We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups GL, SLc, SL, Sp). We show that hyperbolic orientations of eta-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that GL-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that eta-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the etale classifying space BGLn. Finally, we construct the universal hyperbolically oriented eta-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum MGL.

Haution, O. (2023). Motivic Pontryagin classes and hyperbolic orientations. JOURNAL OF TOPOLOGY, 16(4), 1423-1474 [10.1112/topo.12317].

Motivic Pontryagin classes and hyperbolic orientations

Haution O.
2023

Abstract

We introduce the notion of hyperbolic orientation of a motivic ring spectrum, which generalises the various existing notions of orientation (by the groups GL, SLc, SL, Sp). We show that hyperbolic orientations of eta-periodic ring spectra correspond to theories of Pontryagin classes, much in the same way that GL-orientations of arbitrary ring spectra correspond to theories of Chern classes. We prove that eta-periodic hyperbolically oriented cohomology theories do not admit further characteristic classes for vector bundles, by computing the cohomology of the etale classifying space BGLn. Finally, we construct the universal hyperbolically oriented eta-periodic commutative motivic ring spectrum, an analogue of Voevodsky's cobordism spectrum MGL.
Articolo in rivista - Articolo scientifico
motivic homotopy theory, orientation, Pontryagin classes
English
4-dic-2023
2023
16
4
1423
1474
open
Haution, O. (2023). Motivic Pontryagin classes and hyperbolic orientations. JOURNAL OF TOPOLOGY, 16(4), 1423-1474 [10.1112/topo.12317].
File in questo prodotto:
File Dimensione Formato  
Haution-2023-J Top-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 585.99 kB
Formato Adobe PDF
585.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/458520
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact