We investigate the existence of solutions to the fractional nonlinear Schrödinger equation (−Δ)su=f(u)−μu with prescribed L2-norm ∫Rjavax.xml.bind.JAXBElement@446caed1|u|2dx=m in the Sobolev space Hs(RN). Under fairly general assumptions on the nonlinearity f, we prove the existence of a ground state solution and a multiplicity result in the radially symmetric case.

Appolloni, L., Secchi, S. (2021). Normalized solutions for the fractional NLS with mass supercritical nonlinearity. JOURNAL OF DIFFERENTIAL EQUATIONS, 286, 248-283 [10.1016/j.jde.2021.03.016].

Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Appolloni L.;Secchi S.
2021

Abstract

We investigate the existence of solutions to the fractional nonlinear Schrödinger equation (−Δ)su=f(u)−μu with prescribed L2-norm ∫Rjavax.xml.bind.JAXBElement@446caed1|u|2dx=m in the Sobolev space Hs(RN). Under fairly general assumptions on the nonlinearity f, we prove the existence of a ground state solution and a multiplicity result in the radially symmetric case.
Articolo in rivista - Articolo scientifico
Fractional Schrödinger equation; Prescribed mass; Supercritical nonlinearity;
English
2021
286
248
283
partially_open
Appolloni, L., Secchi, S. (2021). Normalized solutions for the fractional NLS with mass supercritical nonlinearity. JOURNAL OF DIFFERENTIAL EQUATIONS, 286, 248-283 [10.1016/j.jde.2021.03.016].
File in questo prodotto:
File Dimensione Formato  
Appolloni-2021-JDE-preprint.pdf

accesso aperto

Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 454.93 kB
Formato Adobe PDF
454.93 kB Adobe PDF Visualizza/Apri
Appolloni-2021-JDE-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 433.38 kB
Formato Adobe PDF
433.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/466821
Citazioni
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
Social impact