yi)
∏

1≤i<j ≤m

(
log

1√
δ

+ log
1

|yi − yj |
)

d �y ∼
(

log
1√
δ

)(m
2

)
,

where the asymptotic equivalence as δ ↓ 0 follows by expanding the product and noting the
finiteness of the integrals. This shows that, as δ ↓ 0,

E
[(

2M ϑ
t (gδ)

)m] ∼
(
Ct,ϑ log

1√
δ

)(m
2

)
,

which proves (5.2) and completes the proof of Proposition 5.1.
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APPENDIX: ON THE CRITICAL WINDOWS

In this section we compare the critical windows for directed polymers and for the mollified
stochastic heat equation.

A.1. Directed polymer setting. The critical scaling of β = βN for the directed polymer
partition functions (1.4) is defined by the following asymptotic relation:

(A.1) σ 2
N := eλ(2βN)−2λ(βN) − 1 = 1

RN

(
1 + ϑ + o(1)

logN

)
for some fixed ϑ ∈ R,

where λ(·) is the log-moment generating function of the disorder (see (1.3)), while RN is the
expected replica overlap of two independent simple symmetric random walks S, S′ on Z

2,

RN := E

[
N∑

n=1

1{Sn=S′
n}
]

=
N∑

n=1

∑
z∈Z2

P(Sn = z)2 =
N∑

n=1

P(S2n = 0)

=
N∑

n=1

{
1

22n

(
2n

n

)}2
= logN

π
+ α

π
+ o(1) as N → ∞,

(A.2)

with α = γ + log 16 − π and γ = − ∫∞
0 logue−u du ≈ 0.577 the Euler–Mascheroni constant.

Since λ(β) ∼ 1
2β2 as β → 0, it follows from (A.1) that β2

N ∼ π/ logN as N → ∞. The
parameter ϑ ∈ R tunes the higher order asymptotic behavior of βN , which also depends on
the third and fourth cumulants κ3, κ4 of the disorder: see [7], equation (1.17), for the exact
formula, which simplifies when κ3 = 0 (e.g., for symmetric disorder distribution) and yields

β2
N = π

logN

(
1 + ϑ − c + o(1)

logN

)

where c := α + 1

2
π + 7

12
πκ4 = γ + log 16 − 1

2
π + 7

12
πκ4,

(A.3)

that is, (1.7) holds with � = ϑ − c.

A.2. Stochastic heat equation setting. We next consider the stochastic heat equation
(1.16) with mollified noise ξε(t, x) = (ξ(t, ·) ∗ jε)(x), where jε(x) := ε−2j (ε−1x). The crit-
ical scaling β = βε is (see [7], equation (8.28))

(A.4) β2
ε = 1

Rε

(
1 + ϑ + o(1)

log ε−2

)
,

where Rε is defined as follows (see [7], Section 8.2):

Rε =
∫ ε−2

0

(∫
(R2)2

J (x)J (y)g2t (x − y)dx dy

)
dt.(A.5)

Note that we can view Rε as the expected replica overlap of two independent Brownian
motions B , B ′ on R

2, enlarged via J := j ∗ j into Wiener sausages, described by the functions
JBt (z) := J (z − Bt) and JB ′

t
(z) := J (z − B ′

t ),

Rε =
∫ ε−2

0

∫
(R2)3

J (x)J (y)gt (z − x)gt (z − y)dx dy dz dt

=
∫ ε−2

0

∫
R2

E
[
J (z − Bt)J

(
z − B ′

t

)]
dz dt = E

[∫ ε−2

0
〈JBt , JB ′

t
〉L2(R2) dt

]
.

(A.6)
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It was shown in [7], end of Section 8.2, that

(A.7) Rε = log ε−2

4π
+ C

4π
+ o(1) as ε ↓ 0,

where

(A.8) C = 2
∫
(R2)2

J (x) log
1

|x − y| J (y)dx dy + log 4 − γ.

Plugging this into (A.4) yields

β2
ε = 4π

log ε−2

(
1 + ϑ − C + o(1)

log ε−2

)
,(A.9)

that is, (1.21) holds with � = ϑ − C.

A.3. Matching directed polymers with the stochastic heat equation. In this appendix
we explain heuristically relation (5.6).

