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Abstract

We investigate the existence of solutions to the fractional nonlinear Schrödinger

equation (−∆)su = f(u)− µu with prescribed L2-norm
∫
RN |u|

2 dx = m in the

Sobolev space Hs(RN ). Under fairly general assumptions on the nonlinearity

f , we prove the existence of a ground state solution and a multiplicity result in

the radially symmetric case.
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1. Introduction

In this paper we investigate the existence of solutions to the fractional Nonlinear

Schrödinger Equation (NLS in the sequel)

i
∂ψ

∂t
= (−∆)sψ − V (|ψ|)ψ, (1)

where i denotes the imaginary unit and ψ = ψ(x, t) : RN × (0,∞) → C. This

type of Schrödinger equation was introduced by Laskin in [1], and the interest in
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its analysis has grown over the years. An important family of solutions, known

under the name of travelling or standing waves, is characterized by the ansatz

ψ(x, t) = eiµtu(x) (2)

for some (unknown) function u : RN → R. These solutions are self-similar and

conserve their mass along time, i.e. d
dt‖ψ(·, t)‖L2(RN ) = 0 at any t > 0. It is

therefore natural and meaningful to seek solutions having a prescribed L2-norm.

Coupling (1) with (2), we arrive at the problem(−∆)su = V (|u|)u− µu in RN ,

‖u‖2L2(RN ) = m,

where s ∈ (0, 1), N > 2s, µ ∈ R, m > 0 is a prescribed parameter, and (−∆)s

denotes the usual fractional laplacian. We recall that

(−∆)su(x) = C(N, s) lim
ε→0+

∫
RN\Bε(0)

u(x)− u(y)

|x− y|N+2s
dy,

where

C(N, s) =

(∫
RN

1− cos ζ1
|ζ|n+2s

dζ

)−1
.

For further details on the fractional laplacian we refer to [2]. For our purposes,5

and since the parameter s is kept fixed, we will always work with a rescaled

fractional operator, in such a way that C(N, s) = 1.

In order to ease notation, we will write f(u) = V (|u|)u, and study the problem(−∆)su = f(u)− µu in RN ,

‖u‖2L2(RN ) = m.

(Pm)

The rôle of the real number µ is twofold: it can either be prescribed, or it can

arise as a suitable parameter in the analysis of (Pm). In the present work we

will choose the second option, and µ will arise as a Lagrange multiplier.10

Since we are looking for bound-state solutions whose L2-norm must be finite, it

is natural to build a variational setting for (Pm). Since this is by now standard,
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we will be sketchy. We introduce the fractional Sobolev space

Hs(RN ) =
{
u ∈ L2(RN ) | [u]2Hs(RN ) < +∞

}
,

where

[u]
2
Hs(RN ) =

∫
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

is the so-called Gagliardo semi-norm. The norm in Hs(RN ) is defined by

‖u‖ =

√
‖u‖2L2 + [u]2

Hs(RN )
,

which naturally arises from an inner product. We then (formally) introduce the

energy functional

I(u) =
1

2
[u]

2
Hs(RN ) −

∫
RN

F (u) dx

where F (t) =
∫ t
0
f(σ) dσ. A standard approach for studying (Pm) consists in

looking for critical points of I constrained on the sphere

Sm =

{
u ∈ Hs(RN ) |

∫
RN
|u|2 dx = m

}
.

The convenience of this variational approach depends strongly on the behavior

of the nonlinearity f . If f(t) grows slower than |t|1+ 4s
N as t → +∞, then I is

coercive and bounded from below on Sm: this is the mass subcritical case, and

the minimization problem

min {I(u) | u ∈ Sm}

is the natural approach. On the other hand, if f(t) grows faster than |t|1+ 4s
N

as t → +∞ then I is unbounded from below on Sm, and we are in the mass

supercritical case. Since constrained minimizers of I on Sm cannot exist, we

have to find critical points at higher levels.

When s = 1, i.e. when the fractional Laplace operator (−∆)s reduces to the15

local differential operator −∆, the literature for (Pm) is huge. The particular

case of a combined nonlinearity of power type, namely f(t) = tp−2 +µtq−2 with
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2 < q < p < 2N/(N − 2) has been widely investigated. The interplay of the

parameters p and q add some richness to the structure of the problem.

The situation is different when 0 < s < 1, and few results are available. Feng et20

al. in [3] deal with particular nonlinearities. Stanislavova et al. in [4] add the

further complication of a trapping potential. In the recent paper [5] the author

proves some existence and asymptotic results for the fractional NLS when a

lower order perturbation to a mass supercritical pure power in the nonlinearity

is added. It is also worth mentioning [6], where Zhang et al. studied the25

problem when the nonlinear term consists in the sum of two pure powers of

different order. They provide some existence and non-existence results analysing

separately what happens in the mass subcritical and supercritical case for both

the leading term and the lower order perturbation.

Very recently, Jeanjean et al. in [7] provided a thorough treatment of the local30

case s = 1 via a careful analysis based on the Pohozaev identity. In the present

paper we propose a partial extension of their results to the non-local case 0 <

s < 1. Since we deal with a fractional operator, our conditions on f must be

adapted correspondingly.

We collect here our standing assumptions about the nonlinearity f ; we recall

that

F (t) =

∫ t

0

f(σ) dσ

and define the auxiliary function

F̃ (t) = f(t)t− 2F (t).

(f0) f : R→ R is an odd and continuous function;35

(f1) lim
t→0

f(t)

|t|1+4s/N
= 0;

(f2) lim
t→+∞

f(t)

|t|(N+2s)/(N−2s) = 0;

(f3) lim
t→+∞

F (t)

|t|2+4s/N
= +∞;
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(f4) The function t 7→ F̃ (t)
|t|2+4s/N is strictly decreasing on (−∞, 0) and strictly

increasing on (0,+∞);40

(f5) f(t)t < 2N
N−2sF (t) for all t ∈ R \ {0};

(f6) lim
t→0

tf(t)

|t|2N/(N−2s)
= +∞.

Remark 1. The oddness of f is necessary in order to use the classical genus

theory and to get a desired property on the fiber map that we will introduce in

detail in the next section (see for instance Lemma 5 below). Assumption (f2)45

guarantees a Sobolev subcritical growth, whereas (f3) characterises the problem

as mass supercritical. At one point we will need (f5) to establish the strict

positivity of the Lagrange multiplier µ.

Example 1. As suggested in [7], an explicit example can be constructed as

follows. Set αN,s = 4s2

N(N−2s) for simplicity, and define

f(t) =

((
2 +

4s

N

)
log (1 + |t|αN,s) +

αN,s|t|αN,s
1 + |t|αN,s

)
|t| 4sN t

We briefly outline our results. Firstly, we show that the ground state level is

attained with a strictly positive Lagrange multiplier.50

Theorem 1. Assume that f satisfies (f0)-(f5). Then (Pm) admits a positive

ground state for any m > 0. Moreover, for any ground state the associated

Lagrange multiplier µ is positive.

Furthermore, we can prove some remarkable properties of the ground state level

energy with respect the variable m and its asymptotic behavior. We refer to55

(11) for the precise definition of the ground-state level Em.

Theorem 2. Assume that f satisfies (f0)-(f6). Then the function m 7→ Em is

positive, continuous, strictly decreasing. Furthermore, limm→0+ Em = +∞ and

limm→∞Em = 0.

Finally, we have a multiplicity result for the radially symmetric case.60
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Theorem 3. If (f0)-(f5) hold and N > 2, then (Pm) admits infinitely many

radial solutions (uk)k for any m > 0. In particular,

I(uk+1) ≥ I(uk)

for all k ∈ N and I(uk)→ +∞ as k → +∞.

Our paper is organised as follows. Section 2 contains the proofs of some pre-

liminary lemmas that will be useful during the whole remaining part of the

paper. Moreover, we introduce a fiber map that will play a crucial role for our

purposes. In Section 3 we define the ground state level energy for a fixed mass m65

and we start analysing its asymptotic behaviour near zero and infinity. Section

4 is devoted to prove our main existence theorem. Using a min-max theorem

of linking type and the fiber map cited previously, we construct a Palais-Smale

sequence whose value on the Pohozaev functional is zero and we show that a

sequence of this kind must be necessarily bounded. Finally, in Section 5, for the70

sake of completeness, we discuss the existence of radial solutions. Here, we use

a variant of the min-max theorem already cited in Section 4, but this time we

are helped by the fact that the space of the radially symmetric functions with

finite fractional derivative is compactly embedded in Lp(RN ) for p ∈ (2, 2∗s).

2. Preliminary results75

We define the Pohozaev manifold

Pm = {u ∈ Sm | P (u) = 0} ,

where

P (u) = [u]
2
Hs(RN ) −

N

2s

∫
RN

F̃ (u) dx.

Let us collect some technical results that we will frequently used in the paper.

The first two Lemmas will be proved in the Appendix. We use the shorthand

Bm =
{
u ∈ Hs(RN ) | ‖u‖2L2(RN ) ≤ m

}
.
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Lemma 1. Assuming (f0), (f1), (f2), the following statements hold

(i) for every m > 0 there exists δ > 0 such that

1

4
[u]

2
Hs(RN ) ≤ I(u) ≤ [u]

2
Hs(RN )

where u ∈ Bm and [u]Hs(RN ) ≤ δ.

(ii) Let (un)n be a bounded sequence in Hs(RN ). If limn→+∞ ‖un‖L2+4s/N (RN ) =

0 we have that

lim
n→+∞

∫
RN

F (un) dx = 0 = lim
n→+∞

∫
RN

F̃ (un) dx.

