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Abstract
We introduce the notion of hyperbolic orientation of
a motivic ring spectrum, which generalises the vari-
ous existing notions of orientation (by the groups GL,
SL𝑐, SL, Sp). We show that hyperbolic orientations of 𝜂-
periodic ring spectra correspond to theories of Pontrya-
gin classes, much in the same way that GL-orientations
of arbitrary ring spectra correspond to theories of Chern
classes.We prove that 𝜂-periodic hyperbolically oriented
cohomology theories do not admit further characteristic
classes for vector bundles, by computing the cohomol-
ogy of the étale classifying space BGL𝑛. Finally, we con-
struct the universal hyperbolically oriented 𝜂-periodic
commutative motivic ring spectrum, an analogue of
Voevodsky’s cobordism spectrumMGL.
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INTRODUCTION

Let us fix a base scheme 𝑆 (e.g. the spectrum of a field), and consider a cohomology theory𝐴∗,∗ on
smooth 𝑆-schemes, represented by amotivic ring spectrum𝐴 in Voevodsky’s stable𝔸1-homotopy
category SH(𝑆). When 𝐸 is a vector bundle of rank 𝑟 over a smooth 𝑆-scheme 𝑋, its Chern classes
are elements

𝑐𝑖(𝐸) ∈ 𝐴
2𝑖,𝑖(𝑋) for 𝑖 = 0, … , 𝑟.

This classes are commonly used to:

— detect the presence of nowhere vanishing sections of 𝐸,
— distinguish non-isomorphic bundles,
— exhibit elements in 𝐴∗,∗(𝑋).

The existence of such classes having good properties is subject to certain conditions on the ring
spectrum 𝐴, and moreover, these classes are not determined by 𝐴 alone. In fact, Panin [12, 13]
proved that the theories of Chern classes with values in the theory 𝐴∗,∗ are in correspondence
with the so-calledGL-orientations of themotivic spectrum𝐴. Panin andWalter [17] later provided
a parallel correspondence between Borel classes and Sp-orientations.
The Pontryagin classes of the vector bundle 𝐸 → 𝑋 are expected to be elements

𝑝𝑖(𝐸) ∈ 𝐴
8𝑖,4𝑖(𝑋) for 𝑖 = 0, … , ⌊𝑟∕2⌋.

As was the case with Chern classes, it is not expected that well-behaved Pontryagin classes exist
for an arbitrary motivic ring spectrum 𝐴, nor that they should be determined by 𝐴 alone. Such
classes have been defined using the Borel classes when𝐴 is Sp-oriented [1, Definition 7], but have
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1425

been proved to have good properties only when 𝐴 is SL-oriented and 𝜂-periodic (see [3, §7]). This
provides an important example of Pontryagin classes, but we are not aware of any systematic study
of the theories of such classes.
In this paper, we propose a notion of hyperbolic orientation of a motivic ring spectrum, which

fits into the following table:

Chern classes GL-orientation
Borel classes Sp-orientation
Pontryagin classes hyperbolic orientation

An important caveat is that we limit ourselves to the consideration of 𝜂-periodic cohomology
theories.Wewill discuss at the end of this introduction the reasons why in some sense this restric-
tion is necessary. It turns out that Chern classes do not exist in the 𝜂-periodic context, and that
Pontryagin classes are the natural characteristic classes of vector bundles (without extra struc-
ture) with values in hyperbolically oriented cohomology theories (this statement is made precise
in Theorem 5 below).
The basic idea motivating the notion of a hyperbolic orientation is that the data of Thom

classes for all symplectic bundles (i.e. a symplectic orientation) are substantially more than what
is needed in order to define Pontryagin classes: in fact, it turns out that it suffices to have these
data for hyperbolic symplectic bundles. Such bundles are determined by the vector bundle (of half
rank) whose Pontryagin classes we want to take.
This is perhaps not surprising since after all, the existing construction of Pontryagin classes in

Sp-oriented theories only involves the Borel classes of hyperbolic symplectic bundles. But those
Borel classes are constructed using the Thom classes of the universal rank 2 symplectic bundles
on the corresponding symplectic grassmannians, and those universal bundles are far from being
hyperbolic. So, it was not a priori completely clear that this program would succeed.
A hyperbolic orientation will thus be the data of a Thom class for each vector bundle, but an

important difference with all existing notions of orientation is that this class does not live in the
cohomology of the Thom space of that vector bundle. Rather, the hyperbolic Thomclass of a vector
bundle 𝐸 lives in the cohomology of the Thom space of the hyperbolic bundle 𝐸 ⊕ 𝐸∨. That space
happens to be isomorphic to the Thom space of 𝐸 ⊕ 𝐸, and in this paper, it will be internally more
logical to consider the latter instead. The definition of a hyperbolic orientation is given in (2.2.2).
Symplectically oriented theories (and thus also GL-, SL𝑐-, SL-oriented ones) are naturally

hyperbolically oriented, but, for instance, orthogonally oriented ones also provide examples of
hyperbolically oriented theories (see (2.2.6) for details).
Grothendieck provided in [5] a seminal construction of Chern classes in Chow theory. He sin-

gled out the so-called projective bundle theorem as the key property, which permits to extend
the definition of the first Chern classes of line bundles (imposed by the natural relation between
the Picard group and the Chow group) to higher Chern classes of arbitrary vector bundles. This
method has been revisited over the years, and is central in Panin’s study of GL-orientations
mentioned above.
In this paper, we use the same strategy for Pontryagin classes. The main difference is that

line bundles should be replaced with rank 2 bundles. Thus, if 𝐸 is vector bundle, the pro-
jective bundle ℙ(𝐸) with its tautological bundle (−1) is replaced by the Grassmann bundle
Gr(2, 𝐸) of rank 2 subbundles with its universal rank 2 subbundle 2. The first Pontryagin class
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1426 HAUTION

𝑝1(2) ∈ 𝐴
8,4(Gr(2, 𝐸)) is constructed directly from the hyperbolic orientation, and we prove the

following analogue of the projective bundle theorem (see (3.3.5)).

Theorem 1. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. For any vector
bundle 𝐸 → 𝑋 of rank 2𝑑 or 2𝑑 + 1, the 𝐴∗,∗(𝑋)-module 𝐴∗,∗(Gr(2, 𝐸)) is freely generated by the
elements 1, 𝑝1(2), … , 𝑝1(2)𝑑−1.

We may then use Grothendieck’s method to define the higher Pontryagin classes 𝑝𝑖(𝐸) ∈
𝐴4𝑖,2𝑖(𝑋) for 𝑖 = 1, … , 𝑑. We prove that these classes satisfy the expected properties, the most
notable being perhaps the Whitney sum formula (see (4.3.9)).

Proposition 2. If 𝐸, 𝐹 → 𝑋 are vector bundles, their Pontryagin classes satisfy

𝑝𝑖(𝐸 ⊕ 𝐹) =
∑
𝑗

𝑝𝑖−𝑗(𝐸)𝑝𝑗(𝐹).

We also derive the following splitting principle (see (4.2.1)).

Theorem 3. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝐸 → 𝑋 be
a vector bundle. Then there exists a morphism 𝑓∶ 𝑌 → 𝑋 such that:

(i) 𝑓∗ ∶ 𝐴∗,∗(𝑋) → 𝐴∗,∗(𝑌) is a split injection,
(ii) the vector bundle 𝑓∗𝐸 splits as a direct sum of rank 2 vector bundles having trivial determinants,

and possibly a trivial line bundle.

Both this splitting principle and the analogue of the projective bundle theorem (Theorem 1)
are reminiscent of Ananyevskiy’s results in the SL-oriented setting [1]. The difference is that our
results apply to vector bundles without additional structure as opposed to ones with trivialised
determinant, and that the assumptions on the ring spectrum 𝐴 are weaker. As an illustration
of this added flexibility, we obtain the following statement, a priori unrelated to hyperbolic
orientations.

Corollary 4. Let𝐴 ∈ SH(𝑆) be an 𝜂-periodic commutative ring spectrum. Then each Sp-orientation
of 𝐴 is induced by at most one normalised SL-orientation.

One may notice that the above construction of Pontryagin classes in fact only uses the hyper-
bolic Thom classes of rank 2 bundles. We prove in §4.4 that such data, that we call a weak
hyperbolic orientation (see (2.3.1) for a precise definition), are, in fact, equivalent to the data of a
hyperbolic orientation. Part of this statement (the uniqueness) is, of course, a consequence of the
splitting principle, but there is more to it. Indeed, the axioms of a hyperbolic orientation include
a multiplicativity property (the Thom class of a direct sum is the product of the Thom classes of
the summands), which has no counterpart for weak hyperbolic orientations (as they concern only
rank 2 bundles). The verification of thismultiplicative property is thus not a simple formality, and,
in fact, relies quite a bit on the theory developed earlier in the paper.
We also prove in §4.1 the comparatively easier fact that it is equivalent to specify the Thom

classes of the rank 2 bundles, or their first Pontryagin classes. In particular, a hyperbolic
orientation is precisely what is needed in order to obtain a theory of Pontryagin classes.
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1427

Next, we compute in (5.3.3) the cohomology of the étale classifying space BGL𝑛, generalising
a computation of Levine [9, Theorem 4.1] (by including, for instance, the case when 𝐴 is Sp-
oriented)

Theorem 5. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝑟 ∈ ℕ, and
𝑛 ∈ {2𝑟, 2𝑟 + 1}. Then

𝐴∗,∗(BGL𝑛) = 𝐴
∗,∗(𝑆)[[𝑝1, … , 𝑝𝑟]]ℎ.

