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INTRODUCTION

Let us fix a base scheme S (e.g. the spectrum of a field), and consider a cohomology theory A** on
smooth S-schemes, represented by a motivic ring spectrum A in Voevodsky’s stable A'-homotopy
category SH(S). When E is a vector bundle of rank r over a smooth S-scheme X, its Chern classes
are elements

¢;(E) € A%(X) fori=0,..,r.

This classes are commonly used to:

— detect the presence of nowhere vanishing sections of E,
— distinguish non-isomorphic bundles,
— exhibit elements in A**(X).

The existence of such classes having good properties is subject to certain conditions on the ring
spectrum A, and moreover, these classes are not determined by A alone. In fact, Panin [12, 13]
proved that the theories of Chern classes with values in the theory A™* are in correspondence
with the so-called GL-orientations of the motivic spectrum A. Panin and Walter [17] later provided
a parallel correspondence between Borel classes and Sp-orientations.

The Pontryagin classes of the vector bundle E — X are expected to be elements

pi(E) € A84(x)  fori=0,...,|r/2].
As was the case with Chern classes, it is not expected that well-behaved Pontryagin classes exist

for an arbitrary motivic ring spectrum A, nor that they should be determined by A alone. Such
classes have been defined using the Borel classes when A is Sp-oriented [1, Definition 7], but have

A ' €202 ‘Yer8ESLT

10)//:sdny wouy

8518017 SUOLILIOD 3AIIERID) 3|edl|dde 3} Aq pauob afe Sao e O ‘SN JO S3jnu 10} A#eiq1T 8UIJUO A8|IM UO (SUORIPUD-PUE-SWLIB}/W0D" A3 | IMAfed1)BUIIUO//SATY) SUORIPUOD PUe W | 8y} 88S *[£202/TT/2Z] Uo ARiq1Tauliuo 4|1 1l eURI4e0D Ag LTEZT 0doYZTTT OT/I0p/Wod A im Aeiq)



MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS | 1425

been proved to have good properties only when A is SL-oriented and 5-periodic (see [3, §7]). This
provides an important example of Pontryagin classes, but we are not aware of any systematic study
of the theories of such classes.

In this paper, we propose a notion of hyperbolic orientation of a motivic ring spectrum, which
fits into the following table:

Chern classes GL-orientation
Borel classes Sp-orientation
Pontryagin classes hyperbolic orientation

An important caveat is that we limit ourselves to the consideration of 7-periodic cohomology
theories. We will discuss at the end of this introduction the reasons why in some sense this restric-
tion is necessary. It turns out that Chern classes do not exist in the #n-periodic context, and that
Pontryagin classes are the natural characteristic classes of vector bundles (without extra struc-
ture) with values in hyperbolically oriented cohomology theories (this statement is made precise
in Theorem 5 below).

The basic idea motivating the notion of a hyperbolic orientation is that the data of Thom
classes for all symplectic bundles (i.e. a symplectic orientation) are substantially more than what
is needed in order to define Pontryagin classes: in fact, it turns out that it suffices to have these
data for hyperbolic symplectic bundles. Such bundles are determined by the vector bundle (of half
rank) whose Pontryagin classes we want to take.

This is perhaps not surprising since after all, the existing construction of Pontryagin classes in
Sp-oriented theories only involves the Borel classes of hyperbolic symplectic bundles. But those
Borel classes are constructed using the Thom classes of the universal rank 2 symplectic bundles
on the corresponding symplectic grassmannians, and those universal bundles are far from being
hyperbolic. So, it was not a priori completely clear that this program would succeed.

A hyperbolic orientation will thus be the data of a Thom class for each vector bundle, but an
important difference with all existing notions of orientation is that this class does not live in the
cohomology of the Thom space of that vector bundle. Rather, the hyperbolic Thom class of a vector
bundle E lives in the cohomology of the Thom space of the hyperbolic bundle E @ EV. That space
happens to be isomorphic to the Thom space of E @ E, and in this paper, it will be internally more
logical to consider the latter instead. The definition of a hyperbolic orientation is given in (2.2.2).

Symplectically oriented theories (and thus also GL-, SL¢-, SL-oriented ones) are naturally
hyperbolically oriented, but, for instance, orthogonally oriented ones also provide examples of
hyperbolically oriented theories (see (2.2.6) for details).

Grothendieck provided in [5] a seminal construction of Chern classes in Chow theory. He sin-
gled out the so-called projective bundle theorem as the key property, which permits to extend
the definition of the first Chern classes of line bundles (imposed by the natural relation between
the Picard group and the Chow group) to higher Chern classes of arbitrary vector bundles. This
method has been revisited over the years, and is central in Panin’s study of GL-orientations
mentioned above.

In this paper, we use the same strategy for Pontryagin classes. The main difference is that
line bundles should be replaced with rank 2 bundles. Thus, if E is vector bundle, the pro-
jective bundle P(E) with its tautological bundle ©@(-1) is replaced by the Grassmann bundle
Gr(2, E) of rank 2 subbundles with its universal rank 2 subbundle V,. The first Pontryagin class
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p1(V>) € A3*(Gr(2, E)) is constructed directly from the hyperbolic orientation, and we prove the
following analogue of the projective bundle theorem (see (3.3.5)).

Theorem 1. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. For any vector
bundle E — X of rank 2d or 2d + 1, the A**(X)-module A**(Gr(2,E)) is freely generated by the
elements 1, p;(U>), ..., p1(U5)4 L.

We may then use Grothendieck’s method to define the higher Pontryagin classes p;(E) €
A%2(X) for i = 1,...,d. We prove that these classes satisfy the expected properties, the most
notable being perhaps the Whitney sum formula (see (4.3.9)).

Proposition 2. IfE,F — X are vector bundles, their Pontryagin classes satisfy

P(E®F) =) p_(B)p;(F).
J

We also derive the following splitting principle (see (4.2.1)).

Theorem 3. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let E — X be
a vector bundle. Then there exists a morphism f : Y — X such that:

@) f*: AY(X) - A**(Y) is a split injection,
(ii) thevector bundle f*E splits as a direct sum of rank 2 vector bundles having trivial determinants,
and possibly a trivial line bundle.

Both this splitting principle and the analogue of the projective bundle theorem (Theorem 1)
are reminiscent of Ananyevskiy’s results in the SL-oriented setting [1]. The difference is that our
results apply to vector bundles without additional structure as opposed to ones with trivialised
determinant, and that the assumptions on the ring spectrum A are weaker. As an illustration
of this added flexibility, we obtain the following statement, a priori unrelated to hyperbolic
orientations.

Corollary 4. Let A € SH(S) be an n-periodic commutative ring spectrum. Then each Sp-orientation
of A is induced by at most one normalised SL-orientation.

One may notice that the above construction of Pontryagin classes in fact only uses the hyper-
bolic Thom classes of rank 2 bundles. We prove in §4.4 that such data, that we call a weak
hyperbolic orientation (see (2.3.1) for a precise definition), are, in fact, equivalent to the data of a
hyperbolic orientation. Part of this statement (the uniqueness) is, of course, a consequence of the
splitting principle, but there is more to it. Indeed, the axioms of a hyperbolic orientation include
a multiplicativity property (the Thom class of a direct sum is the product of the Thom classes of
the summands), which has no counterpart for weak hyperbolic orientations (as they concern only
rank 2 bundles). The verification of this multiplicative property is thus not a simple formality, and,
in fact, relies quite a bit on the theory developed earlier in the paper.

We also prove in §4.1 the comparatively easier fact that it is equivalent to specify the Thom
classes of the rank 2 bundles, or their first Pontryagin classes. In particular, a hyperbolic
orientation is precisely what is needed in order to obtain a theory of Pontryagin classes.
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Next, we compute in (5.3.3) the cohomology of the étale classifying space BGL,,, generalising
a computation of Levine [9, Theorem 4.1] (by including, for instance, the case when A is Sp-
oriented)

Theorem 5. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let r € N, and
n € {2r,2r + 1}. Then

A*7*(BGLn) = A*’*(S)[[pl’ L) pr]]h'

Here, the index h refers to the homogeneous power series ring. This theorem asserts that
there are no universal relations between the Pontryagin classes, and that there are no further
invariants of vector bundles with values in 7-periodic hyperbolically oriented cohomology theo-
ries. Unsurprisingly, the theorem is deduced from the computation of the cohomology of higher
Grassmannians Gr(n, 19%) for appropriate values of n, s.

In the last section, we first show that a weak hyperbolic orientation of an 5-periodic cohomology
can be defined by specifying the Thom class of the universal rank 2 vector bundle, in the form of an
element in the cohomology of a certain motivic space MH,, subject to a normalisation condition.

We then construct a motivic ring spectrum MH similar to Voevodsky’s cobordism spectrum
MGL, and show that it becomes the universal #-periodic hyperbolically oriented commutative
ring spectrum after inverting 7. The considerations of that section are parallel to those of Panin-
Pimenov-Rondigs [14] on MGL, and of Panin-Walter [16] on MSp.

To summarise, we describe in this paper five equivalent structures on an 7-periodic commuta-
tive ring spectrum A € SH(S):

(i) hyperbolic orientations (2.2.2),

(ii) weak hyperbolic orientations (2.3.1),

(iii) Pontryagin structures (4.1.2),

(iv) ‘normalised’ elements of A3*(MH,) (6.2.1),
(v) morphisms of ring spectra MH — A (6.3.4).

These equivalences are established in (4.1.5), (4.4.11), (6.2.8) and (6.3.11).

Let us now comment on the standing assumption of #-periodicity. In order to construct
Pontryagin classes using Grothendieck’s method, we need the analogue of the projective bun-
dle theorem (Theorem 1). When the vector bundle E is trivial of rank 3 over the base S, the
Grassmannian Gr(2, E) is identified with the projective space P2, and the conclusion of the-
orem is that the pullback A**(S) — A**(P?) is an isomorphism. This condition is equivalent
to the requirement that the pullback along the Hopf map 7: A2\{0} — P! induces an iso-
morphism in A**, and so, making this assumption is necessary if we are to obtain Pontryagin
classes satisfying the analogue of the projective bundle theorem. Looking at the situation in
topology reinforces this idea: there it is known that the Pontryagin classes satisfy the Whitney
sum formula only up to 2-torsion, and the Hopf element 7 € 7~~(R) maps to 2 upon real
realisation. It would, of course, still be interesting to systematically study Pontryagin classes
beyond the 7-periodic context, but one probably should not expect such a simple picture
to emerge.

Apart from the construction of the motivic stable homotopy category (as well as certain abstract
considerations on symmetric spectra in §6), the paper is fairly self-contained; the only external
results used in an essential way are contained in the paper [6] (those are (2.1.3), (3.1.1) and (3.1.3)).
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1 | NOTATION AND BASIC FACTS

1.1. Throughout the paper, we work over a noetherian base scheme S of finite dimension. The
category of smooth separated S-schemes of finite type will be denoted by Smg. All schemes will be
implicitly assumed to belong to Smg, and the notation A", P", G,, will refer to the corresponding
S-schemes. We will denote by 1 the trivial line bundle over a given scheme in Smyg.

1.2. We will work with the Al-homotopy theory introduced by Morel-Voevodsky [11]. We will
denote by Spc(S) the category of motivic spaces (i.e. simplicial presheaves on Smy), by Spc, (S) its
pointed version and by Spt(S) the category of T-spectra, where T = Al /G,,,. We endow these with
the motivic equivalences, resp. stable motivic equivalences, and denote by H(S), H, (S), SH(S) the
respective homotopy categories. We refer to, for example, [15, Appendix A] for more details.

We have an infinite suspension functor X : Spc,(S) — Spt(S). Composing with the functor
Spe(S) — Spe.(S) adding an external base point, we obtain a functor Z° : Spe(S) — Spt(S).

The spheres are denoted as usual by SP4 € Spc,(S) for p,q € N with p > q, (where T ~
S21). The motivic sphere spectrum will be denoted by 14 = IS € Spt(S). When A is a
motivic spectrum, we denote its (p, g)th suspension by ZP9A4 = A A Z*SP4. This yields functors
%P4 : SH(S) — SH(S) for p,q € Z.

1.3. Let X € Smyg, with structural morphism f : X — S. Then viewing a smooth X-scheme as an
S-scheme induces a functor fy : H,(X) — H.(S) (see, e.g. [11, p.104] where it is denoted by L f}).
We will also denote by f; : SH(X) — SH(S) the induced functor.

1.4. When E — X is a vector bundle with X € Smg, we denote by E° = E \ X the complement of
its zero-section. The Thom space of E is the pointed motivic space Thy(E) = E/E°.When f : Y —
X is a morphism in Smg, we will usually write Thy (E) instead of Thy (f*E). Note that a vector
bundle inclusion E C F over X induces a map Thy(E) — Thy(F).

1.5. LetV — S be avector bundle. We denote by =V : H,(S) — H.(S) the derived functor induced
by A = A A Thg(V). We will also denote by =V : SH(S) — SH(S) the induced functor.

1.6. In an attempt to lighten the notation, we will sometimes remove the symbols * or Z$° for
the notation, when the context makes the meaning sufficiently clear. In particular, we will sys-
tematically write Thy(E) € Spt(S) instead of X* Thy(E), and when f is a morphism in Smg or
Spc(S) (resp. in Spc, (S)), we will often write f instead of Z° f (resp. Z f).

1.7. Assume that 0 » E’ - E — E” — 0 is an exact sequence of vector bundles over X € Smy.
Then, by [18, §4.1] or [7, Remark 3.2.7] (see, e.g. [2, Proof of Lemma 4] for the explicit homotopies),
we have a canonical isomorphism in H, (S)

Thy(E) ~ Thy(E' @ E"),

which is induced by any splitting of the above exact sequence, if such exists.

1.8. (See [18, p. 243].) We will use the following alternative to Jouanolou’s trick. Assume that 0 —
E' - E - E"” — 01s an exact sequence of vector bundles over X € Smg. Consider the scheme Y
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parametrising sections of E — E” (a closed subscheme of the vector bundle Hom(E"”, E) over X).
The morphism f: Y — X is a torsor under the vector bundle Hom(E"”, E’), and, in particular,
Y € Smy. In addition, there exists an isomorphism f*E ~ f*E’ @ f*E" of vector bundles over Y.

1.9. Let A € Spt(S) be a motivic spectrum. For C € Spt(S), we write

and A**(C) =6 pgez AP1(C). When & is a pointed motivic space, resp. a motivic space, we will
write A™*(X) instead of A™*(Z®X), resp. A**(ZLX). If E — X is a vector bundle of constant rank
r with X € Smg, we write

APA(X;E) = APT24H (Thy(E)),

and extend this notation to arbitrary vector bundles in an obvious way. Note that for any d € N,
the auto-equivalence 2244 of SH(S) induces isomorphisms

y2dd . APA(X:E) S API(XGE @ 199). (1.9.a)

A morphism f: B — B’ in SH(S) induces a pullback f*: A**(B') - A**(B). A morphism
1 : A - A’in SH(S) induces a pushforward ¥, : A**(B) - A’**(B) for any B € Spt(S).

1.10. Wedenotebyn: A2\{0} - P!inSpc,(S) the map (x,y) — [x : y], where A? \{0} is pointed
by (1,1) and P! by [1 : 1].

1.11. A motivic spectrum A € Spt(S) is called n-periodic if the map

5 id AZ®n 1
AATOAI\{0) —5 AAZ®P

is an isomorphism in SH(S). The full subcategory of such objects will be denoted as Spt(S)[n~'1,
and may be viewed as a left Bousfield localisation of Spt(S), as explained in [4, §6]. The homotopy
category of Spt(S)[n~!] will be denoted by SH(S)[n~'], and we will usually omit the mention of
the inclusion and localisation functors. When A € Spt(S) is n-periodic and X € Spc. (S), we thus
have a natural identification

The functor of (1.3) descends to a functor fy : SH(X )n~'] = SH(S)[n~'], and the functor of (1.5)
to a functor ¥ : SH(S)[n~'] = SH(S)[n~'].