(iii) Let (un)n, (vn)n two bounded sequences in Hs(RN ). If limn→+∞ ‖vn‖L2+4s/N =

0 then

lim
n→+∞

∫
RN

f(un)vn dx = 0.

Remark 2. An inspection of the proof of this Lemma shows that the inequality∫
RN

F̃ (u) dx ≤ s

N
[u]

2
Hs(RN )

holds true if u ∈ Bm and [u]Hs(RN ) ≤ δ. It follows that

P (u) ≥ 1

2
[u]

2
Hs(RN )

for every u ∈ Bm with [u]Hs(RN ) ≤ δ.

In order to prove the next result we introduce for every u ∈ Hs(RN ) and ρ ∈ R

the scaling map2

(ρ ∗ u)(x) = e
Nρ
2 u(eρx) x ∈ RN .

It easy to verify that ρ ∗ u ∈ Hs(RN ) and ‖ρ ∗ u‖L2(RN ) = ‖u‖L2(RN ).80

Lemma 2. Assuming (f0), (f1), (f2) and (f3), we have:

2The notation ρ∗u is standard in the theory of transformation groups, and is not ambiguous

since we never use convolution.
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(i) I(ρ ∗ u)→ 0+ as ρ→ −∞,

(ii) I(ρ ∗ u)→ −∞ as ρ→∞.

Remark 3. Assume f ∈ C(R,R), (f1) and (f4). Then the function g : R→ R

defined as

g(t) =


f(t)t−2F (t)

|t|2+
4s
N

, t 6= 0

0, t = 0

is continuous, strictly increasing in (0,∞) and strictly decreasing in (−∞, 0).

Lemma 3. Assuming f ∈ C(R,R), (f1), (f3) and (f4), we have85

(i) F (t) > 0 if t 6= 0;

(ii) there exists (τ+n )n ⊂ R+ and (τ−n )n ⊂ R−, |τ±n | → 0 as n→ +∞ such that

f(τ±n )τ±n >

(
2 +

4s

N

)
F (τ±n )

for any g 6= 1;

(iii) there exists (σ+
n )n ⊂ R+ and (σ−n )n ⊂ R−, |σ±n | → ∞ as n → +∞ such

that

f(σ±n )σ±n >

(
2 +

4s

N

)
F (σ±n )

for any n ≥ 1.

Proof. (i) By contradiction suppose F (t0) ≤ 0 for some t0 6= 0. Because of

(f1) and (f3) the function F (t)/|t|2+4s/N must attain its global minimum in a

point τ 6= 0 such that F (τ) ≤ 0. It follows that

d

dt

F (t)

|t|2+ 4s
N

∣∣∣∣
t=τ

=
f(τ)τ −

(
2 + 4s

N

)
F (τ)

|τ |3+ 4s
N sgn(τ)

= 0. (3)

From Remark 3 it follows that f(t)t > 2F (t) if t 6= 0. Indeed, were the claim

false, there would exists t such that f(t)t ≤ 2F (t). Choosing without loss of

generality t < 0, we have that g(t) ≤ 0. This and the fact that g(0) = 0 show
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that g must be strictly increasing on an interval between t and 0. Finally, we

can have a contradiction observing that

0 < f(τ)τ − 2F (τ) =
4s

N
F (τ) ≤ 0.

(ii) We start with the positive case. By contradiction we suppose there is Tα > 0

small enough such that

f(t)t ≤
(

2 +
4s

N

)
F (t)

for every t ∈ (0, Tα]. Remembering the expression of (3) computed in the step

(i) we have that the derivative of F (t)/|t|2+4s/N is nonpositive on (0, Tα], then

F (t)

t2+
4s
N

≥ F (Tα)

T
2+ 4s

N
α

> 0 for every t ∈ (0, Tα] ,

that is in contradiction with (f1). The negative case is similar.

(iii) Being the two cases similar, we will prove only the negative one. Again,

by contradiction we suppose there is Tγ > 0 such that

f(t)t ≤
(

2 +
4s

N

)
F (t) for every t ≤ −Tγ .

Since the derivative of F (t)/|t|2+4s/N is nonnegative on (−∞,−Tγ ], we can

deduce

F (t)

|t|2+ 4s
N

≤ F (−Tγ)

T
2+ 4s

N
γ

for every t ∈ (−∞,−Tγ ] ,

which contradicts (f3).90

Lemma 4. For any t > 0 there results

f(t)t >

(
2 +

4s

N

)
F (t).

Proof. We start proving that the inequality holds weakly. By contradiction

we assume

f(t0)t0 <

(
2 +

4s

N

)
F (t0)
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for some t0 6= 0 and without loss of generality we can suppose t0 < 0. By step

(ii) and (iii) of Lemma 3 there are τmin, τmax ∈ R, where τmin < t0 < τmax < 0

such that

f(t)t <

(
2 +

4s

N

)
F (t) for every t ∈ (τmin, τmax) (4)

and

f(t)t =

(
2 +

4s

N

)
F (t) for every t ∈ {τmin, τmax}. (5)

By (4) we have

F (τmin)

|τmin|2+
4s
N

<
F (τmax)

|τmax|2+
4s
N

. (6)

Besides, by (5) and (f4) must be

F (τmin)

|τmin|2+
4s
N

=
N

4s

F̃ (τmin)

|τmin|2+
4s
N

>
N

4s

F̃ (τmax)

|τmax|2+
4s
N

=
F (τmax)

|τmax|2+
4s
N

, (7)

and clearly (6) and (7) are in contradiction. From what we have just proved,

we have that F (t)/|t|2+4s/N is non-increasing in (−∞, 0) and non decreasing in

(0,∞). Hence, by virtue of (f4) the function f(t)/|t|1+4s/N must necessarily be

strictly increasing in (−∞, 0) and strictly decreasing in (0,∞). Then(
2 +

4s

N

)
F (t) =

(
2 +

4s

N

)∫ t

0

f(κ)

|κ|1+ 4s
N

|κ|1+ 4s
N dκ

<

(
2 +

4s

N

)
f(t)

|t|1+ 4s
N

∫ t

0

|κ|1+ 4s
N dκ = f(t)t

completes the proof.

Lemma 5. Assume (f0)− (f4), u ∈ Hs(RN ) \ {0}. Then the following hold:

(i) There is a unique ρ(u) ∈ R such that P (ρ(u) ∗ u) = 0.

(ii) I(ρ(u) ∗ u) > I(ρ ∗ u) for any ρ 6= ρ(u). Moreover I(ρ(u) ∗ u) > 0.

(iii) The map u→ ρ(u) is continuous for every u ∈ Hs(RN ).95

(iv) ρ(u) = ρ(−u) and ρ(u(· + y)) = ρ(u) for ever u ∈ Hs(RN ) \ {0} and

y ∈ RN .
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Proof. (i) Since

I(ρ ∗ u) =
1

2
e2ρs [u]

2
Hs(RN ) − e

−Nρ
∫
RN

F (eNρu) dx

it is easy to check that I(ρ ∗ u) is C1 with respect to ρ. Now, computing

d

dρ
I(ρ ∗ u) = ρe2ρs [u]

2
Hs(RN ) −

N

2
e−Nρ

∫
RN

F̃
(
e
Nρ
2 u
)
dx.

and observing that

P (ρ ∗ u) = e2ρs [u]
2
Hs(RN ) −

N

2s
e−Nρ

∫
RN

F̃
(
e
Nρ
2 u
)
dx

we deduce

d

dρ
I(ρ ∗ u) = sP (ρ ∗ u).

Remembering that by lemma 2

lim
ρ→−∞

I(ρ ∗ u) = 0+ and lim
ρ→∞

I(ρ ∗ u) = −∞

we can conclude that ρ 7→ I(ρ ∗ u) must reach a global maximum at some point

ρ(u); since

0 =
d

dρ
I(ρ(u) ∗ u) = sP (ρ(u) ∗ u),

we conclude that P (ρ(u) ∗ u) = 0. To check the uniqueness of the point ρ(u),

recalling the function g defined in Remark 3, we observe that F̃ (t) = g(t)|t|2+ 4s
N

for every t ∈ R. Thus we obtain

P (ρ ∗ u) = e2ρs [u]
2
Hs(RN ) −

N

2s
e2ρs

∫
RN

g(e
Nρ
2 u)|u|2+ 4s

N dx

= e2ρs
[
[u]

2
Hs(RN ) −

N

2s

∫
RN

g(e
Nρ
2 u)|u|2+ 4s

N dx

]
=

1

s

d

dρ
I(ρ ∗ u).

Fixing t ∈ R \ {0}, thanks to Remark 3 and (f4), we notice that the function

ρ 7→ g
(
e
Nρ
2 t
)

is strictly increasing. Thus, by virtue of the previous computations, it follows

that ρ(u) must be unique.
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(ii) This follows at once from (i).100

(iii) By step (i) the function u 7→ ρ(u) is well defined. Let u ∈ Hs(RN )\{0} and

(un)n ⊂ Hs(RN ) \ {0} a sequence such that un → u in Hs(RN ) as n → +∞.

We set ρn = ρ(un) for any n ≥ 1. Let us show that up to a subsequence we

have ρn → ρ(u) as n→ +∞.

Claim. The sequence (ρn)n is bounded.105

We recall that the function hλ defined in (43) noticing that by lemma 3 (i)

h0(t) ≥ 0 for every t ∈ R. We assume by contradiction that up to a subsequence

ρn → +∞. By Fatou’s lemma and the fact that un → u a.e. in RN , we have

that

lim
n→+∞

∫
RN

h0

(
e
Nρn

2 un

)
|un|2+

4s
N dx =∞.

As a consequence of that, by (44) with λ = 0 and step (ii), we obtain

0 ≤ e−2ρnsI(ρn ∗ un) =
1

2
[un]

2
Hs(RN ) −

∫
RN

h0

(
e
Nρn

2 un

)
|un|2+

4s
N dx→ −∞

(8)

as n → +∞ that is evidently not possible. Then (ρn)n must be bounded from

above. Now we assume, again by contradiction, that ρn → −∞. By step (ii)

we observe that

I(ρn ∗ un) ≥ I(ρ(u) ∗ un),

and since ρ(u) ∗ un → ρ(u) ∗ u in Hs(RN ), it follows that

I(ρ(u) ∗ un) = I(ρ(u) ∗ u) + on(1).

We deduce that

lim inf
n→+∞

I(ρn ∗ un) ≥ I(ρ(u) ∗ u) > 0. (9)

Since we have ρn ∗ un ⊂ Bm for m � 1, Lemma 1 (i) implies that there

exists δ > 0 such that if [ρn ∗ un]Hs(RN ) ≤ δ, we have

1

4
[ρn ∗ un]

2
Hs(RN ) ≤ I(ρn ∗ un) ≤ [ρn ∗ un]

2
Hs(RN ) . (10)
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Since

[ρn ∗ un]Hs = eρns [un]Hs(RN ) ,

(10) holds for any n sufficiently large. Therefore we obtain

lim inf
n→+∞

I(ρn ∗ un) = 0,

in contradiction to (9). The claim is proved.

The sequence (ρn)n being bounded, we can assume that, up to a subsequence,

ρn → ρ∗ for some ρ∗ in R. Hence, ρn ∗ un → ρ∗ ∗ u in Hs(RN ) and since

P (ρn ∗ un) = 0 we have

P (ρ∗ ∗ u) = 0.

By the uniqueness proved at step (ii) we obtain ρ∗ = ρ(u).

(iv) Since f is odd by (f0), the fact that

P (ρ(u) ∗ (−u)) = P (−(ρ(u) ∗ u)) = P (ρ(u) ∗ u) = 0

imply ρ(u) = ρ(−u). Similarly, changing the variables in the integral, we can

verify that ρ is invariant under translation, and it is easy to check that

P (ρ(u) ∗ u(·+ y)) = P (ρ(u) ∗ u) = 0,

thus ρ(u(·+ y)) = ρ(u).

As we are going to see, the functional I constrained on Pm has some crucial

properties.110

Lemma 6. Assuming (f0)− (f4), the following statements are true:

(i) Pm 6= ∅,

(ii) infu∈Pm [u]Hs(RN ) > 0,

(iii) infu∈Pm I(u) > 0,

(iv) I is coercive on Pm, i.e. I(un)→∞ if (un)n ⊂ Pm and ‖un‖Hs(RN ) →∞115

as n→ +∞.
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Proof. Statement (i) follows directly from Lemma 5 (i).

(ii) Were the assertion not true, we would be able to take a sequence (un)n ⊂ Pm
such that [un]Hs(RN ) → 0, and so, by Lemma 1 (i) we could also find δ > 0 and

n so large that [un]Hs(RN ) ≤ δ for every n ≥ n. By Remark 2 we would have

0 = P (un) ≥ 1

2
[un]

2
Hs(RN )

which is possible only for a constant un. But this is not admissible since u ∈ Sm.

Hence the statement must hold.

(iii) For every u ∈ Pm Lemma 5 (ii) and (iii) implies that

I(u) = I(0 ∗ u) ≥ I(ρ ∗ u) for every ρ ∈ R.

Let δ > 0 be the number given by Lemma 2 (i) and set 1/ρ := s log
(
δ/ [u]Hs(RN )

)
.

Since δ = [ρ ∗ u]Hs(RN ), using again Lemma 1 (i) we obtain

I(u) ≥ I(ρ ∗ u) ≥ 1

4
[ρ ∗ u]

2
Hs(RN ) =

1

4
δ2

proving the statement.120

(iv) By contradiction we suppose the existence of (un)n ⊂ Pm such that ‖un‖Hs(RN ) →

∞ with supn≥1 I(un) ≤ c for some c ∈ (0,∞). For any n ≥ 1 we set

ρn =
1

s
log
(

[un]Hs(RN )

)
and vn = (−ρn) ∗ un.

Evidently ρn → +∞, (vn)n ⊂ Sm and [vn]Hs(RN ) = 1. We denote with

α = lim sup
n→+∞

sup
y∈RN

∫
B(y,1)

|vn|2 dx

and we distinguish two cases.

Non vanishing: α > 0. Up to a subsequence we can assume the existence of a

sequence (yn)n ⊂ RN and ω ∈ Hs(RN ) \ {0} such that

ωn = vn(·+ yn) ⇀ ω in Hs(RN ) and ωn → ω a.e. inRN .

Recalling the definition of the continuous function hλ with λ = 0, remembering

that ρn → +∞ as n→ +∞ and using the Fatou’s lemma we have

lim
n→+∞

∫
RN

h0

(
e
Nρn

2 ωn

)
|ωn|2+

4s
N dx =∞.

14



By step (iii) and (3), after changing the variables in the integral, we obtain

0 ≤ e−2ρnsI(un) = e−2ρnsI(ρn ∗ vn) =
1

2
−
∫
RN

h0

(
e
Nρn

2 vn

)
|vn|2+

4s
N dx

=
1

2
−
∫
RN

h0

(
e
Nρn

2 ω
)
|ωn|2+

4s
N dx→ −∞

as n→ +∞.

Vanishing: α = 0. By [8, Lemma II.4], we have that vn → 0 in L2+ 4s
N (RN ) and

by Lemma 1 (ii) we see that

lim
n→+∞

eNρ
∫
RN

F
(
e
Nρ
2 vn

)
= 0 for every ρ ∈ R.

Since P (ρn ∗ vn) = P (un) = 0, by Lemma 5 (ii) and (iii), we obtain

c ≥ I(un) = I(ρn ∗ vn)

≥ P (ρ ∗ vn) =
1

2
e2ρs − e−Nρ

∫
RN

F
(
e
Nρ
2 vn

)
dx =

1

2
e2ρs − on(1).

We can conclude choosing ρ > log(2c)/2s and letting n→ +∞.

We conclude with a splitting result à la Brezis-Lieb. A proof is included for the

reader’s convenience.125

Lemma 7. Let f : R→ R continuous, odd and let (un)n ⊂ Hs(RN ) a bounded

sequence such that un → u pointwise almost everywhere in RN . If there exists

C > 0 such that

|f(t)| ≤ C
(
|t|+ |t|2

∗
s−1
)
,

then

lim
n→+∞

∫
RN
|F (un)− F (un − u)− F (u)| dx = 0

15



Proof. Let a, b ∈ R and ε > 0. We compute

|F (a+ b)− F (a)| =
∣∣∣∣∫ 1

0

d

dτ
F (a+ τb) dτ

∣∣∣∣
=

∣∣∣∣∫ 1

0

F ′(a+ τb)b dτ

∣∣∣∣
≤ C

∫ 1

0

(
|a+ τb|+ |a+ τb|2

∗
s−1
)
|b| dτ

≤ C
(
|a|+ |b|+ 22

∗
s−1

(
|a|2

∗
s−1 + |b|2

∗
s−1
))
|b|

≤ C
(
|a|+ |b|+ 22

∗
s

(
|a|2

∗
s−1 + |b|2

∗
s−1
))
|b|

≤ C
(
|ab|+ b2 + 22

∗
s

(
|a|2

∗
s−1|b|+ |b|2

∗
s

))
.

We have used that τ ≤ 1 and the convexity inequality

|a+ b|2
∗
s−1 ≤ 22

∗
s−1

(
|a|2

∗
s−1 + |b|2

∗
s−1
)
.

Now we use Young’s inequality twice:

|ab| ≤ εa
2

2
+

1

2ε
|b|2

|a|2
∗
s−1|b| ≤ η

2∗s
2∗s−1
|a|2∗s
2∗s

2∗s−1

+
1

η2
∗
s

|b|2∗s
2∗s

.

Hence, choosing

η = ε
2∗s−1

2∗s ,

we get

|ab|+ b2 + 22
∗
s

(
|a|2

∗
s−1|b|+ |b|2

∗
s

)
≤ εa

2

2
+

1

2ε
b2 + b2 + 22

∗
s

(
|a|2

∗
s−1|b|+ |b|2

∗
s

)
≤ εC

(
a2 + |2a|2

∗
s

)
+ C

[(
1 + ε−1

)
b2 +

(
1 + ε1−2

∗
s

)
|2b|2

∗
s

]
= εϕ(a) + ψε(b).

Applying [9, Theorem 2] with gn = un − u and f = u we have the assertion.
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3. Properties of the map m 7→ Em

Under our standing assumptions (f0)–(f4), for every m > 0 we can define the

least level of energy

Em = inf
u∈Pm

I(u). (11)

This section is devoted to the analysis of the quantity Em as a function of

m > 0.

Lemma 8. If (f0)–(f4) hold true, then m 7→ Em is continuous.130

Proof. Let m > 0 and (mk)k ⊂ R such that mk → m in R. We want to show

that Emk → Em as k → +∞. Firstly, we will prove that

lim sup
k→+∞

Emk ≤ Em. (12)

For any u ∈ Pm we define

uk :=

√
mk

m
u ∈ Smk , k ∈ N.