Here, the index ℎ refers to the homogeneous power series ring. This theorem asserts that
there are no universal relations between the Pontryagin classes, and that there are no further
invariants of vector bundles with values in 𝜂-periodic hyperbolically oriented cohomology theo-
ries. Unsurprisingly, the theorem is deduced from the computation of the cohomology of higher
Grassmannians Gr(𝑛, 1⊕𝑠) for appropriate values of 𝑛, 𝑠.
In the last section,we first show that aweakhyperbolic orientation of an 𝜂-periodic cohomology

can be defined by specifying the Thomclass of the universal rank 2 vector bundle, in the formof an
element in the cohomology of a certain motivic spaceMH2, subject to a normalisation condition.
We then construct a motivic ring spectrum MH similar to Voevodsky’s cobordism spectrum

MGL, and show that it becomes the universal 𝜂-periodic hyperbolically oriented commutative
ring spectrum after inverting 𝜂. The considerations of that section are parallel to those of Panin–
Pimenov–Röndigs [14] onMGL, and of Panin–Walter [16] onMSp.
To summarise, we describe in this paper five equivalent structures on an 𝜂-periodic commuta-

tive ring spectrum 𝐴 ∈ SH(𝑆):

(i) hyperbolic orientations (2.2.2),
(ii) weak hyperbolic orientations (2.3.1),
(iii) Pontryagin structures (4.1.2),
(iv) ‘normalised’ elements of 𝐴8,4(MH2) (6.2.1),
(v) morphisms of ring spectraMH → 𝐴 (6.3.4).

These equivalences are established in (4.1.5), (4.4.11), (6.2.8) and (6.3.11).
Let us now comment on the standing assumption of 𝜂-periodicity. In order to construct

Pontryagin classes using Grothendieck’s method, we need the analogue of the projective bun-
dle theorem (Theorem 1). When the vector bundle 𝐸 is trivial of rank 3 over the base 𝑆, the
Grassmannian Gr(2, 𝐸) is identified with the projective space ℙ2, and the conclusion of the-
orem is that the pullback 𝐴∗,∗(𝑆) → 𝐴∗,∗(ℙ2) is an isomorphism. This condition is equivalent
to the requirement that the pullback along the Hopf map 𝜂∶ 𝔸2 ⧵{0} → ℙ1 induces an iso-
morphism in 𝐴∗,∗, and so, making this assumption is necessary if we are to obtain Pontryagin
classes satisfying the analogue of the projective bundle theorem. Looking at the situation in
topology reinforces this idea: there it is known that the Pontryagin classes satisfy the Whitney
sum formula only up to 2-torsion, and the Hopf element 𝜂 ∈ 𝜋−1,−1(ℝ) maps to 2 upon real
realisation. It would, of course, still be interesting to systematically study Pontryagin classes
beyond the 𝜂-periodic context, but one probably should not expect such a simple picture
to emerge.
Apart from the construction of themotivic stable homotopy category (as well as certain abstract

considerations on symmetric spectra in §6), the paper is fairly self-contained; the only external
results used in an essential way are contained in the paper [6] (those are (2.1.3), (3.1.1) and (3.1.3)).
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1428 HAUTION

1 NOTATION AND BASIC FACTS

1.1. Throughout the paper, we work over a noetherian base scheme 𝑆 of finite dimension. The
category of smooth separated 𝑆-schemes of finite type will be denoted by Sm𝑆 . All schemes will be
implicitly assumed to belong to Sm𝑆 , and the notation 𝔸𝑛, ℙ𝑛, 𝔾𝑚 will refer to the corresponding
𝑆-schemes. We will denote by 1 the trivial line bundle over a given scheme in Sm𝑆 .

1.2. We will work with the 𝔸1-homotopy theory introduced by Morel–Voevodsky [11]. We will
denote by Spc(𝑆) the category of motivic spaces (i.e. simplicial presheaves on Sm𝑆), by Spc∙(𝑆) its
pointed version and by Spt(𝑆) the category of 𝑇-spectra, where 𝑇 = 𝔸1∕𝔾𝑚. We endow these with
the motivic equivalences, resp. stable motivic equivalences, and denote byH(𝑆),H∙(𝑆), SH(𝑆) the
respective homotopy categories. We refer to, for example, [15, Appendix A] for more details.
We have an infinite suspension functor Σ∞∶ Spc∙(𝑆) → Spt(𝑆). Composing with the functor

Spc(𝑆) → Spc∙(𝑆) adding an external base point, we obtain a functor Σ∞+ ∶ Spc(𝑆) → Spt(𝑆).
The spheres are denoted as usual by 𝑆𝑝,𝑞 ∈ Spc∙(𝑆) for 𝑝, 𝑞 ∈ ℕ with 𝑝 ⩾ 𝑞, (where 𝑇 ≃

𝑆2,1). The motivic sphere spectrum will be denoted by 𝟏𝑆 = Σ∞+ 𝑆 ∈ Spt(𝑆). When 𝐴 is a
motivic spectrum, we denote its (𝑝, 𝑞)th suspension by Σ𝑝,𝑞𝐴 = 𝐴 ∧ Σ∞𝑆𝑝,𝑞. This yields functors
Σ𝑝,𝑞 ∶ SH(𝑆) → SH(𝑆) for 𝑝, 𝑞 ∈ ℤ.

1.3. Let 𝑋 ∈ Sm𝑆 , with structural morphism 𝑓∶ 𝑋 → 𝑆. Then viewing a smooth 𝑋-scheme as an
𝑆-scheme induces a functor 𝑓♯ ∶ H∙(𝑋) → H∙(𝑆) (see, e.g. [11, p.104] where it is denoted by 𝐋𝑓♯).
We will also denote by 𝑓♯ ∶ SH(𝑋) → SH(𝑆) the induced functor.

1.4. When 𝐸 → 𝑋 is a vector bundle with 𝑋 ∈ Sm𝑆 , we denote by 𝐸◦ = 𝐸 ⧵ 𝑋 the complement of
its zero-section. TheThomspace of𝐸 is the pointedmotivic spaceTh𝑋(𝐸) = 𝐸∕𝐸◦.When𝑓∶ 𝑌 →
𝑋 is a morphism in Sm𝑆 , we will usually write Th𝑌(𝐸) instead of Th𝑌(𝑓∗𝐸). Note that a vector
bundle inclusion 𝐸 ⊂ 𝐹 over 𝑋 induces a map Th𝑋(𝐸) → Th𝑋(𝐹).

1.5. Let𝑉 → 𝑆 be a vector bundle.We denote by Σ𝑉 ∶ H∙(𝑆) → H∙(𝑆) the derived functor induced
by 𝐴 ↦ 𝐴 ∧ Th𝑆(𝑉). We will also denote by Σ𝑉 ∶ SH(𝑆) → SH(𝑆) the induced functor.

1.6. In an attempt to lighten the notation, we will sometimes remove the symbols Σ∞ or Σ∞+ for
the notation, when the context makes the meaning sufficiently clear. In particular, we will sys-
tematically write Th𝑋(𝐸) ∈ Spt(𝑆) instead of Σ∞ Th𝑋(𝐸), and when 𝑓 is a morphism in Sm𝑆 or
Spc(𝑆) (resp. in Spc∙(𝑆)), we will often write 𝑓 instead of Σ∞+ 𝑓 (resp. Σ

∞𝑓).

1.7. Assume that 0 → 𝐸′ → 𝐸 → 𝐸′′ → 0 is an exact sequence of vector bundles over 𝑋 ∈ Sm𝑆 .
Then, by [18, §4.1] or [7, Remark 3.2.7] (see, e.g. [2, Proof of Lemma 4] for the explicit homotopies),
we have a canonical isomorphism in H∙(𝑆)

Th𝑋(𝐸) ≃ Th𝑋(𝐸
′ ⊕ 𝐸′′),

which is induced by any splitting of the above exact sequence, if such exists.

1.8. (See [18, p. 243].) We will use the following alternative to Jouanolou’s trick. Assume that 0 →
𝐸′ → 𝐸 → 𝐸′′ → 0 is an exact sequence of vector bundles over 𝑋 ∈ Sm𝑆 . Consider the scheme 𝑌
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1429

parametrising sections of 𝐸 → 𝐸′′ (a closed subscheme of the vector bundleHom(𝐸′′, 𝐸) over 𝑋).
The morphism 𝑓∶ 𝑌 → 𝑋 is a torsor under the vector bundle Hom(𝐸′′, 𝐸′), and, in particular,
𝑌 ∈ Sm𝑆 . In addition, there exists an isomorphism 𝑓∗𝐸 ≃ 𝑓∗𝐸′ ⊕ 𝑓∗𝐸′′ of vector bundles over𝑌.

1.9. Let 𝐴 ∈ Spt(𝑆) be a motivic spectrum. For 𝐶 ∈ Spt(𝑆), we write

𝐴𝑝,𝑞(𝐶) = HomSH(𝑆)(𝐶, Σ
𝑝,𝑞𝐴),

and𝐴∗,∗(𝐶) =
⨁
𝑝,𝑞∈ℤ 𝐴

𝑝,𝑞(𝐶). When  is a pointed motivic space, resp. a motivic space, we will
write𝐴∗,∗() instead of𝐴∗,∗(Σ∞), resp.𝐴∗,∗(Σ∞+ ). If𝐸 → 𝑋 is a vector bundle of constant rank
𝑟 with 𝑋 ∈ Sm𝑆 , we write

𝐴𝑝,𝑞(𝑋; 𝐸) = 𝐴𝑝+2𝑟,𝑞+𝑟(Th𝑋(𝐸)),

and extend this notation to arbitrary vector bundles in an obvious way. Note that for any 𝑑 ∈ ℕ,
the auto-equivalence Σ2𝑑,𝑑 of SH(𝑆) induces isomorphisms

Σ2𝑑,𝑑 ∶ 𝐴𝑝,𝑞(𝑋; 𝐸)
∼
A→ 𝐴𝑝,𝑞(𝑋; 𝐸 ⊕ 1⊕𝑑). (1.9.a)

A morphism 𝑓∶ 𝐵 → 𝐵′ in SH(𝑆) induces a pullback 𝑓∗ ∶ 𝐴∗,∗(𝐵′) → 𝐴∗,∗(𝐵). A morphism
𝜓∶ 𝐴 → 𝐴′ in SH(𝑆) induces a pushforward 𝜓∗ ∶ 𝐴∗,∗(𝐵) → 𝐴′∗,∗(𝐵) for any 𝐵 ∈ Spt(𝑆).

1.10. Wedenote by 𝜂∶ 𝔸2 ⧵{0} → ℙ1 in Spc∙(𝑆) themap (𝑥, 𝑦) ↦ [𝑥 ∶ 𝑦], where𝔸2 ⧵{0} is pointed
by (1,1) and ℙ1 by [1 ∶ 1].

1.11. Amotivic spectrum 𝐴 ∈ Spt(𝑆) is called 𝜂-periodic if the map

𝐴 ∧ Σ∞(𝔸2 ⧵{0})
id ∧Σ∞𝜂
AAAAAAA→ 𝐴 ∧ Σ∞ℙ1

is an isomorphism in SH(𝑆). The full subcategory of such objects will be denoted as Spt(𝑆)[𝜂−1],
andmay be viewed as a left Bousfield localisation of Spt(𝑆), as explained in [4, §6]. The homotopy
category of Spt(𝑆)[𝜂−1] will be denoted by SH(𝑆)[𝜂−1], and we will usually omit the mention of
the inclusion and localisation functors. When 𝐴 ∈ Spt(𝑆) is 𝜂-periodic and  ∈ Spc∙(𝑆), we thus
have a natural identification

𝐴𝑝,𝑞() = HomSH(𝑆)[𝜂−1](Σ
∞ , Σ𝑝,𝑞𝐴).

The functor of (1.3) descends to a functor 𝑓♯ ∶ SH(𝑋)[𝜂−1] → SH(𝑆)[𝜂−1], and the functor of (1.5)
to a functor Σ𝑉 ∶ SH(𝑆)[𝜂−1] → SH(𝑆)[𝜂−1].

1.12. By a ring spectrum, resp. commutative ring spectrum, we will mean a monoid, resp. com-
mutative monoid, in (SH(𝑆), ∧, 𝟏𝑆). Let 𝐴 ∈ SH(𝑆) be a ring spectrum, with multiplication map
𝜇∶ 𝐴 ∧ 𝐴 → 𝐴. Let 𝑋 ∈ Sm𝑆 , and Δ𝑋 ∶ 𝑋 → 𝑋 ×𝑆 𝑋 its diagonal. If 𝑥, 𝑦 ∈ 𝐴∗,∗(𝑋), we denote by
𝑥 ∪ 𝑦 ∈ 𝐴∗,∗(𝑋), or simply 𝑥𝑦, the composite in SH(𝑆)

Σ∞+ 𝑋
Δ𝑋
AAA→ Σ∞+ (𝑋 ×𝑆 𝑋) = (Σ

∞
+ 𝑋) ∧ (Σ

∞
+ 𝑋)

𝑥∧𝑦
AAAA→ 𝐴 ∧ 𝐴

𝜇
A→ 𝐴.
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1430 HAUTION

More generally, let 𝑉,𝑊 → 𝑋 be vector bundles, and denote by 𝑝1, 𝑝2 ∶ 𝑋 ×𝑆 𝑋 → 𝑋 the
projections. Then, Δ𝑋 induces a morphism in SH(𝑆)

Th𝑋(𝑉 ⊕𝑊) = Th𝑋(Δ
∗
𝑋(𝑝

∗
1𝑉 ⊕ 𝑝

∗
2𝑊)) → Th𝑋×𝑆𝑋(𝑝

∗
1𝑉 ⊕ 𝑝

∗
2𝑊) = Th𝑋(𝑉) ∧ Th𝑋(𝑊)

that we denote again by Δ𝑋 . As above, if 𝑥 ∈ 𝐴∗,∗(𝑋; 𝑉) and 𝑦 ∈ 𝐴∗,∗(𝑌;𝑊), we may define an
element 𝑥 ∪ 𝑦 ∈ 𝐴∗,∗(𝑋; 𝑉 ⊕𝑊) as 𝜇◦(𝑥 ∧ 𝑦)◦Δ𝑋 .
In particular, this endows 𝐴∗,∗(𝑋) with a ring structure, and 𝐴∗,∗(𝑋; 𝑉) with an 𝐴∗,∗(𝑋)-

bimodule structure.
Observe that the isomorphism of (1.9.a) is given by the cup product with Σ2𝑑,𝑑1 ∈ 𝐴0,0(𝑋; 1⊕𝑑),

so that we have

Σ2𝑑,𝑑(𝑥 ∪ 𝑦) = 𝑥 ∪ Σ2𝑑,𝑑𝑦, for any 𝑥 ∈ 𝐴∗,∗(𝑋; 𝑉), 𝑦 ∈ 𝐴∗,∗(𝑋;𝑊). (1.12.a)

1.13. All rings will be associative and unital. Let𝑅 be a ring. In this paper, an𝑅-algebrawill mean a
monoid in the category of 𝑅-bimodules. By 𝑅[𝑥1, … , 𝑥𝑛], we will mean the polynomial ring where
the variables 𝑥1, … , 𝑥𝑛 are understood to be central.

1.14. Let 𝑀 be an abelian group, and 𝑅 an 𝑀-graded ring. If 𝑚1,… ,𝑚𝑟 ∈ 𝑀, we may view
𝑅[𝑥1, … , 𝑥𝑟] as an 𝑀-graded 𝑅-algebra, where each 𝑥𝑖 has degree 𝑚𝑖 . We let 𝐿 ⊂ 𝑅[𝑥1, … , 𝑥𝑟]
is the (two-sided) ideal generated by 𝑥1, … , 𝑥𝑟. We will denote by 𝑅[[𝑥1, … , 𝑥𝑟]]ℎ the 𝑀-graded
ring of homogeneous power series, defined as the limit in the category of𝑀-graded 𝑅-algebras of
𝑅[𝑥1, … , 𝑥𝑟]∕𝐿

𝑛 for 𝑛 ∈ ℕ. (Each homogeneous component is the limit in the category of abelian
groups of the corresponding homogeneous components of 𝑅[𝑥1, … , 𝑥𝑟]∕𝐿𝑛.)

1.15. (See [2, Lemma 2].) Let𝑋 ∈ Sm𝑆 , and𝐸,𝑉 → 𝑋 be vector bundles.We claim that there exists
a canonical isomorphism in H∙(𝑆)

𝜎𝐸 ∶ Th𝑋(𝑉 ⊕ 𝐸)
∼
A→ Th𝑋(𝑉 ⊕ 𝐸

∨). (1.15.a)

Indeed, we reduce to the case 𝑋 = 𝑆 using the functor 𝑓♯ of (1.3), and then to the case 𝑉 = 0
using the functor Σ𝑉 of (1.5). Consider then the closed subscheme 𝑌 ⊂ 𝐸 ⊕ 𝐸∨ consisting of
those pairs (𝑥, 𝑓) such that 𝑓(𝑥) = 1. Then, the projection 𝑌 → 𝐸◦ given by (𝑥, 𝑓) ↦ 𝑥 is an
affine bundle, hence a weak equivalence of motivic spaces. Since the projection 𝐸 ⊕ 𝐸∨ → 𝐸 is
a weak equivalence, we obtain a weak equivalence (𝐸 ⊕ 𝐸∨)∕𝑌 → 𝐸∕𝐸◦ = Th𝑋(𝐸). Similarly,
we have a weak equivalence (𝐸 ⊕ 𝐸∨)∕𝑌 → Th𝑋(𝐸

∨). This yields the required isomorphism
𝜎𝐸 ∶ Th𝑋(𝐸)

∼
A→ Th𝑋(𝐸

∨) in H∙(𝑆). Let us record that we have a commutative diagram in H∙(𝑆),
where the maps from 𝑋+ are the zero-sections,

(1.15.b)
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1431

1.16. Let us denote by can∶ Th𝑆(1∨) → Th𝑆(1) the morphism in SH(𝑆) induced by the canonical
isomorphism 1∨

∼
A→ 1 of vector bundles over 𝑆. We consider the isomorphism in SH(𝑆)

𝜖∶ 𝟏𝑆 = Σ
−2,−1 Th𝑆(1)

Σ−2,−1(𝜎1)
AAAAAAAAA→ Σ−2,−1 Th𝑆(1

∨)
Σ−2,−1(can)
AAAAAAAAAA→ Σ−2,−1 Th𝑆(1) = 𝟏𝑆.