1.12. By a ring spectrum, resp. commutative ring spectrum, we will mean a monoid, resp. com-
mutative monoid, in (SH(S), A, 15). Let A € SH(S) be a ring spectrum, with multiplication map
u:ANA - A LetX € Smg,and Ay : X — X X X its diagonal. If x,y € A**(X), we denote by
xUy € A%*(X), or simply xy, the composite in SH(S)

Ay XAY u
Z‘fX — Zf(X Xg X) = (Z:’f’X) A (Z‘fX) —> ANA—> A
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More generally, let V,W — X be vector bundles, and denote by p;,p,: X X¢ X — X the
projections. Then, Ay induces a morphism in SH(S)

Thy(V @ W) = Thy (A (p1V @ p;W)) — Thyy x(p1V @ p;W) = Thy (V) A Thy (W)

that we denote again by Ay. As above, if x € A**(X;V) and y € A**(Y; W), we may define an
elementx Uy € A**(X;V @ W) as uo(x A y)oAy.

In particular, this endows A™*(X) with a ring structure, and A**(X;V) with an A**(X)-
bimodule structure.

Observe that the isomorphism of (1.9.a) is given by the cup product with 2441 € A%0(X;199),
so that we have

s2d(xuy)=xuz?dy,  foranyx € AV (X;V),y € AV (X;W). (1.12.a)

1.13. Allrings will be associative and unital. Let R be a ring. In this paper, an R-algebra will mean a
monoid in the category of R-bimodules. By R[X;, ..., X,,], we will mean the polynomial ring where
the variables x, ..., x,, are understood to be central.

1.14. Let M be an abelian group, and R an M-graded ring. If my,...,m, € M, we may view
R[x,,...,x,] as an M-graded R-algebra, where each x; has degree m;. We let L C R[x, ..., x,]
is the (two-sided) ideal generated by x, ..., x,. We will denote by R[[x, ..., x,]];, the M-graded
ring of homogeneous power series, defined as the limit in the category of M-graded R-algebras of
R[xy,...,x,.]/L" for n € N. (Each homogeneous component is the limit in the category of abelian
groups of the corresponding homogeneous components of R[x, ..., x,]/L".)

1.15. (See[2,Lemma2].) LetX € Smg, and E,V — X be vector bundles. We claim that there exists
a canonical isomorphism in H,(S)

oz Thy(V @ E) — Thy(V @ EY). (1.15.2)

Indeed, we reduce to the case X = S using the functor fﬁ of (1.3), and then to the case V =0
using the functor 2, of (1.5). Consider then the closed subscheme Y C E @ EV consisting of
those pairs (x, f) such that f(x) = 1. Then, the projection Y — E° given by (x, f) — x is an
affine bundle, hence a weak equivalence of motivic spaces. Since the projection E @ E¥ — E is
a weak equivalence, we obtain a weak equivalence (E @ EV)/Y — E/E° = Thy(E). Similarly,
we have a weak equivalence (E @ EY)/Y — Thy(EY). This yields the required isomorphism
op . Thy(E) N Thy(EY) in H,(S). Let us record that we have a commutative diagram in H,(S),
where the maps from X are the zero-sections,

E, ——> Thy(E)

] |

Xy —=(E®E"), —=(E®E")/Y o (1.15.b)

N i

(B¥); — Thy(E").
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1.16. Let us denote by can: Thg(1Y) — Thg(1) the morphism in SH(S) induced by the canonical
isomorphism 1¥V — 1 of vector bundles over S. We consider the isomorphism in SH(S)

—2-1 (1)

2,—-1 z

—2~1(can)

b
> 21 Thy(1Y) ———— 7271 The(1) = 1.
For any motivic ring spectrum A € SH(S), we will write ¢ € A%°(S) instead of e*(1).

Let us mention that e = —(—1), using a standard notation (see, e.g. [10, Lemma 6.3.5]).

Since ne = 7 by [10, Lemma 6.2.3] (where the fact that base scheme is the spectrum of a perfect
field plays no role), we have ¢ = 1 € A%%(S) when A is n-periodic.

2 | HYPERBOLIC STRUCTURES
2.1 | Zero-sections
2.11. Let E — X be a vector bundle with X € Smg. We denote by
zp: X, = Thy(E) € H.(S) (21.1.a)

the composite of the zero-section X, — E, followed by the canonical map E, — E/(E°) =
Thy(E). Equivalently, the map zy is the composite X, = Thy(0) - Thy(E) where the second
map is induced by the inclusion 0 C E. More generally, when V — X is a vector bundle, the
zero-section of E induces an inclusion V — E @ V, and thus, a morphism of pointed motivic
spaces

When X = S, observe that (2.1.1.b) is obtained from (2.1.1.a) by applying the functor =V of (1.5).

2.1.2. The element 1 € H°(S, G,,) yields a section of the projection G,, — S, which implies that
the map z; : S, — (A), /(G,,), = Thg(1) is zero in H, (S).
We will use the following splitting principle from [6].

Proposition 2.1.3 [6, (4.2.5)]. Let X € Smg, and V — X be a vector bundle of constant odd rank.
Then there exists a morphism f : Y — X in Smg whose image in SH(S)[n] admits a section, and
avector bundle W — Y such that f*V ~ W @ 1.

Lemma 2.1.4. Let X € Smyg. Let E — X be a vector bundle, and F C E a subbundle such that E /F
has constant odd rank. Then the morphism Thy(F) — Thy (E) vanishes in SH(S)[n~].

Proof. Let Q = E/F. By (1.8), we may assume that F C E extends to an isomorphism Q @ F ~ E.
Then, the composite Thy(F) — Thy(E) ~ Thx(Q & F) is the map z,, of (2.1.1.b). Applying the
functor f : SH(X)[n~'] = SH(S)[n~'] of (1.3) (in view of (1.11)), we may assume that X = S, and
applying the functor =F : SH(S)[n~!] — SH(S)[5~!] of (1.5) (in view of (1.11)), we reduce to the
case F = 0. It will thus suffice to show that z, : 13 — Thg(Q) vanishes in SH(S)[n~']. By (2.1.3),
we may find a morphism f : Y — SinSmg admitting a section o in SH(S)[7~'], and such that f*Q
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admits the trivial line bundle as a direct summand over Y. In view of the commutative diagram
in SH(S)[~!] (where horizontal composites are the identities)

1g ‘ XY ! 1g

ZQ\L \Lid Az iZQ
oAidmg () fAidrhgo)

Ths(Q) ————— Z3Y A Thg(Q) —————— Thy(Q),

it will suffice to prove the vanishing of the middle vertical map. That map may be identified with
Zpegt ZFY — Thy(Q), hence factors through z; : ZFY — Thy (1) (because the inclusion 0 C
f*Q factors through 1 over Y'), which vanishes by (2.1.2). O

2.2 | Hyperbolic orientations
2.2.1. LetE,F — X be vector bundles with X € Smg. We denote by
swpp: Thy(E@F@®E®F)— Thy(E®E@F ®F)

the isomorphism of pointed motivic spaces over S given by (e, f, ¢, f') = (e, e, f, f').

Definition 2.2.2. Let A € SH(S) be a ring spectrum. A hyperbolic orientation on A is the datum
of a class

o € A%(X;E®E)

for each vector bundle E — X with X € Smy, subject to the following conditions:
(i) the class oy is A**(X)-central,
(ii) if f: Y — X is a morphism in Smg and E — X a vector bundle, then f*og = 0.p,
(iii) ifE = Fisan isomorphism of vector bundles over X € Smy, then the induced isomorphism
A (X;F @ F) — A**(X;E @ E) maps o to o,
(iv) o, = =21,
(v) if E, F are vector bundles over X € Smy, we have opgr = swy, (o5 U 0p).

Remark 2.2.3. Axioms (2.2.2.iv) and (2.2.2.v) imply that o, = 1.
2.2.4. If the ring spectrum A is commutative, then the axiom (2.2.2.i) is automatically satisfied:
indeed, if E has constant rank r, then o, € A*°(X;E @ E) = A*?'(Thy(E @ E)) commutes with

every elements of A**(X) (see, e.g. [16, Theorem 2.4]).

Lemma 2.2.5. Let A € SH(S) be a hyperbolically oriented ring spectrum. If E, V are vector bundles
over X € Smy, then the morphism

AP X V) > A (XGVDE®E), x+- xUog

is bijective.
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Proof. By a Mayer-Vietoris argument and (2.2.2.ii), we can assume that E ~ 19 for some s € N,
and then by (2.2.2.iii) that E = 195, We reduce to the case s = 1 using (2.2.2.v) (replacing V with
V192" forn =0,...,s — 1), and conclude with (2.2.2.iv). O

Example 2.2.6. Let A € SH(S) be a commutative ring spectrum equipped with a normalised Sp-
orientation, in the sense of [3, Definition 3.3]. Thus, every symplectic bundle V' — X with X €
Smyg has a Thom class th;, € A%°(X; V). For a vector bundle E — X with X € Smg of constant
rank n, we set (using the element ¢ of (1.16))

op =¢ " op(thyp) € A"(X;E @ E), (2.2.6.a)

where o5 : Thy(E @ E) 5 Thy(E @ EV) is the isomorphism of (1.15), and H(E) the vector bun-
dle E @ EV equipped with the hyperbolic symplectic form. Then one verifies that E — oy defines
a hyperbolic orientation of A. Similarly, any normalised O-orientation (defined in the expected
way) yields a hyperbolic orientation. (This is the origin of the terminology of (2.2.2).)

Recall from (1.16) that € = 1 € A%%(S) when A is n-periodic, so that the formula (2.2.6.a)
simplifies to

op = 0p(thy) Wwhen A is n-periodic. (2.2.6.b)

Definition 2.2.7. Let A € SH(S) be a hyperbolically oriented ring spectrum. When E — X is a
vector bundle with X € Smg, we define its Euler class

e(E) = zj(op) € A (X E)
(the map z was defined in (2.1)), and its top Pontryagin class

7(E) = 2, (05) € A (X).

If E has constant rank r, then e(E) € A¥*"(X;E) and n(E) € AY?"(X).

2.2.8. The following basic properties of the Euler and top Pontryagin classes are easily verified,
where E — X is a vector bundle with X € Smg:

(i) the elements e(E) € A**(X;E) and n(E) € A**(X) are A**(X)-central,

(i) e(f*E) = f*e(E) and n(f*E) = f*(«(E)) for any morphism f : ¥ — X in Smygj,
(iii) e(1) = 0and 7(1) = 0,
(iv) e(0) =1and 7(0) =1,

(v) e(E®F) =e(E)Ue(F)and n(E @ F) = n(E)x(F) for any vector bundle F — X.

The next proposition expresses the familiar fact that the top Pontryagin class is the square of
the Euler class.

Proposition 2.2.9. Let A € SH(S) be a hyperbolically oriented ring spectrum. Let X € Smyg, and
E — X be a vector bundle. Then,

e(E)Ue(E) =n(E)Uop € A (X;E®DE).
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Proof. Consider the maps in SH(S)
a: Thy(E®?) - Thy(E®*), b: Thy(E®?) - Thy(E®), c: Thy(E®*) - Thy(E®Y),

respectively, given by the injective matrices

0 0 0 0 -1 0 0 O
A= 1 0  B= 0 0 . C= 0O 0 1 0 .
0 0 1 0 0O 1 0 O
0 1 0 1 0O 0 0 1
Then, in A**(X;E ® E),
e(E)Ue(E) =a"(ogpUog) ; 7(E)Uog =b*(og5Uog). (2.2.9.a)

Since CA = B, we have coa = b. As the matrix C has coefficients in Z and determinant one, it is
a product of transvections, and hence, we have ¢ = id in SH(S) (see, e.g. [2, Lemma 1] where the
fact S is the spectrum of a field plays no role). Thus, a = b in SH(S), and the result follows from
the formulas (2.2.9.a). O

The next proposition is a variant of results of Ananyevskiy [1, Corollary 2], [3, Theorem 7.4] and
Levine [9, Lemma 4.3].

Proposition 2.2.10. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let E
be a vector bundle over X € Smyg. If E admits a quotient of constant odd rank, then

e(E)=0 and n(E)=0.

Proof. Let F C E be a subbundle such that E/F has odd rank. Then, by definition, e(E) is the

image of o under the pullback along the composite Thy (F) =, Thy(F @ E) —» Thy(E® E) in
SH(S). The latter vanishes in SH(S)[7~'] by (2.1.4) (applied to the subbundle F @ E C E @ E),
hence e(E) = 0. Therefore, 7(E) = zj(e(E)) = 0. O

2.3 | Weak hyperbolic orientations

Definition 2.3.1. Let A € SH(S) be a ring spectrum. A weak hyperbolic orientation on A is the
datum of a class

t; € A%X;E®QE)

for each rank 2 vector bundle E — X with X € Smyg, subject to the following conditions:

(i) the class ty is A**(X)-central,
(ii) if f: Y — X is a morphism in Smg and E — X a rank 2 vector bundle, then f*ty =t s.p,
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(iii) if E S Fisan isomorphism of rank 2 vector bundles over X € Smg, then the induced
isomorphism A**(X;F @ F) — A**(X;E @ E) maps t to t,
(iv) te2 = sw} (Z¥*1) (in the notation of (2.2)).

Remark 2.3.2. Using a standard notation (see, e.g. [10, Lemma 6.3.4]), we have sw; 1(28’41) =
T84(-1).

Remark 2.3.3. It is clear that a hyperbolic orientation (see (2.2.2)) on a motivic ring spectrum A
induces a weak hyperbolic orientation. We will see in (4.4.11) that the two notions, in fact, coincide

when A is n-periodic.

2.3.4. Asexplained in (2.2.4), the axiom (2.3.1.i) is automatically satisfied when the ring spectrum
A is commutative.

Lemma2.3.5. Let A € SH(S) be a hyperbolically oriented ring spectrum. IfE — X is a rank 2 vector
bundle with X € Smyg, then the morphism

A (X) > A (XGE®E), x+ xUtg
is bijective.

Proof. By a Mayer-Vietoris argument and (2.3.1.ii), we can assume that E ~ 192, and then, by
(2.3.1iii) that E = 192. Then the statement follows from (2.3.1.iv). O

Definition 2.3.6. Let A € SH(S) be aring spectrum with a weak hyperbolic orientation. For every
rank 2 vector bundle E — X with X € Smg, we define its Euler class

e(E) = z}(ty) € A¥*(X;E)
(the map z was defined in (2.1)), and top Pontryagin class
7(E) = zjgp(tp) € A (X).

Lemma 2.3.7. Let A € SH(S) be an n-periodic ring spectrum with a weak hyperbolic orientation.
Let X € Smg and E — X be a rank 2 vector bundle. Then,

7(E) = n(EY).
Proof. By (2.1.3), we may assume that the line bundle det E admits a trivialisation. Then,
the alternated form E®? — A’E = detE ~ 1 is non-degenerate, hence E ~ EY as vector

bundles. O

Remark 2.3.8. Lemma (2.3.7) will be generalised to vector bundles of higher rank when A is
hyperbolically oriented (see (4.3.10) and (4.3.11)).
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2.4 | Pushforwards along closed immersions

2.4.1. (See,e.g.[7,83.5].) Leti: Y — X be aclosed immersion in Smg with normal bundle N, and
u: U — X its open complement. There exists a canonical isomorphism X /U ~ Thy(N)in H,(S),
called purity isomorphism. We consider the composite

i:X, = X/U=~Thy(N)in H,(S).
More generally, when V' — X is a vector bundle, a map in H,(S)
i: Thy(V) - Thy(N @ i*V)

is constructed from the above map by first using the functor f, : H,(X) — H.(S) of (1.3) to reduce
to the case when S = X, and then applying the functor =V of (1.5) to reduce to the case V = 0. We
then have a distinguished triangle in SH(S)

Thy (V) 2 Thy(V) > Thy(N @ i*V) — £ Thy, (V). (2.4.1.2)

2.4.2. In the situation of (2.4), let A € SH(S) be a ring spectrum. When N has constant rank r, we
will write

s

i, 1 AP29T(Y;N @ i*V) = AP9(Thy (N @ i*V)) — API(X; V),

and extend this notation in an obvious fashion to the case when N is arbitrary. We thus have a
long exact sequence

o AY(YIN @ IV) = A (X V) o A (U V) > - (2.4.2.2)

2.4.3. Let X € Smg, and E — X be a vector bundle. It follows from the discussion in [13, §2.4.5]
that the purity isomorphism E/E° ~ Thy(E) in H,(S) coincides with the identification arising
from the definition of the Thom space Thy(E).