It is easy to see that uk → u in Hs(RN ), thus, by Lemma 5 (iii) we get

limk→+∞ ρ(uk) = ρ(u) = 0. Therefore

ρ(uk) ∗ uk → ρ(u) ∗ u = 0 in Hs(RN )

as k → +∞ and as a consequence

lim sup
k→+∞

Emk ≤ lim sup
k→+∞

I(ρ(uk) ∗ uk) = I(u).

Since this holds for any u, we obtain (12). The next step consists in proving

lim inf
k→+∞

Emk ≥ Em. (13)

From the definition of Emk , it follows that for every k ∈ N there exists vk ∈ Pmk
such that

I(vk) ≤ Emk +
1

k
. (14)

17



We set

tk :=

(
m

mk

) 1
N

and ṽk := vk

(
·
tk

)
∈ Sm.

By Lemma 5 and (14) we get

Em ≤ I(ρ(ṽk) ∗ ṽk) ≤ I(ρ(vk) ∗ ṽk) + |I(ρ(ṽk) ∗ ṽk)− I(ρ(ṽk) ∗ vk)|

≤ I(vk) + |I(ρ(ṽk) ∗ ṽk)− I(ρ(ṽk) ∗ vk)|

≤ Emk +
1

k
+ |I(ρ(ṽk) ∗ ṽk)− I(ρ(ṽk) ∗ vk)|

=: Emk +
1

k
+ C(k).

In order to prove (13) we show that limk→+∞ C(k) = 0. Indeed, as a first step

we notice that ρ ∗
(
v
( ·
t

))
= (ρ ∗ v)

( ·
t

)
, and after a change of variable we get

C(k) =

∣∣∣∣12 (tN−2sk − 1
)

[ρ(ṽk) ∗ vk]
2
Hs(RN ) −

(
tNk − 1

) ∫
RN

F (ρ(ṽk) ∗ vk) dx

∣∣∣∣
≤ 1

2

∣∣tN−2sk − 1
∣∣ [ρ(ṽk) ∗ vk]

2
Hs(RN ) +

∣∣tNk − 1
∣∣ ∫
RN
|F (ρ(ṽk) ∗ vk)| dx

=:
1

2

∣∣tN−2sk − 1
∣∣A(k) +

∣∣tNk − 1
∣∣B(k).

Since tk → 1 as k → +∞, it suffices to prove that

lim sup
k→+∞

A(k) <∞, lim sup
k→+∞

B(k) <∞. (15)

We divide the proof of (15) in three claims.

Claim 1: (vk)k is bounded in Hs(RN ).

Recalling (12) and (14) we have that

lim sup
k→+∞

I(vk) ≤ Em.

Thus, observing that vk ∈ Pmk and mk → m if the claim does not hold, we

obtain a contradiction with lemma 6 (iv).135

Claim 2: (ṽk)k is bounded in Hs(RN ), and there are a sequence (yk)k ⊂ R and

v ∈ Hs(RN ) \ {0} such that ṽ(·+ yk)→ v a.e. in RN up to a subsequence .

18



To see the boundedness of (ṽk)k it suffices to notice that tk → 1 and the state-

ment follows by claim 1. Now, we set

α = lim sup
k→+∞

sup
y∈RN

∫
B(y,1)

|ṽk|2 dx.

If α = 0, by [8, Lemma II.4] we get ṽk → 0 in L2+ 4s
N (RN ). As a consequence

we have that∫
RN
|vk|2+

4s
N dx =

∫
RN
|ṽk(tk·)|2+

4s
N dx = t−Nk

∫
RN
|ṽk|2+

4s
N dx→ 0

as k → +∞, and since P (vk) = 0, by Lemma 2 (i), we deduce that

[vk]
2
Hs(RN ) =

N

2s

∫
RN

F̃ (vk) dx→ 0.

In this case, by virtue of Remark 2, we see that

0 = P (vk) ≥ 1

2
[vk]

2
Hs(RN ) ,

which is admissible only if vk in constant. But this is in contradiction with the

fact that vk ∈ Pmk . Hence α must be strictly positive.

Claim 3: lim supk→+∞ ρ(ṽk) <∞.140

By contradiction we assume that up to a subsequence ρ(ṽk)→∞ as k → +∞.

By Claim 2 we can suppose the existence of a sequence (yk)k ⊂ RN and v ∈

Hs(RN ) \ {0} such that

ṽk(·+ yk)→ v a.e. inRN . (16)

Instead, by Lemma 5 we get

ρ(ṽk(·+ yk)) = ρ(ṽk)→∞ (17)

and

I(ρ(ṽk(·+ yk)) ∗ ṽk(·+ yk)) ≥ 0. (18)

Now, taking into account (16), (17), (18) and arguing similarly as we have al-

ready done to prove (8) we have a contradiction. The proof concludes observing

that by Claims 1 and 3

lim sup
k→+∞

‖ρ(ṽk) ∗ vk‖Hs(RN ) <∞. (19)

Hence, by virtue of (f0)− (f2) and (19), (15) holds true.
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The next result provides a weak monotonicity property for Em.

Lemma 9. If (f0)− (f4) hold, then m 7→ Em is non-increasing in (0,∞).

Proof. It suffices to show that for every ε > 0 and m, m′ > 0 with m > m′

we have

Em ≤ Em′ +
ε

2
. (20)

Now, we take χ ∈ C∞c (RN ) radial such that

χ(x) =


1 |x| ≤ 1

[0, 1] 1 < |x| ≤ 2

0 |x| > 2

and u ∈ Pm′ . For every δ > 0 we set uδ(x) = u(x)χ(δx). By a result of Palatucci

et al., see [10, Lemma 5 of Section 6.1], we know that uδ → u as δ → 0+, and

using Lemma 5 (iii) we obtain

lim
δ→0+

ρ(uδ) = ρ(u) = 0.

As a consequence of that, we obtain

ρ(uδ) ∗ uδ → ρ(u) ∗ u inHs(RN ) (21)

as δ → 0+. Now, fixing δ > 0 small enough, by virtue of (21) we have

I(ρ(uδ) ∗ uδ) ≤ I(u) +
ε

4
. (22)

After that, we choose v ∈ C∞c (RN ) with supp(v) ⊂ B
(
0, 1 + 4

δ

)
\ B

(
0, 4δ
)

and

we set

ṽ =
m− ‖uδ‖2L2(RN )

‖v‖2
L2(RN )

For every λ ≤ 0 we also define ωλ = uδ + λ ∗ ṽ. We observe that choosing λ

appropriately we have supp(uδ) ∩ supp(λ ∗ ṽ) = ∅, thus ωλ ∈ Sm.145

Claim: ρ(ωλ) is upper bounded as λ→ −∞.
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If the claim does not hold we observe that by lemma 5 (ii) I(ρ(ωλ) ∗ ωλ) ≥ 0

and that ωλ → uδ a.e. in RN as λ → −∞. Hence, arguing as we have already

done to obtain (8) we reach a contradiction. Then the claim must hold.

By virtue of the claim

ρ(ωλ) + λ→ −∞ asλ→ −∞,

thus

[(ρ(ωλ) + λ) ∗ ṽ]
2
Hs(RN ) = e2s(ρ(ωλ)+λ) [ṽ]

2
Hs(RN ) → 0

implying

‖(ρ(ωλ) + λ) ∗ ṽ‖
L2+ 4s

N (RN )
≤ C‖(ρ(ωλ) + λ) ∗ ṽ‖L2(RN ) [(ρ(ωλ) + λ) ∗ ṽ]Hs(RN ) → 0.

As a consequence, by Lemma 1 (ii), for a suitable λ

I((ρ(ωλ) + λ) ∗ ṽ) ≤ ε

4
. (23)

Finally, by Lemma 5 and using (20), (22) and (23) it easy to see that

Em ≤ I(ρ(ωλ) ∗ ωλ) = I(ρ(ωλ) ∗ uδ) + I(ρ(ωλ) ∗ (λ ∗ ṽ))

≤ I(ρ(uδ) ∗ uδ) + I((ρ(ωλ) + λ) ∗ ṽ)

≤ I(u) +
ε

4
+
ε

4
≤ Em′ + ε

completing the proof.150

The strict monotonicity of Em holds true only locally, as we now show.

Lemma 10. Assume (f0) − (f4) hold true. Moreover, let u ∈ Sm and µ ∈ R

such that

(−∆)
s

+ µu = f(u)

and I(u) = Em. Then Em > Em′ for every m′ > m close enough if µ > 0 and

for any m′ < m close enough if µ < 0.
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Proof. Let t > 0 and ρ ∈ R. Defining ut,ρ := u(ρ ∗ (tu)) ∈ Smt2 and

α(t, ρ) := I(ut,ρ) =
1

2
t2e2ρs [u]

2
Hs(RN ) − e

−Nρ
∫
RN

F (te
Nρ
2 u) dx

it is straightforward to verify that

∂

∂t
α(t, ρ) = te2ρs [u]

2
Hs(RN ) − e

−Nρ
∫
RN

f
(
te

Nρ
2 u
)
e
Nρ
2 u dx

= t−1I ′(ut,ρ) [ut,ρ] .

In the case µ > 0, we observe that ut,ρ → u in Hs(RN ) as (t, ρ) → (1, 0).