For any motivic ring spectrum 𝐴 ∈ SH(𝑆), we will write 𝜖 ∈ 𝐴0,0(𝑆) instead of 𝜖∗(1).
Let us mention that 𝜖 = −⟨−1⟩, using a standard notation (see, e.g. [10, Lemma 6.3.5]).
Since 𝜂𝜖 = 𝜂 by [10, Lemma 6.2.3] (where the fact that base scheme is the spectrum of a perfect

field plays no role), we have 𝜖 = 1 ∈ 𝐴0,0(𝑆) when 𝐴 is 𝜂-periodic.

2 HYPERBOLIC STRUCTURES

2.1 Zero-sections

2.1.1. Let 𝐸 → 𝑋 be a vector bundle with 𝑋 ∈ Sm𝑆 . We denote by

𝑧𝐸 ∶ 𝑋+ → Th𝑋(𝐸) ∈ H∙(𝑆) (2.1.1.a)

the composite of the zero-section 𝑋+ → 𝐸+ followed by the canonical map 𝐸+ → 𝐸∕(𝐸◦) =

Th𝑋(𝐸). Equivalently, the map 𝑧𝐸 is the composite 𝑋+ = Th𝑋(0) → Th𝑋(𝐸) where the second
map is induced by the inclusion 0 ⊂ 𝐸. More generally, when 𝑉 → 𝑋 is a vector bundle, the
zero-section of 𝐸 induces an inclusion 𝑉 → 𝐸 ⊕𝑉, and thus, a morphism of pointed motivic
spaces

𝑧𝐸 ∶ Th𝑋(𝑉) → Th𝑋(𝐸 ⊕ 𝑉). (2.1.1.b)

When 𝑋 = 𝑆, observe that (2.1.1.b) is obtained from (2.1.1.a) by applying the functor Σ𝑉 of (1.5).

2.1.2. The element 1 ∈ 𝐻0(𝑆, 𝔾𝑚) yields a section of the projection 𝔾𝑚 → 𝑆, which implies that
the map 𝑧1 ∶ 𝑆+ → (𝔸1)+∕(𝔾𝑚)+ = Th𝑆(1) is zero in H∙(𝑆).
We will use the following splitting principle from [6].

Proposition 2.1.3 [6, (4.2.5)]. Let 𝑋 ∈ Sm𝑆 , and 𝑉 → 𝑋 be a vector bundle of constant odd rank.
Then there exists a morphism 𝑓∶ 𝑌 → 𝑋 in Sm𝑆 whose image in SH(𝑆)[𝜂−1] admits a section, and
a vector bundle𝑊 → 𝑌 such that 𝑓∗𝑉 ≃ 𝑊 ⊕ 1.

Lemma 2.1.4. Let 𝑋 ∈ Sm𝑆 . Let 𝐸 → 𝑋 be a vector bundle, and 𝐹 ⊂ 𝐸 a subbundle such that 𝐸∕𝐹
has constant odd rank. Then the morphism Th𝑋(𝐹) → Th𝑋(𝐸) vanishes in SH(𝑆)[𝜂−1].

Proof. Let 𝑄 = 𝐸∕𝐹. By (1.8), we may assume that 𝐹 ⊂ 𝐸 extends to an isomorphism 𝑄⊕ 𝐹 ≃ 𝐸.
Then, the composite Th𝑋(𝐹) → Th𝑋(𝐸) ≃ Th𝑋(𝑄 ⊕ 𝐹) is the map 𝑧𝑄 of (2.1.1.b). Applying the
functor 𝑓♯ ∶ SH(𝑋)[𝜂−1] → SH(𝑆)[𝜂−1] of (1.3) (in view of (1.11)), wemay assume that𝑋 = 𝑆, and
applying the functor Σ𝐹 ∶ SH(𝑆)[𝜂−1] → SH(𝑆)[𝜂−1] of (1.5) (in view of (1.11)), we reduce to the
case 𝐹 = 0. It will thus suffice to show that 𝑧𝑄 ∶ 𝟏𝑆 → Th𝑆(𝑄) vanishes in SH(𝑆)[𝜂−1]. By (2.1.3),
wemay find amorphism𝑓∶ 𝑌 → 𝑆 in Sm𝑆 admitting a section𝜎 in SH(𝑆)[𝜂−1], and such that𝑓∗𝑄
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1432 HAUTION

admits the trivial line bundle as a direct summand over 𝑌. In view of the commutative diagram
in SH(𝑆)[𝜂−1] (where horizontal composites are the identities)

it will suffice to prove the vanishing of the middle vertical map. That map may be identified with
𝑧𝑓∗𝑄 ∶ Σ

∞
+ 𝑌 → Th𝑌(𝑄), hence factors through 𝑧1 ∶ Σ∞+ 𝑌 → Th𝑌(1) (because the inclusion 0 ⊂

𝑓∗𝑄 factors through 1 over 𝑌), which vanishes by (2.1.2). □

2.2 Hyperbolic orientations

2.2.1. Let 𝐸, 𝐹 → 𝑋 be vector bundles with 𝑋 ∈ Sm𝑆 . We denote by

sw𝐸,𝐹 ∶ Th𝑋(𝐸 ⊕ 𝐹 ⊕ 𝐸 ⊕ 𝐹)
∼
A→ Th𝑋(𝐸 ⊕ 𝐸 ⊕ 𝐹 ⊕ 𝐹)

the isomorphism of pointed motivic spaces over 𝑆 given by (𝑒, 𝑓, 𝑒′, 𝑓′) ↦ (𝑒, 𝑒′, 𝑓, 𝑓′).