2.4.4. (See,e.g.[7,p-233].)Leti: Y - X and j: Z — Y be closed immersions in Smg. Denote by

N;,N i N joi the respective normal bundles of i, j, joi. Then, we have an exact sequence of vector

bundles over Z
0_)N]_)Njol_)J>\Nl_)0

Let V — X be a vector bundle. Then, the composite

i N o RN %)
Thx(V)—) Thy(Nl @ lV) g Thz(N] @ J Ni @ J1 V) ~ ThZ(NjOi)

coincides with E in H,(S).
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2.4.5. Consider a cartesian square in Smg

Y/ $ XI
gl if (2.4.5.2)

y Lo X,

where i,i’ are closed immersions with respective normal bundles N, N’. Let V — X be a vec-
tor bundle. Then, we have a commutative diagram in H,(S), where e is induced by the natural
inclusion N’ C ¢*N, and h = iog = foli/,
Thy (N @ h*V) <~— Thy, (N’ @ h*V) <— Thy, (V)
J{g J{ f (2.4.5.b)
Thy(N)

Thy (V).
2.4.6. If Y =@ in (2.4.5), then it follows from the commutative diagram (2.4.5.b) that the
composite Thy/ (V) i) Thy (V) 5 Thy (N @ i*V) vanishes in H, (S).

2.4.7. We say that the cartesian square (2.4.5.a) is transverse if the natural inclusion N’ C ¢g*N is
an isomorphism, in which case the map e in the diagram (2.4.5.b) is an isomorphism.
We will use the following form of the projection formula.

Lemma 2.4.8. Let A € SH(S) be a ring spectrum. Leti: Y — X be a closed immersion in Smg with
normal bundle N.

(i) LetV — X be avector bundle, and x € A**(Y;N)and a € A**(X;V). Then
i,(xvuitfa)=i(x)Ua e A X;V).
(i) Ifb € A**(X)andy € A**(Y; N), then we have
i,@*buy)=>bui,(y) € A (X)

Proof. We use the notation of (1.12). The cartesian squares in Smg

i

Y X Y i X
(idy,i)l le (i,idy)l le
ixidy idy xi
Y Xg X — %~ X xg X XxXgY — o X %X

are transverse, and thus, yield by (2.4.5) and (2.4.7) commutative diagrams in H, (S)

i i

Thy (N @ i*V) Thy (V) Thy (N) X,
| o | |
Thy(N) A Thy (V) Nd X, AThy(V) X, AThy(N) =" x, A X,.
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The left vertical morphism of the left square factors as

A id AL
Thy (N @ i*V) — Thy (N) A Thy (V) — Thy(N) A Thy(V),

while the left vertical morphism of the right square factors as

Ay inid
Thus, denoting by u: A A A — A the product, for x, a as in (i), we have

i,(xUi*a) =i,0Ajo(id AD)*(uo(x A a))
= A}o(i Aid)*(uo(x A @)

=i,(x)Va,
proving the first formula. The other formula follows from the computation

i,(*buy) = i*oA;k,o(i Aid)*(uo(b A y))
= Ay o(id AD)*(o(b A y))

=bui. (). O

2.4.9. Let X € Smg and E — X be a vector bundle. Let s be a section of E, and consider its zero-
locusi: Y — X, defined as the equaliser of s and the zero-section in the category of S-schemes.
We will say that s is transverse to the zero-section if Y € Smg and the natural inclusion N C i*E is
an isomorphism, where N is the normal bundle of i.

Lemma 2.4.10. Let E,V be vector bundles over X € Smg. Let s © X — E be a section transverse to
the zero-section, whose zero-locus we denote by i . Y — X. Then in H,(S) the composite

Thy (V) — Thy(E @ V) - Thy(E & V)

coincides with zy (see (2.1)).

Proof. Using the functor f; : H,(X) — H.(S) of (1.3), we reduce to the case when S = X. Applying
the functor =V of (1.5), we reduce to the case V = 0.
Let us denote by z : X — E the zero-section. The cartesian square in Smg
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is transverse, and yields by (2.4.5) and (2.4.7) a commutative square in H, (S)

Thy(E) <—— X,

Thy(E) <>—E,.

Now the maps s,z : X — E coincide in H(S), being sections of the vector bundle projection E —
X. Thus, s, =z, : X, - E, in H,(S). In view of (2.4.3) and (2.1), the composite zoz, : X, —
Thy(E) coincides with zg, and the statement follows. O

Lemma 2.4.11. Let A € SH(S) be a ring spectrum. Let X € Smg, and E — X be a vector bun-
dle. Assume that E, resp. E @ E, admits a section transverse to the zero-section, whose zero-locus
we denotebyi: Y — X.

(i) If A is endowed with a hyperbolic orientation, then the composite
A" ’(X)—»A’ *(Y) 5 AM(Y; EeaE)—>A* “(X;E),

" Uoge ]
resp. A**(X) > A*(Y) —t> AM(YSE @ E) = A(X),
is (left or right) multiplication with e(E), resp. m(E).
(ii) Assume that E has rank 2. If A is endowed with a weak hyperbolic orientation, then the
composite
A® *(X) LA (Y) 22, A% (Y:E @ E) X A% (X:E),
resp. A**(X)—)A* *(Y) AR*(Y; EéBE)—)A* X)

is (left or right) multiplication with e(E), resp. m(E).

Proof. Let by = oy € A%(X;E @ E) in case (i), and b = t; € A*°(X; E @ E) in case (ii). Then,
the composite of the statement coincides with

A (X) 25 A (X E @ E) — A**(Y EEBE) = A**(X;E),

. Uf): i .*
resp. A*(X) — A*(X;E @ E) — A™(Y;E ® E) = A**(X),

hence maps 1to e(E), resp. 7(E), by (2.4.10) (with V' = E, resp. V = 0). The statement then follows
from the projection formula (2.4.8.ii). O

3 | GRASSMANNIANS OF 2-PLANES
3.1 | Projective bundles
We will use the following.

Proposition 3.1.1 [6, (4.1.6) and (4.1.5)]. Let E — X be a vector bundle of constant rank r, with
X € Smg.
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(i) Ifrisodd, then the map 2 P(E) — X is an isomorphism in SH(S)[n71].
(ii) Ifr is even, then Thp(g)(Op) (1)) = 0 in SH(S)[n'].

3.1.2. Let E — X be a vector bundle with X € Smyg, and denote by q : P(E) — X the projection.
Then, Opg)(—1) is naturally a subbundle of g*E, and we denote by Qp = q*E/Op)(—1) the
quotient bundle.

Lemma 3.1.3. Let E — X be a vector bundle of constant even rank, with X € Smg. Then
Thpg)(Qp) =0in SH(S)[n™].

Proof. By (1.7), we have an isomorphism in SH(S)

Thp ) (Qp @ Op(g)(—1) @ Opg)(—1)) = Thpg) (" E @ Opg)(—1)),

where q : P(E) — X is the projection. Now in SH(S)[n!], we have Thpg)(Qp @ Opg)(—1) &
Op(g)(—1)) = Thp)(QE) by [6, (3.3.11)], and Thyp)(q*E @ Op)(—1)) = 0 by [6, (4.1.5)]. This
proves the statement. O

Lemma 3.1.4. Let E — X be a vector bundle of constant even rank, with X € Smg. Consider the

closed immersion i : X = P(1) » P(E @ 1). Then the natural isomorphism E = "Qpg induces
an isomorphism in SH(S)[n™!] (see (2.4))

i1 Thppen(Qse1) — Thy(E ® E).

Proof. The open complement W of i is a line bundle over P(E) (namely Opg)(1)). Its zero-
section P(E) — W induces an isomorphism in SH(S), and the composite P(E) - W C P(E @ 1) is
the closed immersion j : P(E) - P(E @ 1) induced by the inclusion E C E @ 1. Since the normal
bundle to i is E and j*Qpqg; = Qf @ 1, this yields by (2.4) a distinguished triangle in SH(S)

j i
Thpg)(Qr ® 1) = Thprg)(Qrer) = Thy(E @ i*Qpg,) — 10 Thp ) (Qr @ 1).

Now Thpg)(Q @ 1) = 0by (3.1.3), and hence iis an isomorphism. The composite Opren(—1) C
q*(E & 1) — 1restricts to an isomorphism on the open complement of j,whereq: P(E® 1) - X
is the projection. Since i factors through that open subscheme, it follows that the composite
i*OP(EeBl)(_l) — E®1 — 1 is an isomorphism, and hence so is the composite ECE® 1 —
(E®1)/i*Opgg1)(—1) = i*Qpgy,- This induces an isomorphism Thy(E @ i*Qpg,;) =~ Thy(E &
E), completing the proof. L]

3.2 | Grassmann bundles
We now gather basic observations on Grassmann bundles that will be used repeatedly in the paper.
3.21. LetX € Smgand E — X beavector bundle. Letn € Z. We will denote by Gr(n, E) the Grass-

mann bundle of n-planes in E, classifying the rank n subbundles of U C E (for us, a subbundle
is locally split, so E/U is also a vector bundle). Denoting by q: Gr(n, E) — X the projection,
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the scheme Gr(n, E) carries a universal rank n subbundle U;, C q*E, and quotient bundle Q, =
q°E/U,.

3.2.2. When E — X is a vector bundle with X € Smg, we have Gr(1,E) = P(E) and U} = O(-1).
Moreover, Q; is the quotient bundle Q = g*E/O(—1), where q : P(E) — X is the projection.

3.2.3. In the situation of (3.2.1), assume that n > 1. We have a closed immersion
gg: Gr(n,E) - Gr(n,E®1) ; (UCE)» (U®O0CE®1),
which satisfies
GV, =V, 5 ¢0,=0,®1 (3:23.2)
We also have a closed immersion
hg: Grn—1,E) > Gt(n,E®1) ; (UCE)» (U®1CE®I),
which satisfies
WU,=V,,®1 ; hQ,=9, . (3.2.3.b)

3.2.4. The closed immersion g of (3.2.3) is the zero-locus of a section of the vector bundle V) —
Gr(n,E @ 1) transverse to the zero-section, and hence, its normal bundle is gg‘lfnV = ‘lan . The
open complement Y C Gr(n, E @ 1) of g is naturally a vector bundle over Gr(n — 1, E). Its zero-
section Gr(n — 1, E) — Y induces an isomorphism in SH(S), and the composite Gr(n — 1, E) —
Y C Gr(n,E @ 1) is the closed immersion hy. In view of (2.4.1.a), we thus have a distinguished
triangle in SH(S), for any vector bundle V — Gr(n,E & 1)

hg 73
The(u—1.5 (V) — Theuze1) (V) — Therns Uy @ g5V) = 240 The,, 1 (V).

and thus, by (2.4.2.a), for any ring spectrum A € SH(S), a long exact sequence

B

- — A"*(Gr(n,E); U',;’ ® g:V) ZEx, A (Gr(n,E® 1);V) = AY*(Gr(n — 1,E);V) - .-

3.2.5. The closed immersion hy of (3.2.3) is the zero-locus of a section of Q,, — Gr(n, E @ 1) trans-
verse to the zero-section, and hence, its normal bundle is h;Q, = Q,_;. The open complement
W C Gr(n,E @ 1) of hy is a vector bundle over Gr(n, E). Its zero-section Gr(n, E) — W induces
an isomorphism in SH(S), and the composite Gr(n, E) - W C Gr(n,E & 1) is the closed immer-
sion gz. In view of (2.4.1.2), we thus have a distinguished triangle in SH(S), for any vector bundle
V> Gr(n,E®1)

98 hg *
ThGr(n,E)(V) - ThGr(n,E@l)(V) - ThGr(n—l,E)(Qn—l 2] hEV) — g0 ThGr(n,E)(V)’

and thus, by (2.4.2.a), for any ring spectrum A € SH(S), a long exact sequence

*
hp )

= AY(Gr(n - 1,E);Q,,_ ® hV) — A®*(Gr(n,E @ 1); V) — A™*(Gr(n,E); V) — -
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3.2.6. When X = S, we will write Gr(n, s) instead of Gr(n, 19%).

Lemma3.2.7. Let E — S be avector bundle of constant even rank. Denoteby q : Gr(2,E @ 19?) —
S the projection. Then, we have isomorphisms in SH(S)[n™!]

g5 Z° Gr(2,E) — =¥ Gr(2,E ® 1), (3.2.7.2)
95 ¢ Therpen(Vy) — Thgo,5Uy @ V), (3.2.7.b)
(4, 9zg1) : = Gr(2,E & 1%%) > 13 @ Thg,p gy (V). (3.2.7.c)

Proof. In view of (3.2.2), we have by (3.2.5) a distinguished triangle in SH(S)

p .
£ Gr(2,E) — I Gr(2,E @ 1) — Thy()(Q) — "I Gr(2, E).

Since Thpg)(Q) = 0 in SH(S)[n~!] by (3.1.3), we deduce (3.2.7.a).
The vector bundle U'ZV restricts to O(1) @ 1 along hy : P(E) - Gr(2,E @ 1) (see (3.2.2) and
(3.2.3.b)). Thus, by (3.2.4), we have a distinguished triangle in SH(S)

h 7
Thp(O1) © 1) BN The,.261)(U5) = The,o.5) (VY @ Uy) = T4 Thy ) (O(1) @ 1).

Since Thyp ) (O(1) @ 1) = 0 in SH(S)[5~'] by (3.1.Lii), we deduce (3.2.7.b).

We now prove (3.2.7.c). Since the projection P(E @ 1) — S induces an isomorphism in
SH(S)[n~!] by (3.1.1.i), so does its section s : S = P(1) - P(E @ 1). The closed immersion j : S =
Gr(2,1%%) - Gr(2,E @ 1%?) factors as j = hggy os. Therefore, by (3.2.4), we have a distinguished
triangle in SH(S)[n™!]

. =
15 5 Z° Gr(2, E @ 19%) — Th, g (VYY) — =15
Since goj = idg, this triangle splits, and we deduce (3.2.7.c) O

3.2.8. Let E be a vector bundle over X € Smyg, and F C E a subbundle. Then, for every n € N, the
closed immersion

i: Gr(n,F) > Gr(n,E) ; (UCF)~ (UCE)

is the zero-locus of a section of Hom(V5, q*(E/F)) ~ U‘ZV ® q*(E/F) transverse to the zero-
section (namely, the composite U, C ¢*E — q*(E/F)).

Lemma 3.2.9. Let E, D be vector bundles over S. Assume that D has rank 2 and that E has constant
even rank. Consider the closed immersion i : Gr(2,E) —» Gr(2,E @ D) induced by the inclusion
E C E ® D (see (3.2.8)), and the projection q . Gr(2,E @ D) — S. Then we have an isomorphism
in SH(S)[n™]

(¢,)): =% G1(2,E @ D) — 15 ® Theyo (V) ® ¢°D).
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Proof. The statement is local in the Zariski topology of S, so we may assume that the vector bundle
D is trivial. Then i factors as

i1 Gr2,E) 5 G2, E® 1) =2 Gr(2,E @ 192).
In view of (2.4.4), the statement follows by combining (3.2.7.b) with (3.2.7.c). O
Remark 3.2.10. Taking E = 192 and D = 192 in (3.2.9) yields a natural isomorphism

2% Gr(2,4) = 13 ® 2415 € SH(S)[n"].