Moreover, we notice that

I ′(u) [u] = −µ‖u‖2L2(RN ) = −µm < 0

and so, choosing δ > 0 small enough we have

∂α

∂t
(t, ρ) < 0 for any (t, ρ) ∈ (1, 1 + δ)× [−δ, δ] .

Using the Mean Value Theorem, there exists ξ ∈ (1, t) such that

∂α

∂t
(ξ, ρ) =

α(t, ρ)− α(1, ρ)

t− 1

whenever (t, ρ) ∈ (1, 1 + δ)× [−δ, δ], hence

α(t, ρ) = α(1, ρ) + (t− 1)
∂

∂t
α(ξ, ρ) < α(1, ρ). (24)

Since by Lemma 5 (iii) ρ(tu) → ρ(u) = 0 as t → 1+, setting for any m′ > m

close enough to m

t :=

√
m′

m
∈ (1, 1 + δ) and ρ := ρ(tu) ∈ [−δ, δ] ,

and using (24) together with Lemma 5 (ii) we obtain that

Em ≤ α(t, ρ(tu)) < α(1, ρ(tu)) = I(ρ(tu) ∗ u) ≤ I(u) = Em.

The proof for µ < 0 is similar, and we omit it.

As a direct consequence of the previous two lemmas we have the following result.155
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Lemma 11. Assume (f0) − (f4) hold true. In addition let u ∈ Sm and µ ∈ R

such that (−∆)su+ µu = f(u) with I(u) = Em. Then µ ≥ 0, and if µ > 0 it is

Em > Em′ for any m′ > m > 0.

To make a step ahead, we describe the asymptotic behaviour of Em as m→ 0+

and m→ +∞.160

Lemma 12. Assume (f0)− (f4) hold true, then Em → +∞ as m→ 0+.

Proof. In order to prove the Lemma, we will show that for every sequence

(un)n ⊂ Hs(RN ) \ {0} such that

P (un) = 0 and lim
n→+∞

‖un‖L2(RN ) = 0

it must be I(un)→ +∞. We set

ρn :=
1

s
log
(

[un]Hs(RN )

)
and vn := (−ρn) ∗ un

Trivially [vn]Hs(RN ) = 1 and ‖vn‖L2(RN ) → 0. Moreover, thanks to these two

facts we also have by interpolation that vn → 0 in L2+ 4s
N (RN ), thus, by Lemma

1 (ii) we have

lim
n→+∞

e−Nρ
∫
RN

F
(
e
Nρ
2 vn

)
dx = 0.

Since P (ρn ∗ vn) = P (un) = 0, using Lemma 5 (i) and (ii) we obtain that

I(un) = I(ρn ∗ vn) ≥ I(ρ ∗ vn) =
1

2
e2ρs − eNρ

∫
RN

F
(
e
Nρ
2 vn

)
dx

=
1

2
e2ρs + on(1).

Since ρ is arbitrary, we get the statement as ρ→ +∞.

Lemma 13. Assume (f0)− (f4) and (f6). Then Em → 0 as m→ +∞.

Proof. We fix u ∈ L∞(RN ) ∩ S1 and we set um =
√
mu ∈ Sm. By Lemma 5

(ii) we can find a unique ρ(m) ∈ R such that ρ(m)∗um ∈ Pm. Since by Lemma

3 (i) F is non negative, we get

0 < Em ≤ I(ρ(m) ∗ um) ≤ 1

2
e2ρ(m)s [u]

2
Hs(RN ) . (25)
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Thus, by (25) it suffices to show that

lim
m→∞

√
meρ(m)s = 0. (26)

Using the function g defined in Remark 3, and recalling that P (ρ(m) ∗ um) = 0

we get

[u]
2
Hs(RN ) =

N

2s
m

2s
N

∫
RN

g
(√

me
Nρ(m)

2 u
)
|u|2+ 4s

N dx,

which implies

lim
m→∞

√
me

Nρ(m)
2 = 0. (27)

Now, using (f6) and Lemma 4, for any ε > 0 we can find δ > 0 such that

F̃ (t) ≥ 4s

N
F (t) ≥ 1

ε
|t|

2N
N−2s

if |t| ≤ δ. Hence, taking into account the fact that P (ρ(m) ∗ um) = 0 and (27),

we get

[u]
2
Hs(RN ) =

N

2s

1

m
e−(N+2s)ρ(m)

∫
RN

F̃
(√

me
Nρ(m)

2 u
)
dx

≥ N

2s

1

ε

(√
meρ(m)s

) 4s
N−2s

∫
RN

F̃
(√

me
Nρ(m)

2 u
)
dx

for m large enough. Then (26) holds, and the proof is complete.

4. Ground states165

We introduce the functional

Ψ(u) = I(ρ(u) ∗ u) =
1

2
e2ρ(u)s [u]

2
Hs(RN ) − e

−Nρ(u)
∫
RN

F
(
e
Nρ(u)

2 u
)
dx.

Lemma 14. The functional Ψ: Hs(RN ) \ {0} → R is of class C1, and

dΨ(u) [ϕ] = dI(ρ(u) ∗ u) [ρ(u) ∗ ϕ]

for every u ∈ Hs(RN ) \ {0} and ϕ ∈ Hs(RN ).

24



Proof. A proof appears in [7] for the case s = 1. Only minor adjustments are

needed in the fractional case, so we omit the details.

For m > 0, we consider the constrained functional J : Sm → R defined by170

J = Ψ|Sm . Lemma 14 yields the following statement.

Lemma 15. The functional J : Sm → R is C1 and

dJ(u) [ϕ] = dΨ(u) [ϕ] = dI(ρ(u) ∗ u) [ρ(u) ∗ ϕ]

for any u ∈ Sm and ϕ ∈ TuSm, where TuSm is the tangent space at u to the

manifold Sm.

We recall from [11, Definition 3.1] a definition that will be useful to construct a

min-max principle.175

Definition 1. Let B be a closed subset of a metric space X. We say that a class

G of compact subsets of X is a homotopy stable family with closed boundary B

provided

(i) every set in G contains B,

(ii) for any set A in G and any homotopy η ∈ C ([0, 1]×X,X) that satisfies180

η(t, u) = u for all (t, u) ∈ ({0} ×X)∪([0, 1]×B), one has η ({1} ×A) ∈ G.

We remark that B = ∅ is admissible.

Lemma 16. Let G be a homotopy stable family of compact subset with (with

B = ∅). We set

Em,G = inf
A∈G

max
u∈A

J(u).

If Em,G > 0, then there exists a Palais-Smale sequence (un)n ∈ Pm for the

constrained functional I|Sm at level Em,G. In particular, if G is the class of all

singletons in Sm, one has that ‖u−n ‖L2(RN ) → 0 as n→ +∞.185

Proof. Let (An)n ⊂ G be a minimizing sequence of Em,G . We define the map

η : [0, 1]× Sm → Sm
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where η(t, u) = (tρ(u)) ∗ u is continuous and well defined by lemma 5 (ii) and

(iii). Noticing η(t, u) = u for every (t, u) ∈ {0} × Sm we obtain that

Dn := η(1, An) = {ρ(u) ∗ u | u ∈ An} ∈ G.

In particular we can see that Dn ⊂ Pm for any m > 0, with m > 0. Since

J(ρ(u) ∗ u) = J(u) for every ρ ∈ R and u ∈ Sm, we can observe that

max
u∈Dn

J(u) = max
u∈An

J(u)→ Em,G

thus, (Dn)n is another minimizing sequence for Em,G . Now, using [11, Theorem

3.2] we get a Palais-Smale sequence (vn)n ⊂ Sm for J at level Em,G such that

distHs(RN )(vn, Dn)→ 0 as n→ +∞. We will denote

ρn := ρ(vn) and un := ρn ∗ vn.

Claim: There exists C > 0 such that e−2ρns ≤ C for any n ∈ N.

We start pointing out that

e−2ρns =
[vn]

2
Hs(RN )

[un]
2
Hs(RN )

.

By virtue of the fact that (un)n ⊂ Pm, using lemma 6 (ii) we obtain that{
[un]Hs(RN )

}
n

is bounded from below. Moreover, since Dn ⊂ Pm and the fact

that

max
u∈Dn

I = max
u∈Dn

J → Em,G ,

Lemma 6 (iv) implies that Dn is uniformly bounded in Hs(RN ). Finally, from

dist(vn, Dn) → 0 we can deduce that supn∈N [vn]Hs(RN ) < ∞. Thus the claim

holds.

Now, from (un) ⊂ Pm we get

I(un) = J(un) = J(vn)→ Em,G .

Instead, for any ψ ∈ TunSm we have∫
RN

vn [(−ρn) ∗ ψ] dx =

∫
RN

vne
−Nρn2 ψ

(
e−ρnx

)
dx =

∫
RN

e
Nρn

2 vn (eρnx)ψ dx

=

∫
RN

(ρn ∗ vn)ψ dx =

∫
RN

unψ dx = 0
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implying (−ρn ∗ ψ) ∈ TvnSm. Besides, by the claim

‖(−ρn) ∗ vn‖Hs(RN ) ≤ max{C, 1}‖ψ‖Hs(RN ).

Denoting with ‖ · ‖u,∗ the dual norm of the space (TuSm)∗ and using Lemma 10

we get

‖dI(un)‖un,∗ = sup
ψ∈TunSm
‖ψ‖Hs(RN )≤1

|dI(un) [ψ] | = sup
ψ∈TunSm
‖ψ‖Hs(RN )≤1

|dI(ρn ∗ vn) [ρn ∗ ((−ρn) ∗ ψ)] |

= sup
ψ∈TunSm
‖ψ‖Hs(RN )≤1

|dJ(vn) [(−ρn) ∗ ψ] |

≤ ‖dJ(vn)‖vn,∗ sup
ψ∈TunSm
‖ψ‖Hs(RN )≤1

‖(−ρn) ∗ ψ‖Hs(RN )

≤ max{C, 1} ‖dJ(vn)‖vn,∗ → 0

as n → +∞ remembering that (vn)n is a Palais-Smale sequence for the func-

tional J . We have just proved (un)n is a Palais-Smale sequence for the functional

I|Sm at level Em,G with the additional property that (un)n ⊂ Pm. Finally, notic-

ing that the family of singleton of Sm is a particular homotopy stable family of

compact subsets of Sm, and doing this particular choice as G, arguing similarly

as we have just done, we can obtain a minimizing sequence (Dn)n with the ad-

ditional property that its elements are non negative: we only need to replace the

functions with their absolute value. Moreover, (An)n will inherit this property,

and recalling that dist(vn, Dn)→ 0 as n→ +∞ we have

‖u−n ‖L2(RN ) = ‖ρn ∗ v−n ‖L2(RN ) = ‖v−n ‖L2(RN ) → 0.

This concludes the proof of the lemma.190

Lemma 17. We assume (f0) − (f4) hold. Then there exists a Palais-Smale

sequence (un)n ⊂ Pm for the constrained functional I|Sm at level Em such that

‖u−n ‖L2(RN ) → 0 as n→ +∞.

Proof. We apply lemma 16 with G the class of all singletons in Sm. Lemma

6 imply that Em > 0, thus the only thing that remains to prove is Em = Em,G .
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In order to do that, as a first step we notice that

Em,G = inf
A∈G

max
u∈A

J(u) = inf
u∈Sm

I(ρ(u) ∗ u).

Since for every u ∈ Sm we have that ρ(u)∗u ∈ Pm it must be I(ρ(u)∗u) ≥ Em,

thus Em,G ≥ Em. On the other hand, if u ∈ Pm we have ρ(u) = 0 and195

I(u) ≥ Em,G , that implies Em ≥ Em,G .

Lemma 18. Let (un)n ⊂ Sm be a bounded Palais-Smale sequence for the con-

strained functional I|Sm at level Em > 0 such that P (un) → 0 as n → +∞.

Then we have the existence of u ∈ Sm and µ > 0 such that, up to a subsequence

and translations in RN , un → u strongly in Hs(RN ) and

(−∆)su+ µu = f(u).

Proof. It is clear that (un)n ⊂ Sm is bounded in Hs(RN ) and is a Palais-Smale

sequence. Together, these two facts enable us to assume without loss of general-

ity that limn→+∞ [un]Hs(RN ), limn→+∞
∫
RN F (un) dx, and limn→+∞

∫
RN f(un)un dx

exist. Besides, [12, Lemma 3] implies

(−∆)sun + µnun − f(un)→ 0 in Hs(RN )∗

where we denote

µn =
1

m

(∫
RN

f(un)un dx− [un]
2
Hs(RN )

)
.

By the assumptions done above we can see that µn → µ for some µ ∈ R and we

also have that for any (yn)n ⊂ RN

(−∆)sun(·+ yn) + µun(·+ yn)− f(un(·+ yn))→ 0 in Hs(RN )∗. (28)

Claim: (un)n is non vanishing.

Otherwise by [8, Lemma II.4] we would get un → 0 in L2+ 4s
N (RN ). Taking into

account that P (un)→ 0 and using lemma 1 (ii) we get

[un]
2
Hs(RN ) = P (un) +

N

2s

∫
Rn
F̃ (un) dx→ 0
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and as a consequence of that,

Em = lim
n→+∞

I(un) =
1

2
lim

n→+∞
[un]

2
Hs(RN ) − lim

n→+∞

∫
RN

F (un) dx

contradicting Em > 0. Then the claim must hold.

Since (un)n in non vanishing we can find (y1n)n ⊂ RN and ω1 ∈ Bm \ {0} such

that un(· + y1n) ⇀ ω1 in Hs(RN ), un(· + y1n) → ω1 in Lploc(RN ) for p ∈ [1, 2∗s]

and un(·+ y1n)→ ω a.e. in RN . Now, we want to apply [13, Lemma A.1] with

P (t) = f(t) and Q(t) = |t|(N+2s)/(N−2s) and we notice that

lim
n→+∞

∫
RN

∣∣[f(un(·+ y1n)− f(ω1)
]
ϕ
∣∣ dx

≤ ‖ϕ‖L∞(RN ) lim
n→+∞

∫
supp(ϕ)

∣∣f(un(·+ y1n)− f(ω1)
∣∣ dx (29)

for any ϕ ∈ C∞c (RN ). Hence, by (28) and (29) we get

(−∆)sω1 + µω1 = f(ω1) (30)

and through the Pohozaev Identity (see for instance [14, Proposition 4.1]) asso-

ciated to (30) we also have P (ω1) = 0. Now, we set v1n := un − ω1(· − y1n) for

every n ∈ N. Clearly v1n(·+ y1n) = un(·+ y1n)− ω1 ⇀ 0 in Hs(RN ), thus

m = lim
n→+∞

‖un(·+ y1n)‖L2(RN ) = lim
n→+∞

‖v1n‖2L2(RN ) + ‖ω1‖2L2(RN ). (31)

By lemma 7 we also have

lim
n→+∞

∫
RN

F (un(·+ y1n)) dx =

∫
RN

F (ω1) dx+ lim
n→+∞

∫
RN

F (v1n(·+ y1n)) dx

hence

Em = lim
n→+∞

I(un) = lim
n→+∞

I(un(·+ y1n)) = lim
n→+∞

I(v1n(·+ y1n)) + I(ω1) (32)

= lim
n→+∞

I(v1n) + I(ω1).

Claim: limn→+∞ I(v1n) ≥ 0.

If the claim does not hold, i.e limn→+∞ I(v1n) < 0, (v1n)n is non vanishing, then

there exists (y2n)n ⊂ RN such that

lim
n→+∞

∫
B(y2n,1)

|v1n|2 > 0.
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Since v1n(· + y1n) → 0 in L2
loc(RN ), it must be |y2n − y1n| → ∞, and up to a

subsequence v1n(·+ y2n)→ ω2 in Hs(RN ) for some ω2 ∈ Bm \ {0}. We notice

un(·+ y2n) = v1n(·+ y2n) + ω1(· − y1n + y2n) ⇀ ω2

thus, arguing as before, we get P (ω2) = 0 and I(ω2) > 0. We set

v2n = v1n − ω2(· − y2n) = un −
2∑
`=1

ω`(· − y`n)

and we observe that

lim
n→+∞

[
v2n
]2
Hs(RN )

= lim
n→+∞

[
v1n
]2
Hs(RN )

+ [ω2]
2
Hs(RN ) − 2 lim

n→+∞
〈v1n, ω2(· − y2n)〉Hs(RN )

= lim
n→+∞

[
v1n
]2
Hs(RN )

+ [ω2]
2
Hs(RN ) − 2 lim

n→+∞
〈v1n(·+ y2n), ω2〉Hs(RN )

= lim
n→+∞

[un]
2
Hs(RN ) + [ω1]

2
Hs(RN ) − [ω2]

2
Hs(RN )

− 2 lim
n→+∞

〈un(·+ y1n), ω1〉Hs(RN )

= lim
n→+∞

[un]
2
Hs(RN ) −

2∑
`=1

[ω`]
2
Hs(RN )

and

0 > lim
n→+∞

I(v1n) = I(ω2) + lim
n→+∞

I(v2n) > lim
n→+∞

I(v2n).

Iterating, we can build an infinite sequence (ωk) ⊂ Bm\{0} such that P (ωk) = 0

and

k∑
`=1

[ωk]
2
Hs(RN ) ≤ [un]

2
Hs(RN ) <∞

for every k ∈ N. Though, this is a contradiction. Indeed, recalling remark 2, for200

any ω ∈ Bm\{0} such that P (ω) = 0, we can find δ > 0 such that [ω]
2
Hs(RN ) ≥ δ.

Hence, the claim must hold and limn→+∞ I(v1n) ≥ 0.

Now, we denote with h := ‖ω1‖2L2(RN ) ∈ (0,m]. By virtue of the claim, (32) and

the fact that ω1 ∈ Ph, we get

Em = I(ω1) + lim
n→+∞

I(v1n) ≥ I(ω1) ≥ Eh
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but, recalling that Em in non-increasing by lemma 9, we obtain

I(ω1) = Em = Eh (33)

and

lim
n→+∞

I(v1n) = 0. (34)

To prove that µ ≥ 0 it suffices to put together (30), (33) and Lemma 11. Instead,

to see that µ is strictly positive, using (f5), lemma 2 and the Pohozaev Identity

corresponding to (30), we get

µ =
1

ms

∫
RN

(
NF (ω1)− N − 2s

2
f(ω1)ω1

)
dx > 0. (35)

At this point, we suppose by contradiction that h < m, but taking into account

(30), (35) and Lemma (11) we would have

I(ω1) = Eh > Em

which is not compatible with (34). Thus h = m. Moreover, by (31) v1n → 0

in L2(RN ). It remains only to prove the strong convergence of (v1n)n in Hs(RN ).

To do that, it is sufficient to notice that by lemma 1 (ii) we have limn→+∞
∫
RN F (v1n) dx,205

and so we obtain the assertion thanks to (34).