The stochastic heat flow Z ϑ
t (dx) is the limit of the directed polymer random measure

(A.10) ZβN

N ;0,t

(
dx,R2) = 1

2

∑
z∈Z2

even

Z
β,ω
0,[[Nt ]]

([[√
Nx]], z);

see (1.5) and Theorem 1.1. We can then rewrite (5.6) as

(A.11) ZβN

N ;0,t

(
dx,R2) d≈

N =ε−2

1

2
uε

βε
(t, x

√
2)dx as ε ↓ 0,

where the disorder strengths in the two sides are tuned in the respective critical windows; see
(A.1) or (A.3) for βN and (A.9) for βε , for the same value of ϑ ∈ R.

Relation (A.11) is expected to hold by comparing both sides to the same coarse-grained
model in [9]. However, we can simply explain the scaling factors in (A.11) by comparing the
mean and covariance of both sides:

• The multiplicative factor 1
2 is due to the periodicity of the simple random walk: we have

indeed E[ZβN

N ;0,t (dx,R2)] = 1
2 dx (see (A.10)), while E[uε

βε
(·, ·)] ≡ 1.

• The factor
√

2 is because each random walk component has variance 1
2 : we have

Cov[ZβN

N ;0,t (dx,R2),ZβN

N ;0,t (dy,R2)] ∼ 1
4K

(2)
t (x − y)dx dy (see [9], Remark 3.7), while

Cov[uε
βε

(t, x), uε
βε

(t, y)] ∼ K
(2)
t (

x−y√
2

); see [3], equation (3.14), [7], Theorem 1.9.

We now give a heuristic derivation of relation (A.11). Let (Sn) be a T-periodic random
walk on Z

2 (i.e., Sn takes values in a sublattice Tn ⊂ Z
2 whose cells have area T) with

covariance matrix sI . For the simple random walk, we have s = 1
2 and T = 2 with

(A.12) Tn :=
{
Z

2
even for n even,

Z
2
odd := Z

2 \ Z
2
even for n odd;

see (1.6). The parameters s and T enter in the local limit theorem: recalling that gt (x) denotes
the heat kernel (see (2.1)), we have, as n → ∞,

(A.13) P(Sn = z) = (
gsn(z) + o

(
n−1))T1Tn

(z).

We insist on the use of general parameters s and T, instead of the particular values 1
2 and 2,

because the following arguments become more transparent.
The solution uε

β(t, x) of the mollified stochastic heat equation (1.16) can be viewed as
the partition function for a Brownian directed polymer B in a mollified white-noise random
environment ξε , comparing (1.4) with the Feynman–Kac representation formula (5.3). To
account for the random walk variance s and periodicity T, we can modify (5.3) as follows:
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• We replace (B, x) by (
√

sB,x/
√

s) to get a Brownian motion with variance s started at x,
and accordingly, we replace the mollified white noise ξε by ξ

√
sε .

• We replace β by
√

Tβ; this ensures that computing the variance uε
β(t, x) as a power series

in β2, arising from the polynomial chaos expansion (see, e.g., [7], equation (8.12)); each
heat kernel is multiplied by T, matching the local limit theorem (A.13).

Overall, since
√

T βξ
√

sε(t − u,
√

sBu) has the same distribution as
√

T/sβξε(t − u,Bu), we
can simply modify the Feynman–Kac formula (5.3) replacing x by x/

√
s and β by

√
T/sβ .

Summarizing, for the directed polymer random measure ZβN

N ;0,t (dx,R2), defined in anal-

ogy with (A.10), with 1
2 replaced by 1

T and Z
2
even replaced by T0, we expect that

(A.14) ZβN

N ;0,t

(
dx,R2) d≈

N =ε−2
ũ(t, x)dx with ũ(t, x) := 1

T
uε√

T
s βN

(
t,

x√
s

)
.

For s = 1
2 and T = 2, this equation is “close” to (A.11) since

√
T/sβN = 2βN ∼ βε , cf. (A.3)

and (A.9). For an accurate comparison, we should replace
√

T/sβN by βε in the definition of
ũ(t, x) in (A.14), which leads to (A.11).

Finally, we note that ũ(t, x) from (A.14) solves a mollified stochastic heat equation with
adjusted coefficients; to account for the random walk variance s and periodicity T,

(A.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t ũ(t, x) = s

2
�ũ(t, x) + √

s

√
T

s
βNũ(t, x)ξε

√
s(t, x),

ũ(0, ·) ≡ 1

T
,

where ξ̃ a(t, x) := 1√
s
ξa/

√
s(t, x√

s
) has the same distribution as ξa(t, x). Again, for an accu-

rate comparison with directed polymers, we should replace
√

T/sβN in (A.15) by βε from
(A.9).
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