3.3 | Cohomology of 2-grassmannians

3.3.1. Let A € SH(S) be an n-periodic ring spectrum. Let X € Smg and E, D — X vector bundles,
with D of rank 2. Denote by g : Gr(2,E @ D) — X the projection. The inclusions E C E @ D and
D C E & D yield closed immersions (see (3.2.8))

i: Gr(2,E) » Gr(2,E®D) and j: X =Gr(2,D) — Gr(2,E & D).
Since i factors through the open complement of j, it follows from (2.4.6) that

Jhol, A*'*(Gr(Z,E);UZV@)q*D) — A**(X) vanishes. As goj =id, Lemma (3.2.9) yields a
split exact sequence of A**(X)-modules

0 — A™*(Gr(2,E); Uy ® ¢°D) = A**(Gr(2,E @ D)) > A**(X) - 0.

3.3.2. Let A € SH(S) be an n-periodic ring spectrum with a weak hyperbolic orientation (see
(2.3.1)). Consider the situation of (3.3), and assume that D = 192, By (3.2.8), the closed immer-
sion i: Gr(2,E) — Gr(2,E @ 1%?) is the zero-locus of a section of ) ® 1%9%) = V) @ U
transverse to the zero-section; hence, by (2.4.11.ii), we have

L(tyy) = n(Uy) € A~*(Gr(2,E & 19%)). (3.3.2.2)
Together with the projection formula (2.4.8.ii), this implies that, for any k € N,

LU Uty) = 2(Uy) ! € A (G2, E @ 19%). (3.3.2b)

Proposition 3.3.3. Let A € SH(S) be an n-periodic ring spectrum with a weak hyperbolic orienta-
tion (see (2.3.1)). Let d € N and s € {2d,2d + 1}. Sending u to the top Pontryagin class 71(1/'2\’) (see
(2.3.6)) yields an isomorphism of A**(S)-algebras

A¥*(Gr(2,5)) =~ A*(S)[u] /u.

In addition, when s is odd, the (left or right) A**(Gr(2, s))-module A**(Gr(2, s);U’Zv ) is freely
generated by the Euler class e(U'ZV) (see (2.3.6)).

Proof. Case s = 2d: The case s = 0, being clear, we may assume that s > 2. Consider the closed
immersion i : Gr(2,s —2) — Gr(2,s) given by the vanishing of the last two coordinates. We are
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in the situation of (3.3) with E = 195 and D = 192, so that, taking into account (2.3.5), we obtain
an exact sequence of A**(S)-modules

0 — A™(Gr(2,5 —2)) = A™(GI(2,5) — A™(S) = 0,

where « is given by x — i (x U tvzv), and j: S = Gr(2,2) - Gr(2,s) is given by the vanishing of
the first s — 2 coordinates. Note that a(7 (V) Ky = vy )k+1 by (3.3.2.b). Since vy )4=1 = 0in
A**(Gr(2, s — 2)) by induction, it follows that ﬂ(UZ\/)d = 0in A**(Gr(2, 5)). Moreover, j* (V) =
jFoa(1) = 0. We thus obtain a commutative diagram with exact rows

00— A™(S)[u]/udt —> A% ()[u]/ud — =L~ 4%%(S) —0
0 —> A (Gr(2, s — 2)) —% > A**(GI(2, 5)) —— = A**(S) — 0.

Since the left vertical arrow is an isomorphism by induction, it follows that the middle vertical
arrow is one, concluding the proof in this case.

Case s = 2d + 1: Since by (3.2.7.2) (with E = 192d), we have an isomorphism of A**(S)-
algebras A**(Gr(2,2d + 1)) ~ A**(Gr(2,2d)) mapping 7(V}) to n(V’), the isomorphism
A**(Gr(2,2d + 1)) = A**(S)[u]/u¢ follows from the case s = 2d above. To prove the remaining
statement, note that the composite

* Utl/V

AS(Gr(2,2d + 1)) 25 A**(Gr(2, 2d)) —
A (Gr(2,2d); Uy @ U‘V) > A**(Gr(2,2d + 1); UY)

is bijective by (3.2.7.a), (2.3.5) and (3.2.7.b). By (2.4.11.ii), that composite is multiplication by the
Euler class e(V’). O

Remark 3.3.4. Let X € Smg with structural morphism f: X — S. Since the image under
f* 1 SH(S) —» SH(X) of an n-periodic ring spectrum with a weak hyperbolic orientation remains
one, it follows that (3.3.3) provides a computation of A**(Gr(2, s) Xg X).

Corollary 3.3.5. Let A € SH(S) be an n-periodic ring spectrum with a weak hyperbolic orientation.
Letd € N\ {0}. LetX € Smg, and E,V — X vector bundles, with E of constant rank s € {2d, 2d + 1}.
Denote by q . Gr(2,E) — X the projection.

(i) We have an isomorphism of A**(X)-bimodules

d-1
Pxy i ATV — AV (G2, E; V), (ag,haq-r) P Y g (@)m(Uy)).

(ii) Ifs = 2d + 1, we have an isomorphism of A**(Gr(2, E))-bimodules

AM(GI(2,E); p*V) — A" (Gr2,Exp'V @ UY), x4+ xUe(Vy).
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Proof. Using a Mayer-Vietoris argument, we may assume that both E and V are trivial. Using
the isomorphism (1.9.2), we reduce to the case V = 0. Then, the statements follow from (3.3.3) (in
view of (3.3.4)). O

4 | PONTRYAGIN CLASSES
4.1 | Pontryagin structures

In this section, we introduce a structure which will turn out to be equivalent to that of a weak
hyperbolic orientation, where instead of Thom classes of rank 2 vector bundles, we specify their
top Pontryagin classes.

4.1.1. Letusdenotebyi: S = Gr(2,2) — Gr(2,4) the closed immersion induced by the inclusion
1%2 c 1% given by the vanishing of the last two coordinates. Then, i is the zero-locus of a sec-
tion of U2V (a5} ‘lfzv transverse to the zero-section, namely (ss, s,), where s, is the section of 1/'2\’
corresponding to the kth coordinate for k € {3, 4} (i.e. dual to the composite U, C 194 — 1 where
the last map is the kth projection). This choice of a section permits to identify the normal bundle
of i with i*(V) @ /) = 194,

Definition 4.1.2. Let A € SH(S) be aring spectrum. A Pontryagin structure on A is the datum of
a class 7 € A34(X) for each rank 2 vector bundle E — X with X € Smyg, such that:

(i) the class 7y is A**(X)-central,
(ii) if f: Y — X isamorphism in Smg and E — X a vector bundle of rank 2, then f*7p = 7 .,

(iii) ifp: E s Fisan isomorphism of rank 2 vector bundles over X, then 7 = 7,
(iv) in the notation of (4.1.1) and (2.2), we have My = o swi (Z841).

4.1.3. Tt follows from (2.4.11.ii) that a weak hyperbolic orientation (see (2.3.1)) induces a
Pontryagin structure, by setting 7 = 7(E) for any rank 2 vector bundle E — X with X € Smyg.

Lemma 4.1.4. Let A € SH(S) be a ring spectrum with a Pontryagin structure. Then me2 =0 €
ABH(S).

Proof. Let j: S = Gr(2,2) — Gr(2,4) be the immersion given by the vanishing of the first two
coordinates. Then j*U'ZV ~ 192 and j factors through the open complement of the immersion i
of (4.1.1), hence by (2.4.6)

. , @12iv) (4.1.2.) (4.1.2.jii)
0= jroioswi (Z¥*1) "= Py =

= 77:1'*7/'2\/ = 7T1®2 .

g

Proposition 4.1.5. Let A € SH(S) be an n-periodic ring spectrum. Then each Pontryagin structure
on A is induced by a unique weak hyperbolic orientation (in the sense of (4.1.3)).

Proof. Let E — X be a rank 2 vector bundle, with X € Smg. Then V)’ corresponds to E under the
identification X = Gr(2, EV). Thus, by (3.3) (with D = 192 and E replaced with EY), we have an
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exact sequence

0 - A**(X:E @ E) = A**(Gr(2,EY ® 192)) 15 A**(X) — 0.
Recall from (3.3.2.a) that if A is endowed with a weak hyperbolic orientation, we have
i.(tg) = i*(tyzv) = (V). (4.1.5.2)

In view of the injectivity i,, the uniqueness part of the statement follows.

Assume now that A is endowed with a Pontryagin structure. As j*1, = 192, the element Ty €
A%4(Gr(2, E @ 192?)) satisfies j *”UZV = 7,e2, which vanishes by (4.1.4). Therefore, by the above
exact sequence, there exists a unique element t; € A%°(X;E @ E) such that i,(t;) = Ty It is
then easy to verify that the association E — t; defines a weak hyperbolic orientation of A. Now,
asE = i*?fz\’, we have

)

415.
n(E) = i*”(l/zv)( =" i*oi,(tp) = i*”lfzv = TE,

so that this weak hyperbolic orientation induces the original Pontryagin structure. I

4.2 | The splitting principle

Theorem 4.2.1 (Splitting principle). Let A € SH(S) be an n-periodic hyperbolically oriented ring
spectrum. Let X € Smg, and E — X a vector bundle of constant rank. Then, there exists a morphism
f Y = X in Smg and vector bundles E,, ..., E, over Y such that:

(i) for any vector bundle V — X, the morphism of A**(S)-bimodules f*: A**(X;V) —
A*(Y; V) admits a retraction,
(i) ffE~E, & - ®E,,
(iii) rankE; € {1,2}and detE; ~ 1 fori=1,...,r.

Proof. We proceed by induction on the rank of E, the statement being clear when E = 0.
If rank E = 1, this follows from (2.1.3). Assume that rank E > 2, and consider the morphism
q: Gr(2,E) » X.Theng*: A**(X;V) » A**(Gr(2, E); V) is a split injection by (3.3.5), and ¢g*E
admits a rank 2 subbundle V;,. Consider the vector bundle Q, = p*E/V/,. By (1.8), we find a mor-
phism g : T — Gr(2, E)such that ¢*q*E ~ ¢*U’, @ ¢g*Q,and g* : A**(Gr(2,E);V) - A™*(T;V)
is bijective. By (2.1.3), we find a morphism 4 : Z — T, such that the vector bundle h* ¢*V;, has triv-
ial determinant, and h*: A**(T;V) - A**(Z;V) is split injective. We conclude by applying the
inductive hypothesis to the vector bundle h* ¢*Q,, whose rank is rank E — 2. O

As a corollary, we obtain an SL-oriented splitting principle, generalising [1, §9]. (Recall from
(2.2.6) that a commutative ring spectrum in SH(S) equipped with a normalised Sp-orientation
in the sense of [3, Definition 3.3], and a fortiori one equipped with a normalised SL-orientation,
inherits a hyperbolic orientation.)

Corollary 4.2.2. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let X €
Smg, and E — X a SL-oriented vector bundle of constant rank (see, e.g. [3, Definition 2.2]). Then
there exists a morphism f : Y — X in Smg such that
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(i) foranyvectorbundleV — X, the morphism of A**(S)-bimodules f* : A**(X;V) - A**(Y;V)
admits a retraction,

(ii) the SL-oriented vector bundle f*E splits as a direct sum of SL-oriented vector bundles of ranks 1
or2.

Proof. Denote by 4: 1 = detE the isomorphism giving the SL-orientation of E. Let us pick
f:Y > XandE,,...,E, asin (4.2.1), together with isomorphisms 4; : 1 — detE; fori =1,...,r —
1. We may assume that E # 0, so that 7 > 1. Letting

290 @11V
A il———— 5 detEQ®(detE; @ - ® detE,_;)" ~ detE,,

we have, as SL-oriented vector bundles,
(E,A) = (B, 1) & - & (E,, 4,). 0

For the next statement, we use the terminology of 3, Definition 3.3].

Corollary 4.2.3. Let A € SH(S) be an n-periodic commutative ring spectrum. Then each
Sp-orientation of A is induced by at most one normalised SL-orientation.

Proof. Let us assume that A is endowed with a normalised SL-orientation. Then A carries an
induced Sp-orientation, and thus, by (2.2.6) an induced hyperbolic orientation. In view of (4.2.2),
it will suffice to prove that the Thom class (for the SL-orientation) of an SL-oriented vector bundle
E — X is determined by the induced Sp-orientation of A, when E has rank 1 or 2.

If E has rank 1, it is isomorphic to the trivial SL-oriented line bundle, and hence, its Thom
class in A®°(X; E) must be the image of =>'1 € A%°(X;1), as the SL-orientation is normalised
by assumption. If E has rank 2, as SL, = Sp,, the vector bundle E is Sp-oriented (explicitly, the
symplectic form is given by the morphism E ® E — A’E = detE =~ 1), and so, its Thom class is
determined by the induced Sp-orientation. O

4.3 | Higher Pontryagin classes

Throughout this section, A € SH(S) will be an 5-periodic ring spectrum with a weak hyperbolic
orientation.

Definition 4.3.1. LetX € Smg, and E — X be a vector bundle of constant rank 2d or 2d + 1, with
d € N. Consider the Grassmann bundle g : Gr(2,EY) — X. We define the Pontryagin classes

pe(E) € ABH(X)  forkez
by the formulas
DPo(E)=1 and p(E)=0whenk ¢{0,...,d},

and, in view of (3.3.5),

d

D (D g (pa_ BNV = 0 € ASH44(Gr(2, V). (43.1.2)
k=0
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This definition extends in an obvious way to the case when the rank of E is not constant.
Remark 4.3.2. In view of (2.3.7), we may replace 7r(1/'2v ) with (1) in the formula (4.3.1.a).

4.3.3. The Pontryagin classes p; (E) are functorial in X € Smg, central in A**(X) and depend only
on the isomorphism class of the vector bundle E — X.

4.3.4. Assume that d =1 and so E has rank 2. Then the morphism g5 : Gr(2,EY) —» X is an
isomorphism, and U‘ZV = qiE. Therefore, (4.3.1.2) implies that

p1(E) = n(E) € A¥(X). (4.3.4.2)

Lemma 4.3.5. Let X € Smyg. Let E — X be a vector bundle, and F the quotient of E by a subbundle
of rank 1. Then

pr(E) = p(F) foranyk € Z.

Proof. We may assume that E has constant rank r. If r = 2d + 1 is odd, pulling back the relation
(4.3.1.2) along the morphism Gr(2, F¥) — Gr(2, EY) induced by the inclusion F¥ C EV yields

d

0= (-1 gp(pg_kENTWY) € A4 (Gr(2, FV)),
k=0

which proves the lemma, in view of the definition of the Pontryagin classes of F.

Assume now that r = 2d is even. By (1.8), we may assume that E = F @ L with L — X a line
bundle. By (2.1.3), we may assume that L = 1 and that F = G @ 1 for some vector bundle G — X.
Consider the closed immersion i : Gr(2,GY) — Gr(2, EY) induced by the inclusion G¥Y € GY &
192 = EV. Since G has rank 2(d — 1), the defining relation (4.3.1.a) reads

d-1
0= Y (-Dfg;(pg_1 (G)m(V))F € AX=DAD(Gr(2,GY)).
k=0

Applying the map x + —i,(x U ;) to this relation yields in A844(Gr(2,EY))

d-1
0= = D (-1 g5 (Pao1 -k Ci AW U tyy) by (2.4.8.ii), as qg = qgoi
k=0
d-1
= > (DG (pa1 i (O)E(UY)H by (3.3.2.b)
k=0
d
= Y (-Dgi(pa_i @)Uy as p,(G) = 0 by definition.
k=0

It thus follows that p, (G) = p(E) for all k. Since p,(G) = pi (G & 1) = p;(F) by the odd rank
case considered above, this concludes the proof. O

Remark 4.3.6. 1t follows from (4.3.5) that p,(1®") = 0 for k # 0 and r € N.
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Lemma 4.3.7. Let Uy, ..., U, be rank 2 vector bundles over X € Smg, andsetE =U; @ - @ Uy.
Consider the Grassmann bundle q; : Gr(2,EV) — X and its universal rank 2 vector bundle V.
Then

d
[ (=) - gz (Uy)) = 0 € A3+44(Gr(2, EY)).
k=1

Proof. We proceed by induction on d, the case d = 0 being clear. Assume that d > 1. Set F =

U, ® - & U,_;.By(3.3), we have an exact sequence

A (GH, P Uy @ qpUY) = A™(Gr(2,EY)) — A (X),

where i: Gr(2,FY) - Gr(2,EY) and j: X = Gr(2, U(\i/) — Gr(2,EY) are the natural closed
immersions. Since j*U, = Uzi’, the element 77.'(7/'2\/ )—qpm(Uy) € AB34(Gr(2,EV)) belongs to the
kernel of j*. Thus, there exists an element x € A%°(Gr(2, FV); UZV ® q;Uzl’) such that i (x) =
(V) — q;m(Uy). Then we have in A3444(Gr(2, E))

d d-1
IIwwp—@mw»=ijww—@mw»>wmo

k=1 k=1

d-1
= 1*<H (7(Vy) — qpm(Uy)) U x>,
k=1

by the projection formula (2.4.8.ii). This element vanishes by induction. O

Theorem 4.3.8. Let X € Smg. Let Uy, ..., Uy be rank 2 vector bundles over X, and L4, ..., L, line
bundles over X. Then for any k € N, we have A4 (X)

pk(Ul DD Ud & L] Db Lr) = Gk(ﬂ(Ul)’ ety ﬂ(Ud))
where o) denotes the kth elementary symmetric polynomial in d variables.