Proof (of theorem 1). Applying lemma 17 we obtain a Palais-Smale se-

quence (un)n ⊂ Pm at level Em > 0 for the constrained functional I|Sm . This

sequence is bounded in Hs(RN ) by Lemma 6 and through Lemma 18 we get

a critical point u ∈ Sm at the level Em > 0 that results to be a ground state210

energy. Finally, since ‖u−n ‖L2(RN ) → 0 we deduce that u ≥ 0 and after applying

the strong maximum principle we obtain u > 0.

Proof (of theorem 2). The proof is a direct consequence of Theorem 1 and

Lemmas 6, 8, 9, 12, 13.

5. Existence of radial solutions215

This section is devoted to prove the existence of infinitely many radial solutions

to problem (Pm). Before doing this, we recall some basic definitions and we

provide some notation.
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Denote by σ : Hs(RN ) → Hs(RN ) the transformation σ(u) = −u and let X ⊂

Hs(RN ). A set A ⊂ X is called σ-invariant if σ(A) = A. A homotopy η : [0, 1]×220

X → X is σ-equivariant if η(t, σ(u)) = σ(η(t, u)) for all (t, u) ∈ [0, 1]×X. Next

definition is in [11, Definition 7.1].

Definition 2. Let B be a closed σ-invariant subset of X ⊂ Hs(RN ). We say

that a class G of compact subsets of X is a σ-homotopy stable family with closed

boundary B provided225

(i) every set in G is σ-invariant.

(ii) every set in G contains B,

(iii) for any set A in G and any σ-equivariant homotopy η ∈ C ([0, 1]×X,X)

that satisfies η(t, u) = u for all (t, u) ∈ ({0} ×X) ∪ ([0, 1]×B), one has

η ({1} ×A) ∈ G.230

We denote with Hs
r (RN ) the space of radially symmetric functions in Hs(RN )

and recall that Hs
r (RN ) ↪→ Lp(R) compactly for all p ∈ (2, 2∗s) (see [15, Propo-

sition I.1]).

In order to prove the main result of this section, we need to build a sequence

of σ-homotopy stable families of compact subsets of Sm ∩ Hs
r (RN ). We point235

out that in the definition above, the case in which B = ∅ is not excluded. The

idea is borrowed from [7]. Let (Vk)k be a sequence of finite dimensional linear

subspaces of Hs
r (RN ) such that Vk ⊂ Vk+1, dimVk = k and

⋃
k≥1 Vk is dense in

Hs
r (RN ). Denote by πk the orthogonal projection from Hs

r (RN ) onto Vk. We

recall to the reader the definition of the genus of σ-invariant sets introduced by240

M. A. Krasnoselskii and we refer to [16, Section 7] or [17, chapter 10] for its

basic properties.

Definition 3. Let A be a nonempty compact σ-invariant subset of Hs
r (RN ).

The genus γ(A) ofA is the least integer k such that there exists φ ∈ C(Hs
r (RN ),Rk)

such that φ is odd and φ(x) 6= 0 for all x ∈ A. We set γ(A) =∞ if there are no245

integers with the above property and γ(∅) = 0.
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Let A be the family of closed σ-invariant subset of Sm ∩ Hs
r (RN ). For each

k ∈ N, set

Gk := {A ∈ A | γ(A) ≥ k}

and

Em,k = inf
A∈A

max
u∈A

J(u).

Next, we give a result about the weak convergence of the nonlinearity f .

Lemma 19. Assume (f0)− (f2) hold true. Let (un)n ⊂ Hs
r (RN ). If un ⇀ u in

Hs
r (RN ) for some u ∈ Hs

r (RN ), then f(un) ⇀ f(u) in L
2N
N+2s (RN ).

Proof. We borrow some ideas from [18, Theorem 2.6]. We start exploiting

the compact embeding Hs
r (RN ) ↪→ Lp(RN ) for any p ∈ (2, 2∗s). Hence, up to a

subsequence, un → u in Lp(RN ) and a.e. in RN . From equation (42), we get

|f(un)|
2N
N+2s ≤ Cε|un|

2N
N−2s + C|un|2

N+4s
N+2s

for some Cε, C > 0. As a consequence of that, recalling the fractional Sobolev

inequality and observing that 2N+4s
N+2s ∈ (2, 2∗s), we obtain that (f(un))n is

bounded in L
2N
N+2s (RN ). Thus, there exists y ∈ L

2N
N+2s (RN ) such that f(un) ⇀

y. At this point, we fix a cover (Ωj)j of RN made of subsets with finite measure.

For any υ > 0, Severini-Egorov’s Theorem yields the existence of Bjυ ⊂ Ωj , with

measure
∣∣Bjυ∣∣ < υ, such that un → u uniformly in Ωj \Bjυ. Clearly y = f(u) in

Ωj \Bjυ. Now, we set

Q :=
{
x ∈ RN | y 6= f(u)

}
and Qj := {x ∈ Ωj | y 6= f(u)} .

Since υ is arbitrary and Qj ⊂ Bjυ, we have that Qj is a set of measure zero.250

Furthermore, it is easy to see that Q =
⋃∞
j=1Qj , thus Q has measure zero and

the proof is complete.

From now on, we will always assume (f0)−(f5) hold until the end of the section.
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Lemma 20. Let G be a σ-homotopy stable family of compact subset of Sm ∩

Hs
r (RN ) (with B = ∅) and set

Em,G := inf
A∈G

max
u∈A

J(u).

If Em,G > 0 then there exists a Palais-Smale sequence (un)n in Pm ∩Hs
r (RN )

for I|Sm∩Hsr (RN ) at level Em,G.255

Proof. It suffices to replace Theorem 3.2 with 7.2 of [11] in the proof of Lemma

16.

Lemma 21. For any k ∈ N we have,

(i) Gk 6= ∅ and Gk is a σ-homotopy stable family of compact subsets of Sm ∩

Hs
r (RN ) (with B = ∅),260

(ii) Em,k+1 ≥ Em,k > 0.

Proof. (i) It suffices to notice that for any k ∈ N one has Sm ∩ Vk ∈ A and

that by [17, Theorem 10.5]

γ(Sm ∩ Vk) = k.

Thus Gk 6= ∅. The conclusion is a direct consequence of the definition of A.

(ii) By the previous step Em,k is well defined. Furthermore, recalling that

ρ(u) ∗ u ∈ Pm for all u ∈ A, where A is chosen arbitrarily in G, we have

max
u∈A

J(u) = max I(ρ(u) ∗ u) = inf
v∈Pm

I(v),

hence Em,k > 0. The other part of the statement follows easily from Gk+1 ⊂ Gk.

Lemma 22. Let (un)n ⊂ Sm ∩ Hs
r (RN ) be a bounded Palais-smale sequence

for I|Sm at an arbitrary level c > 0 satisfying P (un) → 0. Then there exists

u ∈ Sm ∩Hs
r (RN ) and µ > 0 such that, up to a subsequence, un → u strongly

in Hs
r (RN ) and

(−∆)s + µu = f(u).
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Proof. By the boundedness of the Palais-Smale sequence we may assume un ⇀

u in Hs
r (RN ), un → u in Lp(RN ) for any p ∈ (2, 2∗s) and a.e. in RN . Besides,

as already seen in the previous section, using [12, Lemma 3] we get

(−∆)sun + µnun − f(un)→ 0 in (Hs
r (RN ))∗ (36)

where

µn :=
1

m

(∫
RN

f(un)un dx− [un]
2
Hs(RN )

)
.

Again, similarly to the proof of Lemma 18, we can assume the existence of µ ∈ R

such that µn → µ, from which we derive

(−∆)s + µu = f(u). (37)

Claim: u 6= 0.

If u = 0, then by the compact embedding un → 0 in L2+ 4s
N (RN ). Hence, using

Lemma 1 (ii) and the fact that P (un)→ 0, we have
∫
RN F (un) dx→ 0 and

[un]
2
Hs(RN ) = P (un) +

N

2s

∫
RN

F̃ (un) dx→ 0,

from which

c = lim
n→+∞

I(un) =
1

2
lim

n→+∞
[un]

2
Hs(RN ) − lim

n→+∞
F (un) dx = 0,

that contradicts the hypothesis of c > 0. Now, since u 6= 0, as we obtained (35),

we get

µ :=
1

ms

∫
RN

(
NF (u)− N − 2s

2
f(u)u

)
dx > 0.

Since un ⇀ u in Hs
r (RN ), by Lemma 19∫

RN
[f(un)− f(u)]u dx→ 0.

Indeed, the fractional Sobolev inequality implies that u ∈ L
2N
N−2s (RN ), and the

multiplication by u turns out to be a continuous linear operator from L
2N
N+2s (RN )
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into L1(RN ). Now, observing that
∫
RN f(un)(un − u) dx→ 0 by Lemma 1 (iii)

we get

lim
n→+∞

∫
RN

f(un)un dx =

∫
RN

f(u)u dx.

Finally, from (36) and (37) one has

[u]
2
Hs(RN ) + µ

∫
RN

u2 dx =

∫
RN

f(u)u dx

= lim
n→+∞

∫
RN

f(un)un dx = lim
n→+∞

[un]
2
Hs(RN ) + µm,

and since µ > 0,

lim
n→+∞

[un]
2
Hs(RN ) = [u]

2
Hs(RN ) , lim

n→+∞

∫
RN

u2n dx = m =

∫
RN

u2 dx.

Thus un → u in Hs
r (RN ).265

Lemma 23. For any c > 0, there exists β = β(c) > 0 and k(c) ∈ N such that

for any k ≥ k(c) and any u ∈ Pm ∩Hs
r (RN )

‖πku‖Hs(RN ) ≤ β implies I(u) ≥ c.

Proof. By contradiction, we assume that there exists c0 such that for any

β > 0 and any k ∈ N it is possible to find ` ≥ k and u ∈ Pm ∩ Hs
r (RN ) such

that

I(u) < c0 with ‖πku‖Hs(RN ) ≤ β.

In view of that, one can find a sequence (kj)j ⊂ N, with kj → ∞ as j → ∞,

and a sequence (uj)j ⊂ Pm ∩Hs
r (RN ) such that

‖πkjuj‖Hs(RN ) ≤
1

j
and I(uj) < c0 (38)

for any j ∈ N. Noticing that by Lemma 6 (iv) (uj)j is bounded, up to a

subsequence we have uj ⇀ u in Hs
r (RN ) and L2(RN ).

Claim: u = 0.

Since kj →∞, it follows that πkju→ u in L2(RN ), hence

(πkjuj , u)L2(RN ) = (uj , πkju)L2(RN ) → (u, u)L2(RN )

as j →∞.
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On the other hand, using (38) we get πkjuj → 0 in L2(RN ), thus the claim

must hold. Now, since ‖uj‖
L2+ 4s

N (RN )
→ 0 by the compact embedding, (uj)j ⊂

Pm ∩Hs
r (RN ), and Lemma 1 (ii), we obtain

[uj ]
2
Hs(RN ) =

N

2s

∫
RN

F̃ (uj) dx→ 0

as j →∞, which contradicts Lemma 6 (ii).270

Lemma 24. Em,k →∞ as k → +∞.

Proof. We assume by contradiction that there exists c > 0 such that

lim inf
k→+∞

Em,k < c.

Denote with β(c) and k(c) the numbers given in Lemma 23. Up to choose a

bigger c, we can find k > k(c) such that Em,k < c. Moreover, by definition of

Em,k there must be A ∈ Gk such that

max
u∈A

I(ρ(u) ∗ u) = max
u∈A

J(u) < c.

Now, recalling Lemma 5 (iii) and (iv) we get that the map ϕ : A→ Pm∩Hs
r (RN )

defined by ϕ(u) = ρ(u) ∗ u is odd and continuous. Thus, setting A := ϕ(A) ⊂

Pm ∩Hs
r (RN ) we have

max
v∈A

I(v) < c

and

γ(A) ≥ γ(A) ≥ k > k(c) (39)

by the properties of the genus. On the other hand, Lemma 23 implies that

inf
v∈A
‖πk(c)v‖Hs(RN ) ≥ β(c) > 0,

and after setting

φ(v) :=
πk(c)v

‖πk(c)v‖Hs(RN )

for any v ∈ A
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we get

γ(A) ≤ γ(φ(A)) ≤ k(c)

noticing that φ is odd, continuous and that φ(A) ⊂ Vk(c). That is against (39).

Therefore Em,k →∞ as k → +∞.

Proof (Proof of Theorem 3). For each k ∈ N, by Lemmas 20 and 21 one

can find a Palais-Smale sequence (un)n ⊂ Pm ∩ Hs
r (RN ) of the constrained

functional I|Sm∩Hsr (RN ) at level Em,k > 0. By Lemma 6 (un)n is bounded and

by virtue of Lemma 22 we deduce that (Pm) has a radial solution uk such that

I(uk) = Em,k. Moreover, using Lemma 21 (ii) and Lemma 24, we get

I(uk+1) ≥ I(uk) > 0 for any k ≥ 1

and I(uk)→∞.

6. Appendix275

Proof (Proof of Lemma 1). (i) It suffices to show that there exists δ > 0

such that ∫
RN
|F (u)| dx ≤ 1

4
[u]

2
Hs(RN )

whenever u ∈ Bm and [u]Hs(RN ) ≤ δ. In order to show that, we start noticing

that (f0), (f1), and (f2) imply that for every ε > 0 we can find C1 = C1(ε) > 0

such that

|F (u)| ≤ ε|t|2+ 4s
N + C1|t|

2N
N−2s . (40)

Hence, by (40), using the interpolation inequality and the fractional Sobolev

inequality (see for instance [2, Theorem 6.5]), we get∫
RN
|F (u)| dx ≤ ε

∫
RN
|u|2+ 4s

N dx+ C1

∫
RN
|u|

2N
N−2s dx

≤ εm 2s
N ‖u‖2

L2∗s (RN )
+ C1‖u‖

2∗s
L2∗s (RN )

≤ εm 2s
N C1 [u]

2
Hs(RN ) + C2 [u]

2∗s
Hs(RN )

=
[
εm

2s
N C1 + C2 [u]

2∗s−2
Hs(RN )

]
[u]

2
Hs(RN ) .
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Choosing

ε =
1

8m
2s
N C1

and δ =

(
1

C2

) 1
2∗s−2

the assertion is verified.

(ii) Since (f0), (f1) and (f2) hold, for every ε > 0 there exists C3, C4 > 0 such

that

|f(t)t| ≤ ε

2
|t|

2N
N−2s + C3|t|2+

4s
N

and

|F (t)| ≤ ε

2
|t|

2N
N−2s + C4|t|2+

4s
N ,

which implies

|F̃ (t)| ≤ ε|t|
2N
N−2s + (C3 + C4) |t|2+ 4s

N . (41)

By (41) we have∫
RN
|F̃ (un)| dx ≤ ε

∫
RN
|un|

2N
N−2s dx+

∫
RN
|un|2+

4s
N dx

≤ εC5 [un]
2N
N−2s

Hs(RN )
+ (C3 + C4] ‖un‖

2+ 4s
N

L2+ 4s
N (RN )

≤ εC6 + (C3 + C4) ‖un‖
2+ 4s

N

L2+ 4s
N (RN )

→ 0

as n→ +∞ and ε→ 0. The proof of limn→+∞
∫
RN |F (un)| dx = 0 is similar.

(iii). (f0), (f1) and (f2) imply that for every ε > 0 we can find C7 > 0 such

that

|f(t)| ≤ ε|t|
N+2s
N−2s + C7|t|1+

4s
N . (42)

Hence, by (42), we obtain that∫
RN
|f(un)||vn| dx ≤ ε

∫
RN
|un|

N+2s
N−2s |vn| dx+ C7

∫
RN
|un|1+

4s
N |vn| dx

≤ ε‖un‖
N+2s
2N

L2∗s (RN )
‖vn‖

N−2s
2N

L2∗s (RN )
+ C7‖un‖

N+4s
2(N+2s)

L2+ 4s
N (RN )

‖vn‖
N

2(N+2s)

L2+ 4s
N (RN )

≤ εC8‖un‖
N+2s
2N

Hs(RN )
‖vn‖

N−2s
2N

Hs(RN )
+ C9‖un‖

N+4s
2(N+2s)

Hs(RN )
‖vn‖

N
2(N+2s)

L2+ 4s
N (RN )

≤ εC10 + C11‖vn‖
N

2(N+2s)

L2+ 4s
N (RN )

→ 0

as n→ +∞ and ε→ 0. This completes the proof of the Lemma.
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Proof (of Lemma 2). (i) Let us fix m := ‖u‖2L2(RN ). We observe that ρ∗u ∈

Sm and after a change of variables we obtain

[ρ ∗ u]
2
Hs(RN ) =

∫
R2N

eNρ(u(x)− u(y))2

|x− y|N+2s
dx dy = e2ρs [u]

2
Hs(RN ) .

By virtue of the previous computation, choosing ρ� −1, Lemma 1 (i) guaran-

tees the existence of a δ > 0 such that if [ρ ∗ u]Hs(RN ) ≤ δ then

1

4
e2ρs [u]

2
Hs(RN ) ≤ I(ρ ∗ u) ≤ e2ρs [u]

2
Hs(RN ) ,

thus

lim
ρ→−∞

I(ρ ∗ u) = 0+.

(ii) For every λ ≥ 0 we define the function hλ : R→ R as follows

hλ(t) =


F (t)

|t|2+
4s
N

+ λ t 6= 0

λ t = 0.

(43)

It is straightforward to verify that F (t) = hλ(t)|t|2+ 4s
N − λ|t|2+ 4s

N . Moreover,

from (f0) and (f1) it follows that hλ is continuous, whereas thanks to (f3) we

have

hλ(t)→ +∞ as t→ +∞.

Putting together the divergence of the limit above at infinity and (f1), we can

find λ > 0 large enough such that hλ(t) ≥ 0 for every t ∈ R. Now, applying the

well known Fatou’s Lemma, we obtain

lim inf
ρ→∞

∫
RN

hλ(e
Nρ
2 u)|u|2+ 4s

N dx ≥
∫
RN

lim
ρ→∞

hλ(e
Nρ
2 u)|u|2+ 4s

N dx =∞.

Then, we observe that

I(ρ ∗ u) =
1

2
[ρ ∗ u]

2
Hs(RN ) + λ

∫
RN
|ρ ∗ u|2+ 4s

N dx−
∫
RN

hλ(ρ ∗ u)|ρ ∗ u|2+ 4s
N dx

(44)

= e2ρs
[

1

2
[u]

2
Hs(RN ) + λ

∫
RN
|u|2+ 4s

N dx−
∫
RN

hλ(e
Nρ
2 u)|u|2+ 4s

N dx

]
,

from which it follows immediately that

lim
ρ→∞

I(ρ ∗ u) = −∞.
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