Proof. By (4.3.5), we may assume that » = 0. Then the theorem follows by expanding the product
in (4.3.7) and comparing with the defining relation (4.3.1.a). O

Corollary 4.3.9 (Whitney sum formula). If0 - E’ — E — E” — 0 is an exact sequence of vector
bundles over X € Smy, for any k € Z, we have in AS#(X)

k
pi(B) = Y pi(Epi_i(E").
i=0

Proof. By (1.8), we may assume that the sequence splits. By the splitting principle (4.2.1), we may
further assume that E’ and E” split as direct sums of vector bundles of ranks 1 or 2. Then the
corollary follows from (4.3.8). O
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Corollary 4.3.10. IfX € Smg and E — X is a vector bundle, we have
pi(E) = p(EY) foranyk € Z.
Proof. This follows by combining (4.2.1), (4.3.8) and (2.3.7). O

Corollary 4.3.11. Assume that the weak hyperbolic orientation of A extends to a hyperbolic ori-
entation. Let X € Smg, and E — X be a vector bundle of constant rank 2d, with d € N. Then
py(E) = n(E) in A3%44(X),

Proof. This follows by combining (4.2.1), (4.3.8) and (2.2.8.v). O
Remark 4.3.12. We will see in (4.4.11) that the assumption of (4.3.11) is automatically fulfilled.

Remark 4.3.13. Let A € SH(S) be an n-periodic commutative ring spectrum equipped with a nor-
malised Sp-orientation, in the sense of [3, Definition 3.3]. Recall from (2.2.6) that A inherits a
hyperbolic orientation. Then we claim that the Pontryagin classes p;, defined in (4.3.1) from the
hyperbolic orientation, coincide with the Pontryagin classes plf , defined in [3, Definition 7.7] from
the Sp-orientation (and denoted by p; there).

Indeed, by the splitting principle (4.2.1) and the Whitney sum formulas (see (4.3.9) and [3,
Corollary 7.9 (2)]), it will suffice to show that p;,(E) = plf (E) when E is a vector bundle of rank
r € {1,2}. Note thatfori > r/2, we have p;(E) = 0 by definition (4.3.1), and pi’(E) = 0 by [3, Corol-
lary 7.9 (3)]. It will thus suffice to assume that r = 2 and show that p,(E) = pi(E). But, using the
notation of (2.2.6), we have

(4.3.4.0) (2.2.7) « (2.2.6.b) . (1.15.b)
pl(E) = 77:(E) = ZEQ)E(DE) = ZEQEOUE(thH(E)) = Z;E‘@Ev(thH(E))a

which equals b,(H(E)) = p/(E) by [17, (13.3)], as required.

4.4 | Orientations and weak orientations

In this section, we prove that, for an z-periodic motivic ring spectrum, the datum of a
hyperbolic orientation (see (2.2.2)) is equivalent to that of a weak hyperbolic orientation (see
(2.3.1)). Throughout this section, A € SH(S) will be an n-periodic ring spectrum with a weak
hyperbolic orientation.

4.4.1. Tt will be convenient to introduce the polynomials, forr € Z

fre = D (=Dfp, Bk € A (X)[u], (4.4.1.2)
k=0

for any vector bundle E — X with X € Smg. Those satisfy the inductive formula
pr(E) = fr,E + ufr—l,E' (4-4-1-b)

4.4.2. Let E — X be a vector bundle, with X € Smy. It follows from (4.3.5) that f, g = f, pg for
anyr € Z.
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4.4.3. Consider an exact sequence 0 - D — E — Q — 0 of vector bundles over X € Smg, where
D has rank 2. Then, by the Whitney sum formula (4.3.9) and (4.3.4.a), we have p,(E) = p;(Q) +
(D) py_1(Q). Plugging this relation into (4.4.1.a) yields, for any r € Z

fr,E = fr,Q + n(D)fr—l,Q' (4433)

In view of (4.4.1.b), we deduce by induction on r that, for any r € Z (the case r < 0 being clear),
fre(@D)) = p,(Q) € A¥*(X). (4.43.b)

4.4.4. Let X € Smg, and E — X be a vector bundle. We will implicitly view A**(Gr(2, E)) as an
A**(X)-bimodule, via the pullback along the projection Gr(2,E) — X. By (4.4.3.b), we have for
anyr e ”zZ

fre@) = p(Q,) € A¥¥(Gr(2, E)). (4.4.4.2)

4.4.5. Let E — X be a vector bundle of rank 2d over X € Smg, with d € N. The inclusion 192 c
E & 192 induces a closed immersion

sp: X =Gr(2,19%) - Gr(2, E @ 1%2). (4.4.5.2)

Observe that sy is defined by the vanishing of a section of Hom(192, Q,) = 9, @ 9, transverse to
the zero-section, namely the composite 192 c ¢*(E @ 19?) - Q,,whereq: Gr(2,E & 19?) - X
is the projection. Since SEQ2 = E, the closed immersion sy has normal bundle E @ E.

By (3.2.5), we have a long exact sequence

= AY(Gr(L,E® 1), Ql) B ASGr(2,E @ 1@2)) S AYH(Gr(2,E@® 1)) — .

It follows from (3.3.5.i) that in this sequence, the map 9};@1 is surjective, and hence, hpg, , is injec-
tive. Moreover, Gr(1, E @ 1) = P(E @ 1) with Q, corresponding to the quotient bundle Q of (3.2.2).
Consider the closed immersion f: X = P(1) - P(E @ 1) = Gr(1, E & 1) induced by the inclu-
sion 1 C E @ 1. Then, the composite s = hggof. By (3.1.4), the pushforward f, : A**(X;E @
E) - A**(P(E & 1); Q) is bijective. We thus obtain a short exact sequence of A**(X)-bimodules

0 A (GE @ E) 55 A™(Gr(2,E @ 199) —2% A"*(Gr(2,E @ 1)) — 0.

Next, we have in A%44(Gr(2,E @ 1))

Ipen fag(@V) = fa E(ﬂ(Uz)) ? fa Eel(ﬂ(Uz)) Y pa(@y),

which vanishes since the vector bundle Q, — Gr(2, E @ 1) has rank 2d — 1. Thus, by the short
exact sequence above, there exists a unique element

oy € AGE®E) suchthatsg, (o) = fyp(m(U)). (4.4.5.b)
Lemma 4.4.6. Let X € Smg, and E — X a rank 2 vector bundle. Then

op =t; € A(X;E ® F),
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where oy, is defined in (4.4.5.b), and ty is given by the weak hyperbolic orientation of A.

Proof. Recall that the closed immersion s; : X — Gr(2,E @ 1%?) of (4.4.5.2) is defined by the
vanishing of a section of Q, @ Q, transverse to the zero-section. Therefore,

(2.4.11.i) (434.a) (44.4.a

sea(tp) “E Y 72(0,) “EY 0y YEY £ i), 0

Lemma 4.4.7. Let X € Smg, and E,D — X vector bundles. Assume that D has rank 2, and that E
has constant even rank. Then the elements defined in (4.4.5.b) satisfy

Op@ep = SWg (05 U op).

Proof. Letq: Gr(2,E@® D & 192) — X be the projection. The inclusions E® 192 CE® D &
192 and D € E @ D @ 192 induce closed immersions

i: Gr,E®1%9%) - Gr,E®D®1%%) and j: X = Gr(2,D) - Gr(2,E & D & 1%9?).

As explained in (3.3), we have an exact sequence of A**(X)-bimodules

0> A**(Gr(2,E ®1%9%); V) ® ¢*D) L A (GIR.E® D ®19%) 1> A%*(X) 0.
Since j*U’, = D, there exists a unique element
w € A®(Gr(2,E ®1%9*); V) ® ¢*D)
such that
i,(w) = g*1(D) — n(V3) € A¥*(Gr(2,E & D @ 19?)). (4.4.7.2)

Consider now the cartesian square in Smg

Sp

X Gr(2,D @ 19?)

Gr(2,E ® 19%) —- > Gr(2,E & D @ 192)

where sp, s are defined in (4.4.5.2), and k is induced by the inclusion D @ 192 Cc E@® D @ 192
Set ¢’ = koq. The cartesian square above is transverse; hence, by (2.4.5) and (2.4.7), we have in
A3*(Gr(2,D @ 19?))

Sp.osp(@) = k*oi (w) = k*(q"m(D) — (V) = ¢ (D) — n(V3) = f1p(7m(V)),

which by definition of o, (see (4.4.5.b)) implies that

sp(w) = op € A%°(X;D @ D). (4.4.7.b)
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Next, it follows from (2.4.4) that we have a commutative square in H, (S)

Thy(E® D @ E & D) e Gr(2, E® D @ 1%2)
swml J{; (4.4.7.0)
Thy(E®E & D & D) i Thgr.pe100)(D @ D).

Letnow d € Nbe such that E has rank 2d. Then, viewing A**(Gr(2,D @ E @ 19?)) asan A**(X)-
algebra via g*, we have

(Sp@p)© SWZ’D(DE Uop)

= i,0(sg).(og Uop) by (4.4.7.c)

= i,0(sp).(0p U si(w)) by (4.4.7.b)

=1, ((sp).(0p) V) by (2.4.8.0)

=i, (far(m(Vy)Vw) by (4.4.5.b)

= fap(@mVy) Vi (w) by (2.4.8.ii)

= fap(@(V3)) - 7(D) — fq p(m(V3)) - w(V3) by (4.4.7.a)

= far(@?) - 7(D) + f g1 (V) — pg1(E) by (4.4.1Db)

= fap(m(V3)) - (D) + f 441 6(m(V3)) asrank E < 2d + 1
= far1,0e5(@(V3) by (4.4.3.a),

from which the statement follows. O

Proposition 4.4.8. Let E,F be vector bundles of constant even ranks over X € Smg. Then the
elements defined in (4.4.5.b) satisfy

DE@F = SWE,F(DE U DF).
Proof. This follows from the splitting principle (4.2.1) and (4.4.7). [l

4.4.9. Let E — X be a vector bundle with X € Smg. Recall that if E has constant even rank, we
have defined in (4.4.5.b) a class o € A%(X; E @ E). If E has constant odd rank, we define

op = (Z*)o(swi ) (0pg1) € A”(X;E @ E). (4.4.9.2)

This permits in an obvious way to define a class o5 € A®(X; E @ E) when the rank of E is not
necessarily constant.

Lemma 4.4.10. Let E, F be vector bundles over X € Smyg, with F of constant odd rank. Then

* 4,2
SWE,FGBI(DE U DF@I) = SWEQ;FJ oX™%0 SWEF(DE U DF)-
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Proof. Consider the commutative square in SH(S)

TEF

ThX(E@FGBE@F@l@l) ThX(E@E@FGBF@l@l)
SWEG)F,]T O’E,FT (4.4.10.3)
Thy(EGFO1OEDFD1) — > > Thy(EGEGFH1OF D 1),

where 7, i, resp. og g, is given by
e,f, e, f,x,x")— (e,e, f, f',x,x), resp. (e, e, f,x, [/, x") = (e,e, f, f,x,X").

Note that we have commutative squares in SH(S)

TEF

Thy(E®@FOEDFH1D1) Thy(E®GEDFOFH1H1)
a0
2 Thy(E®F®E®F) = v 2 Thy(E®E®F &F)
Thy(E®GE®FD1OFD1) oy Thy((E®GE®FOFH1D1)
Axi iAX
id Aswp,

Thy(E@E)AThy(FO1DF D 1)

Thy(E@E)AThy(FOF D1 1).

(4.410.¢)
Now we compute in A’°(X; EQ@FO1PEDFD1)
SW} 1 (08 U 0pg1) = SW pon (0 U swi (Z%%0p) by (4.4.9.a)
=sw, Fol o0y p(og U »*205) by (4.4.10.c)
= SWhar, oTh (0 UZH0p) by (4.4.10.a)
= SW*E®F 1 ongoZ“’z(oE Uog) by (1.12.a)
= SWher ox*20 swi; (0 U 0p) by (4.4.10.b). d

Theorem 4.4.11. Let A € SH(S) be an n-periodic ring spectrum. Then, every weak hyperbolic
orientation on A (see (2.3.1)) is induced by a unique hyperbolic orientation (see (2.2.2)).

Proof. Let us assume that A carries a weak hyperbolic orientation. We will show below that the
assignment E — oy defined in (4.4.6) is a hyperbolic orientation of A. Once this is done, it will
follow from (4.4.6) that this hyperbolic orientation induces the original weak hyperbolic orien-
tation. The uniqueness of a hyperbolic orientation having this property is a consequence of the
splitting principle (4.2.1), and the proof of the theorem will thus be complete.

We now proceed with the proof that E — o is a hyperbolic orientation. The axioms (2.2.2.i),
(2.2.2.ii) and (2.2.2.iii) are easily verified. The axiom (2.2.2.iv) follows from the computation

6) (2.3.1.iv)

(44.9.0) _ —
= (24’2) 1O(SWT’I) l(tlez) = 342,

_ _ (4.4.
0, (=) o(swi ) (ore0) =
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It remains to show that the axiom (2.2.2.v) holds. So, we consider vector bundles E, F over
X € Smyg, and prove that

Opgr = SWi (0p Uop) € A’ (X;EQF®EF). (4.411.2)

We may assume that E, F have constant respective ranks rg, 7y, and we distinguish four cases
according to the parities of g, rr.

Case I: ri; is even and r is even. The equality (4.4.11.a) has been proved in (4.4.8).

Case 2: rg is even and ry is odd. We have

opgr = (E*) o(sWigr ) (Opgrer) by (4.4.9.2)
= (24’2)_10(SWE®F’1)_10 SW} p1 (05 U 0pg1) by (4.4.8)
= swy (o U og) by (4.4.10),

proving (4.4.11.a) in this case.
Case 3: rg is odd and ry is even. Consider the commutative square in SH(S)

SWp,p

Thy(E®@FOE®F) Thy(E®@E®F&®F)
al \LP
Thy(F@EGE@F) — > Thy(F® F ® E ® E),

where a, resp. p, is given by

(e.f.¢.f) = (f.e.f'.€), resp.(e.e’, . f)) = (f.['.e.€)).

Then, using Case 2 treated above (with the roles of E and F exchanged), we have
sWy, p(0p U op) = sWp p op™(0p U og) = a*oswy p(0p U og) = o (0pgp),

which equals ogqr- since «a is induced by the morphism E @ F — F @ E given by (e, f) = (f,e),
and the axiom (2.2.2.iii) holds. This proves (4.4.11.a) in this case.

Case 4: rg is odd and rp is odd. Using Case 3 for the pair (E,F @ 1) and Case 2 for the pair
(E@® F,1), we have

% 42 # (4.4.10)
SWiap 0 T0SWg p(op Uop) =

SWE,F@l(DE U0pg1) = Ppgrer = SWEGBFJ(DE@F U o).
Applying (sw, oF 1)_1, we deduce that (recall that the axiom (2.2.2.iv) has already been established
above)

(2.2.2.iv)

# (1.12.0)
424 SWg p(0pUop) =0ggr U0, = " opgpU 21 =

42
X 0pgrs

from which (4.4.11.a) follows upon applying (Z*2)~1. O
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5 | COHOMOLOGY OF HIGHER GRASSMANNIANS
5.1 | Algebraic interlude

In this section, we introduce the notation required to express the cohomology of higher
Grassmannians in (5.2.2) below, and prove certain purely algebraic results that will be required.

5.1.1. Letr € N. Let B be a ring (unital and associative as usual), and consider the polynomial ring
in r variables B[ p,, ..., p,] (the variables p; are central). We define

sj =sj(py,-,ps) €Blpy,...p,] forjez

by the formula

(A +tp + - +1p) " =Y s;t) € Blpy,.... p,DIIEI.
JjEZ

Thus, s, = 1 and s i = 0 for j < 0, and we have the inductive relation
Sj = —piSj_1 — = — pysj_, forje z\{o} (51.1.a)

Note that the elements s; are central in the ring B[p;, ..., p,].

5.1.2. Letd € Z. We denote by J; ., or simply J;, the (two-sided) ideal of B[p;, ..., p,] generated
by s; for j > d. In particular, J; = B|p;, ..., p,] when d < 0.

5.1.3. When d > 0, the relation (5.1.1.a) shows that the ideal J,, is generated by the elements

Sds e s Sdpr—1-
Lemma 5.1.4. Assume thatr > 1. For any d € Z, we have an exact sequence of B-bimodules

Py pr=0
By D /T 1y 2 BIDys s D1 T gy 2 BIPysecs By /iy = O,

where the first morphism is induced by the multiplication by p,, and the second by the morphism of
B[p;, ..., p,_11-algebras g : B[py,...,p,] = Blp;, -, Pr_1] given by p, — O.

Proof. We may assume that d > 0. It follows by induction from (5.1.1.a) that g(s;) = s; for any j,
and thus, g(J;,) = J4,_,. Thus, the exact sequence

Dy g
Blp;..,p,] — Blpy>--,p;] = Blpy, -, P11 = 0

descends to an exact sequence
Pr:
B[py,....pr] — Blp1s-» P )/ Tay = Blpyss Pr—11/T 4 -1 = O.
Asd—1+r > 0,it follows from (5.1.1.a) that

PrSd—1 = —Pr-184 = "~ P1Sd—2+r — Sd—14r € Ja s

hence p,J4_;, CJg,, concluding the proof. [l
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5.1.5. We will denote by L be the (two-sided) ideal generated by p;, ..., p, in B[py, ..., p,]-
Lemma 5.1.6. Forany k € N, we haveJ,, C LFin B[py;--» Dyl

Proof. We can assume that k > 1. The relation (5.1.1.a) implies that J,, C LJ,;_,, from which the
statement follows by induction on k. O

Lemma 5.1.7. Foreach d € Z, there exists s € N such that LJ; C J 4, in B[py, ..., p,].
Proof. We proceed by induction on d, the statement being clear when d < 0. Let us fix an integer
d > 0.Fori € N\ {0}, letus denote by L; C B|py, ..., p,] the ideal generated by the variables p; for
j €{i,...,r}. We will show that for each i € N\ {0}, there exists an integer ¢ (depending on i) such
that

L'LiJy C gy (5.1.7.a)
Since L = L,, this will complete the proof of the lemma.

We prove (5.1.7.a) by descending induction on i, the case i > r being clear (as L; = 0). Assume
that i < r. From the relation (5.1.1.a), we deduce that

Pisq = (=Sa4i = = = Pim18d41) + (=Pix1Sa-1 = = = PrSawi—r) € Jar1 + LisiJayir
Since the ideal L;J; is generated by p;s; and J;,; + L;,Jy, it follows that
Ll]d C Jd+1 + Li+1]d+i—r' (5.1.7.b)

By induction on d (i.e. using the lemma where d is replaced by d — 1, ...,d + i — r), we findu € N
such that L*J;,;_, C J,;. Together with (5.1.7.b), this implies that

LuLi]d C ]d+1 + Li+1"d‘ (517C)

By induction on i (i.e. using (5.1.7.a) where i is replaced by i + 1), we find v € N such that
L’L; 1J4 C J4,1. Combining with (5.1.7.c), we see that (5.1.7.a) holds true if we take t = u +v. [J

Lemma 5.1.8. Foreach n € Z, there exists k € N such that LF ¢ J,inB[py,..., Pl
Proof. We proceed by induction on #n, the case n < 0 being clear. Let n > 1. By induction, we
find an integer ¢ such that L' C J,_;. By (5.1.7), we find an integer s such that L3J,_, C J,.. The

statement follows by taking k = s + ¢. O

Proposition 5.1.9. Let M be an abelian group, and m € M. Assume that the ring B is M-graded.
Letting each p; have degree mi, we have (see (1.14))

hénB[pls eeey pr]/Jd = B[[pl: ey pr]]h’

where the limit is computed in the category of M-graded rings.

A ' €202 ‘Yer8ESLT

)"00SYIRLPUO /SNy WO |

8518017 SUOLILIOD 3AIIERID) 3|edl|dde 3} Aq pauob afe Sao e O ‘SN JO S3jnu 10} A#eiq1T 8UIJUO A8|IM UO (SUORIPUD-PUE-SWLIB}/W0D" A3 | IMAfed1)BUIIUO//SATY) SUORIPUOD PUe W | 8y} 88S *[£202/TT/2Z] Uo ARiq1Tauliuo 4|1 1l eURI4e0D Ag LTEZT 0doYZTTT OT/I0p/Wod A im Aeiq)



1458 | HAUTION

Proof. Using (5.1.1.a), we see that the element s; is homogeneous of degree mi. Therefore, the
ideals J; are homogeneous. Since by definition

lim BIpy, ., p,1/L% = B[Py, Byl
the statement follows from (5.1.6) and (5.1.8). O

In the next statement, we denote by J) C B[pj,..., p;] the image of J; under p; = p!.
Also, when I C B[py,...,p,] and I’ C B[p;,... , D] are two-sided ideals, we denote by I +1' C
B[py, s Dys pi, ..., p.] the two-sided ideal generated by T U I".

Proposition 5.1.10. Let M be an abelian group, and m € M. Assume that the ring B is M-graded.
Letting each p; and plf have degree mi, we have (see (1.14))

llénB[pp eeey pr’ P;, ey p;]/(Jd + J(,i) = B[[pl’ see pr’ p;7 e p;]]h’
where the limit is computed in the category of M-graded rings.

Proof. Again, it follows from (5.1.1.a) that the ideals J, +J(’1 are homogeneous. Let L' C
B[p], ..., p.] be the ideal generated by p/, ..., p/. Observe that by (5.1.6)

T +J, cLf+L* c (L + L)k

On the other hand, by (5.1.8), we find for each n € N an integer k such that
CL+LY Lk +L% cu, +7J,

and we conclude using the fact that, by definition,

liénB[pl, s Dps Dy e DL/ (L + L) = B[[py, ... s Dps Dy oo DT 0O

5.2 | Higher grassmannians

We recall from (3.2.6) that Gr(n, s) denotes the grassmannian of n-planes in s-space over S. It is
equipped with a universal subbundle V;,, C 1¥* of rank n, and a quotient bundle Q,, = 19%/V;, of
rank s — n.

Proposition 5.2.1. Let A € SH(S) be an n-periodic ring spectrum with a weak hyperbolic
orientation (see (2.3.1)). Let n € N be odd and s € N be even. Then,

AY*(Gr(n,s);U})) = 0.

Proof. We proceed by induction on n. When n = 1, this follows from (3.1.1.ii), in view of (3.2.2).
Assume that n > 3. Let us denote by Y the S-scheme classifying the vector bundle inclusions
P c Q c 19 with P,Q of respective ranks n — 2, n. We have natural morphisms

Gr(n —2,s) 2 Y KN Gr(n,s),
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where p, resp. g, maps a flag P ¢ Q C 195 to P C 195, resp. to Q C 1%%, We have a natural inclu-
sion p*V;,,_, C q*U,, of vector bundles over Y. Let us denote by £ = q*U,,/p*U,,_, the quotient.
The morphism p: Y — Gr(n — 2, s) is the Grassmann bundle Gr(2, 9,,_,), with universal rank 2
subbundle £ C p*Q,,_,. The morphism q : Y — Gr(n, s) is the Grassmann bundle Gr(n — 2, V,,),
which may be identified with Gr(2, V).

Since rank Q,,_, = s —n + 2 is odd, applying (3.3.5.ii) to the Grassmann bundle p yields an
isomorphism

(D Ue(EY): AY(Y; p*UY) = A (Y; p* U, @ €Y) = A (Y; ¢ UY), (5.2.1.a)
where the last isomorphism is induced by the exact sequence (see (1.7))
0= &Y = q'V,) - pV,),—0.
As A**(Gr(n — 2,5); 7/‘;’_2) = 0 by induction, it follows from (3.3.5.i) (applied to the bundle p)

that A**(Y; p*U‘nV_Z) = 0. Using (5.2.1.a), we deduce that A**(Y; ¢*V) = 0. Applying (3.3.5.i) to
the Grassmann bundle g then shows that A**(Gr(n, s); V) = 0, completing the proof. O

Proposition 5.2.2. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let d >
r € N,ands € {2d,2d + 1}and n € {2r, 2r + 1}. If nis odd, assume that s is also odd. Then mapping
pj to the jth Pontryagin class p j(U'nV ) yields an isomorphism of A**(S)-algebras (see (1.13))

A S)Prs s P aors1 — A (Gr(n,s)),
where J;_,., is the ideal defined in (5.1.2).
Proof. By (4.3.6) and the Whitney sum formula (4.3.9), we have for any k € N\ {0}
Pi(@) = =PV )P a(Q)) = = pea(U))P1(Qy) = pr(Vy) € A%H(Gr(n, 5)).

Recall that p j(l/";’ ) vanishes when 2j > rank U}/ = n, and therefore, when j > r. We deduce by
induction on k from (5.1.1.a) that for any k € Z (the case k < 0 being clear)

P = 5Py, ., p,(U))) € A4 (Gr(n, 5)). (5.22.2)

Now the vector bundle Q) has rank s — n < 2(d —r) + 1, so that p;(Q}/) vanishes when k > d —
r + 1. In view of (5.2.2.a), it follows that the ideal J,;_,, is mapped to zero in A**(Gr(n, s)), so
that the morphism of the statement is well defined.
To prove that it is an isomorphism, we proceed by induction on n + s. The cases n = 0 or
s = 0 are clear, so we assume that n > 1 and s > 1. Let us consider the closed immersions g =
qros-1 . Gr(n,s —1) — Gr(n,s) and h = hyes—1 : Gr(n — 1,s — 1) —» Gr(n, s) described in (3.2.3).
Case n odd and s odd: By (3.2.4), we have a long exact sequence

. o
= AM(Gr(n,s — 1); VYY) > A**(Gr(n, 5)) — A**(Gr(n — 1,5 — 1)) — -

Since the term on the left vanishes by (5.2.1), it follows that h* is bijective. Since h* is a morphism
of A**(S)-algebras mapping p;(V})) to p;(U;), we deduce the statement by induction.
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Case n even and s even: By (3.2.4), we have a long exact sequence

, o e
> APH(Gr(n, s — 1); UY) = A**(Gr(n, s)) — A**(Gr(n — 1,5 — 1)) — --
Note that h* is surjective, since by induction, the A**(S)-algebra A**(Gr(n — 1,s — 1)) is gener-

ated by the Pontryagin classes p;(V;/), which lie in the image of h*. Thus g, is injective. By (3.2.4),
letting ¢’ = gy@s—2, We have an infinite long exact sequence

!
A**(Gr(n,s — 2); U‘r:/ ® l/‘nv) 2, A**(Gr(n,s — 1); U‘HV) - A**(Gr(n—1,s = 2); U‘r:/).

By (5.2.1), the term on the right vanishes, and hence, g; above is an isomorphism. By (2.2.5), we
obtain an exact sequence

h*
0 = A**(Gr(n, s — 2)) — A**(Gr(n,s)) — A**(Gr(n — 1,5 — 1)) = 0,
where u is given by x — (gog’),(x U OU,,V)- By (2.4.11.i), the composite

° 1%
A74(Gr(n, ) 220 4 (Gr(n,s - 2)) % A™*(Gr(n,s))

is multiplication by the element 7(V/;)), which coincides with p,(V})) by (4.3.11). In particular,
h*p,(UV;)) = h*ou(1) = 0. We thus have a commutative diagram

b pr=0
Br /Jd—r,r - Br/Jd—r+1,r - Br—l/Jd—r+l,r —0

l l |

0 — A™(Gr(n, s — 2)) —“> A**(Gr(n, s)) —— A**(Gr(n — 1,5 — 1)) — 0.

Here, for m € {r,r — 1}, we have written B,, = A**(S)[py, ..., D,n], and the upper row is the exact
sequence of (5.1.4). We have seen that the lower row is also exact. The left and right vertical mor-
phisms are isomorphisms by induction, hence so is the middle one by a diagram chase, proving
the statement in this case.

Case n even and s odd: By (3.2.5), we have a long exact sequence

h,
> A*(Gr(n — 1,5 — 1);Q,_,) —> A**(Gr(n,s)) — A**(Gr(n,s — 1)) — -

Set G = Gr(n — 1,s — 1). Then,
s 25 ., a7 .. _
A "(G;anl) ~ AV (G;anl 57 ’U’nfl D ’U'nfl) ~ AV (G;IGBS ! @ Unfl):
which vanishes by (1.15) and (5.2.1). Therefore, the morphism ¢* in the above exact sequence is an
isomorphism. Since g* is a morphism of A**(S)-algebras mapping p j(Ur:/ )top; (U;)), we deduce

the statement by induction, which concludes the proof of the proposition. Let us nonetheless make
one additional observation. Recall from (3.2.4) that we have an infinite long exact sequence

. h*
A**(Gr(n,s - 1) U) @ U)) &, A**(Gr(n,s), U})) — A (Gr(n —1,s = 1); U/, & 1).
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The term on the right vanishes by (5.2.1), and hence, g, above is an isomorphism. By (2.2.5), the
composite

UDUV

A (Gr(n, 5)) 2> A*(Gr(n,s — 1)) ——
A (Gr(n,s — 1 VY @ UY) = A*(Gr(n, s); UY)

is thus bijective, and it coincides with the (left or right) cup product with the Euler class e(V)
by (2.4.11.i), which proves (5.2.3) below. O

We record the following statement, obtained in the course of the proof of (5.2.2):
Proposition 5.2.3. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Letn € N
be even and s € N be odd. Then the (left or right) A**(Gr(n, s))-module A**(Gr(n, s); U‘nv) is freely

generated by the Euler class e(?/nv ).

Remark 5.2.4. The parity assumption in (5.2.2) is necessary, as the case n = 1, s = 2 shows.

5.3 | Cohomology of BGL

5.3.1. (See, e.g. [15, Lemma 2.1.3].) Consider a sequence of pointed motivic spaces E, — E,,, for
t € N\ {0}, and denote by E € Spc,(S) its homotopy colimit. Then, for any A € SH(S) and p,q €
Z,we have the Milnor exact sequence

0— litrnlAp‘l’q(E[) — API(E) > lim API(E,) — 0.

By cofinality and compatibility of homotopy colimits with the smash product, we also have an
exact sequence

0— li{nlAp_l’q (E, AE,) » APY(E ANE) — lim APY(E, AE,) - 0.

5.3.2. Recall that the étale classifying space BGL, is obtained as the (homotopy) colimit in
Spc(S) of the grassmannians Gr(n, nt) over t € N \ {0} (see, e.g. [6, (5.1.4)] with p = n). Here, the
transition morphisms

Gr(n,nt) - Gr(n,n(t + 1)) (5.3.2.a)
are the closed immersions induced by the inclusions
191t — (leat)ean c (IEBt+1)€Bn — 1€Bn(t+1)’
where the inclusion 1®* ¢ 19!*! js given by the vanishing of the last coordinate. Since the vector
bundle U} pulls back to V' along (5.3.2.a), there are induced maps of pointed motivic spaces

ThGr(n,n[)(Uly;/) - ThGr(n,n(t+1))(Uy:/)! and we define

Thygy, (V7)) = colim; The,, un (V) € Spe.(S),
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and if A € SH(S) is a ring spectrum, we set
A**(BGL,; Uy)) = A" (Thygy, (U)))).
The next result generalises a computation of Levine [9, Theorem 4.1] (see also [6, (6.3.7)]).

Theorem 5.3.3. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let r €
N, and n € {2r,2r + 1}. Letting p; have degree (8i,4i), there exists an isomorphism of Z>-graded
A**(S)-algebras (see (1.14)),

A**(BGL,) =~ A**(S)[[py1, - P11

In addition the (left of right) A**(BGL, )-module A**(BGL,; U})) vanishes if n is odd, and is free of
rank 1if n is even.

Proof. By (5.2.2), the morphism A**(Gr(n, n(t + 2))) - A**(Gr(n, nt)) is surjective when t is odd,
so that the system A**(Gr(n, nt)) for t € N\ {0} satisfies the Mittag-Leffler condition, and thus,
1im: A**(Gr(n,nt)) = 0.In addition, by (5.2.2) and (5.1.9) (and a cofinality argument), we have an
isomorphism

lim A% (Gr(n, nt)) = A ()pys s Prlln-

The first statement thus follows from the Milnor sequence (5.3.1).
Next, assume that n is odd. Then, by (5.2.1), we have A**(Gr(n, nt); U‘HV) = 0 when ¢ is even,
hence

li¥n1A*’*(Gr(n, nt);V,))=0 and litm A®*(Gr(n,nt); V,)) =0,

so that A**(BGL,; U}/) = 0 by the Milnor sequence (5.3.1).

Finally, let us assume that 7 is even and prove the remaining statement. The case n = 0 being
clear, we assume that n > 2. A cofinality argument shows that BGL,,, resp. Thyg, (U})), is the
colimit of Gr(n, nt + 1), resp. Thg,(, ni11)(V})), the transition morphisms being induced by the
inclusions

169nl+1 — 1®l+1 @ (1@[)@)’!—1 C 1@[’4—2 @ (1®l+1)®n—1 — 1®n(t+1)+1’

where the inclusions 19/+1 c 1912 and 19! ¢ 19!+ are given by the vanishing of the last coor-

dinates. By (5.2.3), we have isomorphisms of A**(Gr(n, nt + 1))-modules A**(Gr(n, nt + 1)) 5
A**(Gr(n,nt +1); U,/) which are compatible with the transition morphisms as ¢ varies. This
yields isomorphisms of A**(BGL,,)-modules

0= lim' A**(Gr(n, nt + 1)) — lim' A**(Gr(n, nt +1); V)

lim A**(Gr(n, nt + 1)) — lim A**(Gr(n, nt + 1; V,).

We conclude using again the Milnor sequence (5.3.1). O
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Corollary 5.3.4. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Then there
exist isomorphisms of Z*-graded A**(S)-algebras, where deg p; = (8, 4),

A" (BSLyy) = AM(BSLY,, ) = A (S)[[py, s Prlli-
Proof. This follows by combining (5.3.3) with [6, (6.2.1), (6.3.3)]. O

Remark 5.3.5. Ananyevskiy computed in [1, Theorem 10] the ring A**(BSL,) when A € SH(S)
is an n-periodic SL-oriented commutative ring spectrum and 2 is invertible in S (see [6, (6.2.2)]
for more details). When n is even, the result involves Euler classes of SL-oriented vector bundles
(with values in untwisted cohomology), whose existence seems to require that A be SL-oriented.

We will need the following complement to (5.3.3) in the next section.

Proposition 5.3.6. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Let r €
N, and n € {2r,2r + 1}. Then, letting p;, plf have degree (8i, 4i), there exists an isomorphism of 72
graded A™*(S)-algebras (see (1.14))

A**((BGL,), A (BGL,),) = A**(S)[P1, s Prs Pys e » P 11-
Proof. Let us write R, = A**(Gr(n, nt) Xg Gr(n,nt)), for t € N\ {0}. Then, the morphisms

Gr(n,nt) — Gr(n,n(t + 1)) described at the beginning of §5.3 induce transition morphisms
R;.1 — R,. Applying (5.2.2) over the base Gr(n, nt), and then over S, we obtain for t odd

Ry = A (S)[P1s e s Prs Do oo s DU/ Ugmyn + 0,01

where d is the integer such that nt € {2d,2d + 1} (we use the notation described just above
(5.1.10)). We deduce that the morphisms R,,, — R, are surjective when ¢t is odd, so that the sys-
tem R, for t € N\ {0} satisfies the Mittag-Leffler condition, and thus, lim[1 R; = 0.By(5.1.10) (and
a cofinality argument), we have

lignRt ~ A (S[P1s s Prs Py s D1
and the statement follows from the Milnor sequence (5.3.1). O

5.3.7. For later reference, let us note the following facts, established in the course of the proofs of
(5.3.3) and (5.3.6).

(i) We have

li}rnlA*’*(Gr(n, nt))=0 and lignlA*’*(Gr(n, nt) Xg Gr(n, nt)) = 0.

(ii) The following natural morphisms are bijective:

A**(BGL,) — lim A™*(Gr(n, nt)),

A**((BGL,), A (BGL,),) — lim A**(Gr(n, nt) X5 Gr(n, nt)).
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(iii) Under the identification of (5.3.3), resp. (5.3.6), the elements p;, resp. p; and plf , are mapped,
under the morphism induced by (ii), to p;(V;,) € A**(Gr(n, nt)), resp. p;(V;, Xs Gr(n, nt))
and p;(Gr(n, nt) Xg Uy).

6 | THE UNIVERSAL THEORY

Until the end of the paper, we will assume that the scheme S is regular separated (and noetherian
of finite dimension).

6.1 | Hyperbolic preorientations
In this section, we introduce a notion destined to facilitate some proofs in the next sections.

Definition 6.1.1. Let A € SH(S) and n € N. A hyperbolic n-preorientation of A is the datum of
aclass py € A% (X;E @ E) for each rank n vector bundle E — X with X € Smy, subject to the
following conditions:

(i) if f1 Y — X is a morphism in Smg and E — X a vector bundle, then f*py = ps.p,
(ii) if E — F is an isomorphism of vector bundles over X € Smyg, then the induced isomorphism
AY(X;F@®F) N A™*(X;E @ E) maps pp to pg.

6.1.2. A weak hyperbolic orientation (see (2.3.1)) is, in particular, a hyperbolic 2-preorientation.

6.1.3. A hyperbolic orientation (see (2.2.2)) induces a hyperbolic n-preorientation for every
n € N. The hyperbolic orientation is determined by the collection of its induced hyperbolic
n-preorientations, for n € N.

6.1.4. Let: A — B be a morphism in SH(S). If E — py, is a hyperbolic n-preorientation of A,
then E — 9, (pg) defines a hyperbolic n-preorientation of B.

6.1.5. (Jouanolou’s trick). If X € Smy, then X is a regular separated noetherian scheme, and hence
by [19, II, 2.2.7.1], it admits an ample family of line bundles. Therefore, by [20, Proposition 4.4],
there exists an affine bundle X — X in Smg with X affine.

Proposition 6.1.6. A hyperbolic n-preorientation of a ring spectrum A € SH(S) is determined by
the elements p;, € A™(Gr(n,nt); U, @ Uy,) fort € N\ {0}.

Proof. Let E — X be a rank n vector bundle with X € Smg. Pick an affine bundle p: X —
X such that the scheme X is affine, using Jouanolou’s trick (6.1.5). Then, we may find an
inclusion E c 19" for some t € N \ {0}, giving a morphism f : X — Gr(n,nt) and an isomor-
phism « : p*E = f*U,,. Consider the induced isomorphism Th(a @ a) : Thg(p*“E @ p*E) =
Thy(f*V,, ® f*U},). Then

pr = (0™ o(Th(@ @ c)"o f*(py ). -
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6.2 | The spaces MH,,
6.2.1. For n,s € N, let us consider the pointed motivic spaces
Th(n,s) = ThGr(m)(Un ® U;,) € Spc.(S).

For t € N\ {0}, the closed immersion Gr(n,nt) - Gr(n,n(t + 1) described in (5.3.2.a), along
which the vector bundle U, pulls back to U, yields a map in Spc, (S)

Th(n, nt) -» Th(n, n(t + 1)). (6.2.1.2)
Taking the colimit over t € N \ {0}, we obtain pointed motivic spaces, forn € N
MH,, = colim,Th(n, nt),
together with canonical maps in Spc,(S), forn € Nand t € N\ {0}
Ans - Th(n,nt) - MH,,. (6.2.1.b)

Lemma 6.2.2. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Then, the
morphisms induced by (6.2.1.b)

A™*(MH,) - imA™* (Th(n, n1))

A**(MH, AMH,,)) —» lith*’*(Th(n, nt) A Th(n, nt))
are bijective.
Proof. The isomorphisms for p,q € Z and r € {1, 2} (see (2.2.5))
(-u (OUn W APAAT2 (G, nt)<sT) 5 AP9(Th(n, nH)\"),

are compatible with the transition maps when ¢ varies. Thus, by (5.3.7.i)), we have
1im}A*’*(Th(n, nt)\") = 0, whence the statements by the Milnor sequence (5.3.1). O

Lemma 6.2.3. Let n € N. There exists a unique way to associate to each rank nvector bundle E — X
with X € Smg a map 65 : Thy(E @ E) - MH,, in H,(S) such that:

@) iff: Y —» X is a morphism in Smy, then the following diagram commutes:

Thy(f*E @ f*E) — "~ MH,
Thy(E @ E),
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(i) ifa: E S Fisan isomorphism of vector bundles over X € Smyg, then the following diagram

commutes:
6p
Thy(E ® E) o MH,,
ThX(ccGBoc)J/ o
.
Thy(F @ F),

(iii) foreveryt € N\ {0}, the map 4,,, : Th(n,nt) - MH,, of (6.2.1.b) is 91/,,-

Proof. Let E — X be a rank n vector bundle, with X € Smg. Assume first that X is affine.
Then there exists an integer t € N \ {0} and a vector bundle inclusion i : E — 19", This gives
a morphism X — Gr(n, nt) along which U, pulls back to E, and thus, amap ¢g; : Thy(E @ E) —
Th(n, nt) in Spc. (S). We claim that the composite in H,(S)

i ll’lw
6, = 6,(i) : Thy(E ® E) — Th(n, nt) — MH,,

does not depend on ¢ or i. Indeed, let j: E — 1% be an inclusion, with ¢’ € N\ {0}. While
proving that 6;(i) = 65(j), we may assume that ¢ > t'. Composing j with the inclusion 19"’ =
(18")®n ¢ (191)®n = 191! jnduced by the inclusion 18" ¢ 19! given by the vanishing of the last
t — t’ coordinates, we are reduced to assuming that ¢’ = t. Let k : Th(n, nt) - Th(n, 2nt) be the
map given by the vanishing of the last nt coordinates. By (6.2.4) below, we have

kog; = kog; : Thy(E @ E) — Th(n,2nt) in H,(S). (6.2.3.2)
Now the morphism

A%H8" @ (1999 5 (19 @ 1998, ((xy, e, %) 1 o5 Y)) = (21, 1), oo s (K V)

induces a map c: Th(n,2nt) — Th(n,2nt), such that cok : Th(n,nt) — Th(n,2nt) is the com-
posite of the transition maps (6.2.1.a). In particular, the map 4, ,: Th(n,t) - MH, factors
through k, and hence, (6.2.3.2) implies that 6;(i) = 6;5(j) in H,(S), proving the claim. It is then
easy to verify the conditions (i) and (ii), under the additional assumption that X and Y are affine.

When X is not necessarily affine, by Jouanolou’s trick (6.1.5), we find an affine bundle p : X —
X with X € Smyg affine. We claim that the composite in H,(S)

p~! Opep
6y : Thy(E @ E) — Thy(p*E @ p*E) — MH,,

does not depend on X and p. Indeed, let p’ : X’ — X be an affine bundle. Let Y = X x4 X’, and
denote by g: Y —» X and ¢’ : Y — X’ the induced morphisms. Then we have an isomorphism

B: q'p*E = q"* p"*E yielding a commutative diagram in H,(S)

q q*p*E

6
Thy(E @ E) <—— Thg(p*E & p*E) Thy(¢*p*E ® ¢*p*E) —— = MH,,

\ Thy(ﬁ@ﬁ)l /
p 1 p I

Thy (p“E @ p"“E) <" Thy(q"*p"E @ ¢ p"“E)
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(here we have used the validity of the condition (ii) over the scheme Y, which is affine as S is
separated). Since 6 «goq = Oy« and 6, goq’ = 04+ pr+g by the condition (ii) in the affine case,
we deduce that 6.0 pl=0 pE© p'~!, proving the claim. It is now easy to verify the conditions
(i), (i), (iii), as well as the uniqueness part of the statement. O

Lemma 6.2.4. LetV — S be a vector bundle,andr € N. Let f : X — SinSmg, and E — X a rank
n vector bundle. If k : E C f*V @ f*V is a vector bundle inclusion, corresponding to a morphism
X — Gr(n,V @ V) in Smy, let us denote by ¢;, : Thy(E®") - ThGr(n,VeW)(l/’,?' ) the induced map
in Spc, (S). Then the image of ¢; ) in H.(S) does not depend on the inclusioni: E C f*V.

Proof. Leti, j: E C f*V bevector bundle inclusions. Let p : A! X¢X — X be the projection. Con-
sider the vector bundle inclusion (p*i, tp*j) : p*E C p*f*V @ p* f*V, where ¢ is the tautological
section over Al. Then the induced morphism Th ><Sx(p*E@’) - ThGr(n,V@V)(U,fBr ) restricts to
Pi0)at0 € Al and to g, ;) at 1 € A'. This yields ¢; o) = ¢(; ;) in H.(S). Similarly, ¢ ) = ¢ ;) in
H.(S). Therefore, in H,(S), we have

P00 = Pi.j) = Po.) = PG.p = PGLo) U

6.2.5. Let A € SH(S) be a ring spectrum equipped with a hyperbolic n-preorientation. Then the
elements t;. € A2 (Th(n, nt)) are compatible with the transition maps (6.2.1.a) as ¢ varies in
N \ {0}, hence by (6.2.2) are the images of a unique element of t € A*»>*(MH,,).

6.2.6. Conversely, let A € SH(S) be a ring spectrum and n € N. Assume given an element t €
A*20(MH,)). Applying (6.2.3), we associate to each rank n vector bundle E — X with X € Smg
an element t; = 6% (t) € A>°(X;E @ E).

Proposition 6.2.7. Let A € SH(S) be a ring spectrum. The procedures described in (6.2.5) and
(6.2.6) yield mutually inverse bijections between the set of hyperbolic n-preorientations of A and the
elements of A*»2"(MH,,).

Proof. This follows from (6.1.6) and (6.2.3.iii). O

Corollary 6.2.8. Let A € SH(S) be a commutative ring spectrum. The procedures described in
(6.2.5) and (6.2.6) yield mutually inverse bijections between the set of weak hyperbolic orientations
of A (see (2.3.1)) and the elements of A%*(MH,) whose restriction along 6,e2 : Thg(19%) — MH, is
sw*l"l(ZS"‘l) € A%0(S;194) = A34(Thy(194)).

Proof. This follows from (2.3.4). O

6.3 | The ring spectrum MH

In this section, we assemble the pointed motivic spaces MH,, defined in the previous section into
a commutative ring spectrum MH € SH(S). We follow very closely the strategy employed in
[14, §2.1] to construct the spectrum MGL, the main difference being that we naturally obtain
a T?-spectrum instead of a T-spectrum, as was the case for the spectrum MSp constructed by
Panin-Walter [16, §6]. Since the model categories of symmetric T- and T/\?-spectra have equiv-
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alent homotopy categories (with their symmetric monoidal structures) by [16, Theorem 3.2], we
still obtain a commutative ring spectrum in SH(S).

6.3.1. Letus first describe a construction which will be useful in this section. Let E; — X; be vector
bundles with X; € Smyg, fori € {1, 2}. Set P = X; X¢ X, and let V; — P be the pullback of E; — X;
along the ith projection P — X;, for i € {1, 2}. Assume given a morphism f : P — Z in Smg, and
W — Z avector bundle together with an isomorphism f*W ~ V, @ V,. Then there is an induced

map in Spc,(S)

(swy, v, )

i
— S Thy(V, @V, ®V, ®V,) > Thy (W & W).

6.3.2. Forn € Nandt € N\ {0}, consider the closed immersions
Yne o Gr(n,nt) — Gr(n +1,(n + 1)) (6.3.2.2)

given by mapping a subbundle E € 19" to E@® 1 ¢ 19" @ 19! = 190+ where the inclusion
1 c 19’ is induced by the vanishing of the ¢ — 1 last coordinates. Along the morphism (6.3.2.a),
the vector bundle U}, pulls back to V;, @ 1. Using the procedure described in (6.3.1), we thus
obtain maps in Spc,(S), for n € Nand t € N \ {0} (recall that T = Thg(1))

o ¢ Th(n,n) AT > Th(n + 1,(n + 1)), (6.3.2.b)

which are compatible with the transition maps (6.2.1.a) as ¢ varies. Taking the colimit over t €
N\ {0}, we obtain maps in Spc.(S), for n € N

MH, AT"? = MH,,,; . (6.3.2.c)

6.3.3. Let n € Nand ¢t € N\ {0}. The natural action of the symmetric group &, (where &, = 1)
on (199)®" induces an action on Gr(n, nt), for which the vector bundle V), is ©,-equivariant.
This yields a &, -action on Th(n, nt) = Thg, (U, @ U5,). The transition maps Gr(n, nt) —
Gr(n,n(t + 1)) of (5.3.2.a) and Th(n,nt) —» Th(n,n(t + 1)) of (6.2.1.a) are &,,-equivariant. For
m € N, consider the (&, X ©,,)-equivariant morphism in Smg

Mpmy - Gr(n,nt) Xg Gr(m, mt) — Gr(n + m,(n + m)t) (6.3.3.2)
given by
Uc1®vc1®) UV c19 g19m = 190+m),
under which the vector bundle V., pulls back to piV; @ p;U,,, where p, : Gr(n,nt) Xg
Gr(m, mt) — Gr(n,nt) and p, : Gr(n,nt) Xg Gr(m, mt) — Gr(m, mt) are the two projections. By
the procedure described in (6.3.1), we obtain a (&, X &,,)-equivariant map in Spc, (S)

Th(n, nt) A Th(m, mt) - Th(n + m, (n + m)t). (6.3.3.b)

These morphisms are compatible with the transition maps (5.3.2.a) and (6.2.1.a) as t varies in N \
{0}. Taking the colimit over ¢, we obtain a & ,-action on each MH,,, and a (&, X ©,,)-equivariant

A ' €202 ‘Yer8ESLT

)"00SYIRLPUO /SNy WO |

8518017 SUOLILIOD 3AIIERID) 3|edl|dde 3} Aq pauob afe Sao e O ‘SN JO S3jnu 10} A#eiq1T 8UIJUO A8|IM UO (SUORIPUD-PUE-SWLIB}/W0D" A3 | IMAfed1)BUIIUO//SATY) SUORIPUOD PUe W | 8y} 88S *[£202/TT/2Z] Uo ARiq1Tauliuo 4|1 1l eURI4e0D Ag LTEZT 0doYZTTT OT/I0p/Wod A im Aeiq)



MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1469

map in Spc,(S), forn,m € N
Mpm - MH, AMH,, - MH, ., .

We also have in Spc, (S) a canonical isomorphism and a map (see (6.2.1.b))
- A2 A
e: S, —MH, and e :T" =Th(,1)— MH,. (6.3.3.0)

Definition 6.3.4. A straightforward verification shows that the data described in (6.3.3) define a
commutative T"?-monoid in Spc, (S) in the sense of [16, Definition 3.3], and thus, by [16, Theo-
rem 3.4] a commutative monoid in the category of symmetric T/?-spectra, that we denote by MH.
Using the natural equivalence between the homotopy categories of symmetric T"2-spectra and of
T-spectra (see [16, Theorem 3.2] and [8, Theorem 4.31]), we may view MH as a commutative ring
spectrum in SH(S).

6.3.5. By definition, the bonding maps of the T"?-spectrum MH are the composites

id Aey

Mn,
MH, AT"2 —— MH, AMH, —> MH,,,,, (6.3.5.2)

and it follows form the construction that they coincide with the maps (6.3.2.c).

6.3.6. Let n € N. The functor mapping a T/?-spectrum E to its level n component E, admits a
left adjoint, which maps a pointed motivic space Y to the spectrum Z;"Az Y(—n) given by (x, ..., *
,Y,TA? AY,...), whose image in SH(S) is naturally isomorphic to Z=#»~2"£®Y, Thus, the identity
of MH,, yields, by adjunction and application of the functor £#»?", a canonical map in SH(S)

P, Z®° MH,, — =" MH. (6.3.6.2)
Note that, under the above adjunction for n = 1, the unit 1),y : 1¢ = MH of the ring spectrum
MH corresponds to the map e; of (6.3.3.c), hence factors in SH(S) as

_4’_220091 >—4-2

z P
Lyg: lg=S472g°rA2 2~ 1, 5425 MH, — MH. (6.3.6.b)
Moreover, it follows from the construction of the product u : MH A MH — MH that the following
diagram commutes in SH(S) (using the identification (6.3.7) below)

Eoo n,m
=% MH, AZ® MH,, i £° MH,,,,

pn/\pml ipn-v»m (6.3.6.c)

z4(n+m),2(n+m)#

24n,2n MH /\Z4m,2m MH Z4(n+m),2(n+m) MH.

6.3.7. Let A,B € SH(S) and a,b € N. The isomorphism 7 : T"* A B — B A T"? exchanging the
factors B and T"“ induces an identification

200 A AT20PB = AANTM ABATNY ~ AABATMN AT = s2a+b)a+bq A B,

where the middle isomorphism is id4 AT A idpab.
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Proposition 6.3.8. One may define a hyperbolic orientation on the ring spectrum MH using the
elements Oy of (6.2.3), by setting

op = p,0Z%0; € MH*"?"(Thy(E @ E)) = MH*(X;E ® E)

for every vector bundle E — X of rank n € N, with X € Smg (and extending this definition to
arbitrary vector bundles in an obvious way).

Proof. We verify the axioms of (2.2.2). Centrality (2.2.2.i) is automatic because the ring spec-
trum MH is commutative (see (2.2.4)). Compatibility with pullbacks (2.2.2.ii) and isomorphisms
(2.2.2.ii) follow from (6.2.3.i) and (6.2.3.ii). Applying (6.2.3.iii) with n = ¢ = 1 shows that 6, is the
map A, ; = e, of (6.3.3.c). Thus, it follows from the factorisation (6.3.6.b) that 0, = *?1y;;, where
1y @ 1g » MH is the unit of the ring spectrum MH, proving the normalisation axiom (2.2.2.iv).

Finally, let us prove the multiplicativity axiom (2.2.2.v). Let E, F be vector bundles over X €
Smyg, of respective ranks n, m € N. In view of the diagram (6.3.6.c), it will suffice to prove that the
map Oy in H,(S) factors as (see (2.2) and (1.12))

Th (E@F@E@F)ﬂThX(E@EEBF@F)ﬁThX(EeaE)/\ThX(FeaF)
X

OpAOk Hnm
——— MH, AMH,, — MH

n+m -

While doing so, we may assume that X is affine by Jouanolou’s trick (6.1.5), and thus, assume given
inclusions E C 19" and F c 19™ for some t € N \ {0}, corresponding to morphisms e: X —
Gr(n,nt) and f : X - Gr(m, mt). Then we have a commutative diagram in H, (S)

Thy(E @ E) A Thy(F @ F) —Y> Th(n, nt) A Th(m, mt) — 2>~ Th(n + m, (n + m)t)
X

An,nt Aim,ml An+m,(n+m)t
6pN8p
Hn,m

MH,, A MH,, MH,,, -

Consider the morphism 4 : X — Gr(n + m, (n + m)t) in Smg corresponding to the inclusion E @
F C 197 @ 19mt = 18(+m) Then O factors as

n+m,(n+m)t

i
ThX(EEBFEBEéBF)ﬁ»Th(n+m,(n+m)t)—>MH

n+m-

Therefore, it will suffice to prove that the composite

Thy(E®F @ E @ F) —» ThX(EeBEeaF@F)ﬁ’LThX(E@E)AThX(F@F)
X

enf (6.3.3.b)
— Th(n, nt) A Th(m, mt) —— Th(n + m, (n + m)t)

is the morphism induced by h. Set P = Gr(n, nt) Xg Gr(m, mt). Let U — P be the pullback of
U, under the first projection, and V' — P the pullback of U, under the second projection. The

A ' €202 ‘Yer8ESLT
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consideration of the commutative diagram in H, (S)

h

/ B \\\

Thy(E®F®E®F) Thp(U @V ® U @ V) —> Th(n + m, (n + m)r)

(e.f)
SWir l \LSWU,V T(6.3.3‘b)

Thy((E®E®F®F) —e5 Thy(U S U @ V @ V) = Th(n, nt) A Th(m, mt)
Ay l ////
Thy(E @ E) A Thy(F @ F) ——_eAf
concludes the proof. O

6.3.9. Let us denote by E og[H the hyperbolic orientation of MH described in (6.3.8). Let A €
SH(S) be a commutative ring spectrum. If ) : MH — A is a morphism of ring spectra in SH(S),
then E + 3, (o)) defines a hyperbolic orientation of A.

Lemma 6.3.10. Let A € SH(S) be an n-periodic hyperbolically oriented ring spectrum. Then for
any p,q € Z, the morphisms

AP4(MH) — lim APHGEINMY ) and APY(MH AMH) — lim APTERGHR OV A MH,,)
induced by (6.3.6.a) are bijective.

Proof. Letr € {1,2}. By [15, Corollaries 2.1.4, 2.1.5] (see also [16, Theorem 5.6]), we have for each
D, q € Z ashort exact sequence of abelian groups

0— hmlAp+4rn—1,q+2rn(MH/\r) N Ap,q(MH/\r) - 1imAp+4rn,q+2rn(MH/\r) - 0.
n n n n
The isomorphisms, for n € Nand t € N\ {0} (see (2.2.5))
(=) U (0, )"+ A™*(Gr(n, nt)*s") — A**(Th(n, nt)"")

(which are graded of degree (4rn, 2rn)) are compatible with the morphisms (6.3.2.2) and (6.3.2.b),
which in view of (5.3.7.ii) and (6.2.2) yields a commutative diagram

A**((BGL,41);") — A®*((BGL,)}")

A®*(MH),) ——— A®*(MH,").

Under the identifications given in (5.3.3) and (5.3.6), by (5.3.7.iii), the upper horizontal arrow is a
morphism of A**(S)-algebras mapping p; to p;, as well as p’. to p’ whenr = 2, hence is surjective.
Since the vertical arrows are bijective, it follows that the lower horizontal arrow is surjective. This
implies that the lim!-term vanishes in the above exact sequence, concluding the proof. O

A ' €202 ‘Yer8ESLT
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Theorem 6.3.11. Let A € SH(S) be an n-periodic commutative ring spectrum. The procedure
described in (6.3.9) yields a bijection between the set of morphisms of ring spectra MH — A in SH(S)
and the set of hyperbolic orientations of A.

Proof. Assume that A carries a hyperbolic orientation E — og. Then for each n, the family o‘l“/ S
A*:2n(Th(n, nt)) where t runs over N \ {0}, lifts to a unique element g,, € A*»**(MH,,) by (6.2.2).
Since the vector bundle U}, restricts to U, @ 1 along the morphism y, , : Gr(n,nt) — Gr(n +
1,n(t + 1)) of (6.3.2.2), it follows that the morphism 7, , of (6.3.2.b) verifies

(2:22.i0) 2220) 4

(63.1) N 't
D= (swi, )7 (03 1) = "0y, U0

e oA % y=1_ % (A A
T;,z(DUH (SWUn,l) °7/n,z(°1/n+l) 1°

which equals 24’20{‘4[ by (2.2.2.iv) and (1.12.a). Taking the limit over ¢, we deduce that o, ,, €

An+D2n+)(MH,, ;) mapsto o, € A*"?"(MH,,) under the pullback along (6.3.2.c). Therefore, by
(6.3.10), we obtain a well-defined element ¢ € A%°(MH), in other words a morphism ¢ : MH —
A in SH(S). To verify that ¢ is indeed a morphism of ring spectra, we investigate the commutativity
of the diagrams in SH(S)

1
1, —% MH MH A MH 2> MH
\ i(p W\(Pl lqo (6.3.11.a)
1/1
A ANA—E1 4

Observe that, by construction of ¢, for n € N the element o’l“/ is the composite

An, Pn
Th(n, nt) —% MH,, 2% MH 5 A. (6.3.1L.b)

On the other hand, by definition of the hyperbolic orientation of MH (in (6.3.8)) and in view of
(6.2.3.iii), the composite (6.3.11.b) is ¢,.(0}1'"). In view of (6.1.6) and (6.1.4), it follows that

go*(ogm) = og‘ for any vector bundle E — X with X € Smg. (6.3.11.c)

Taking E = 1 and X = S, and using the normalisation axiom (2.2.2.iv) for MH and A, we deduce
the commutativity of the triangle in (6.3.11.a).

Applying (6.3.10) and (6.2.2), and in view of the commutative diagram (6.3.6.c), the commuta-
tivity of the square in (6.3.11.a) boils down to the commutativity in SH(S) of the following square
(using the identification (6.3.7)), for each n € Nand t € N\ {0},

£°(6.3.3
£ Th(n, nt) A £° Th(n, nt) —— > _ 50 Th(2n, 2nt)
of. Aof. J{ inffm (6.3.11.d)
ZX}’!AVL#
y4n2n A A yAn2n g A y8ndn 4

The composites in the square (6.3.11.d) may be viewed as elements of

ASR(Th(n, nf) A Th(n, nt) = A°O(P; p*V, @ piV', @ piU, @ pils),

A ' €202 ‘Yer8ESLT
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where p;, p, : P = Gr(n, nt) Xg Gr(n,nt) — Gr(n, nt) are the projections. Then, in (6.3.11.d), the
top horizontal map followed by the right vertical one is (see (6.3.3.2))

* 1,6 (qA 63D ~1(,A @Q22v) , A % A
SW*, o 0 = (swh, . 0 . = 07 Upio
( plzf,,,pgv,,) Fn (07, ) ( pl-zfn,p;v,,) ( pi‘l/'n@p;U'n) P19y, Y P;0y s

which coincides with, writing Y = Th(n, nt) and using the notation of (1.12),

A A
LAD; DVnADUn 8n,4n

A p z u
YAY B YAYAYAY YAY g poyan2ng = T4 v8ndn 4

Since (p; A p,)oAp =idy .y, the composite just above coincides with the left vertical map fol-
lowed by the lower horizontal map in the square (6.3.11.d). We have proved that the diagrams
(6.3.11.2) commute, so that ¢ is a morphism of ring spectra.

It remains to verify that the above construction is the inverse of the one given in (6.3.9). This fol-
lows from (6.3.11.c), and from the fact that a morphism ¥ : MH — A in SH(S) is determined by the

l”l, n . .
composites Th(n, nt) - MH,, LLN MH ﬂ A, forn e Nand ¢ € N\ {0}, which is a consequence
of (6.2.2) and (6.3.10). O
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