Definition 2.2.2. Let 𝐴 ∈ SH(𝑆) be a ring spectrum. A hyperbolic orientation on 𝐴 is the datum
of a class

𝔬𝐸 ∈ 𝐴
0,0(𝑋; 𝐸 ⊕ 𝐸)

for each vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 , subject to the following conditions:

(i) the class 𝔬𝐸 is 𝐴∗,∗(𝑋)-central,
(ii) if 𝑓∶ 𝑌 → 𝑋 is a morphism in Sm𝑆 and 𝐸 → 𝑋 a vector bundle, then 𝑓∗𝔬𝐸 = 𝔬𝑓∗𝐸 ,
(iii) if 𝐸

∼
A→ 𝐹 is an isomorphism of vector bundles over𝑋 ∈ Sm𝑆 , then the induced isomorphism

𝐴∗,∗(𝑋; 𝐹 ⊕ 𝐹)
∼
A→ 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)maps 𝔬𝐹 to 𝔬𝐸 ,

(iv) 𝔬1 = Σ4,21,
(v) if 𝐸, 𝐹 are vector bundles over 𝑋 ∈ Sm𝑆 , we have 𝔬𝐸⊕𝐹 = sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹).

Remark 2.2.3. Axioms (2.2.2.iv) and (2.2.2.v) imply that 𝔬0 = 1.

2.2.4. If the ring spectrum 𝐴 is commutative, then the axiom (2.2.2.i) is automatically satisfied:
indeed, if 𝐸 has constant rank 𝑟, then 𝔬𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸) = 𝐴4𝑟,2𝑟(Th𝑋(𝐸 ⊕ 𝐸)) commutes with
every elements of 𝐴∗,∗(𝑋) (see, e.g. [16, Theorem 2.4]).

Lemma 2.2.5. Let𝐴 ∈ SH(𝑆) be a hyperbolically oriented ring spectrum. If 𝐸,𝑉 are vector bundles
over 𝑋 ∈ Sm𝑆 , then the morphism

𝐴∗,∗(𝑋; 𝑉)
∼
A→ 𝐴∗,∗(𝑋; 𝑉 ⊕ 𝐸 ⊕ 𝐸), 𝑥 ↦ 𝑥 ∪ 𝔬𝐸

is bijective.
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Proof. By a Mayer–Vietoris argument and (2.2.2.ii), we can assume that 𝐸 ≃ 1⊕𝑠 for some 𝑠 ∈ ℕ,
and then by (2.2.2.iii) that 𝐸 = 1⊕𝑠. We reduce to the case 𝑠 = 1 using (2.2.2.v) (replacing 𝑉 with
𝑉 ⊕ 1⊕2𝑛 for 𝑛 = 0,… , 𝑠 − 1), and conclude with (2.2.2.iv). □

Example 2.2.6. Let𝐴 ∈ SH(𝑆) be a commutative ring spectrum equipped with a normalised Sp-
orientation, in the sense of [3, Definition 3.3]. Thus, every symplectic bundle 𝑉 → 𝑋 with 𝑋 ∈
Sm𝑆 has a Thom class th𝑉 ∈ 𝐴0,0(𝑋; 𝑉). For a vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 of constant
rank 𝑛, we set (using the element 𝜖 of (1.16))

𝔬𝐸 = 𝜖
−𝑛 ⋅ 𝜎∗𝐸(th𝐻(𝐸)) ∈ 𝐴

0,0(𝑋; 𝐸 ⊕ 𝐸), (2.2.6.a)

where 𝜎𝐸 ∶ Th𝑋(𝐸 ⊕ 𝐸)
∼
A→ Th𝑋(𝐸 ⊕ 𝐸

∨) is the isomorphism of (1.15), and 𝐻(𝐸) the vector bun-
dle 𝐸 ⊕ 𝐸∨ equipped with the hyperbolic symplectic form. Then one verifies that 𝐸 ↦ 𝔬𝐸 defines
a hyperbolic orientation of 𝐴. Similarly, any normalised O-orientation (defined in the expected
way) yields a hyperbolic orientation. (This is the origin of the terminology of (2.2.2).)
Recall from (1.16) that 𝜖 = 1 ∈ 𝐴0,0(𝑆) when 𝐴 is 𝜂-periodic, so that the formula (2.2.6.a)

simplifies to

𝔬𝐸 = 𝜎
∗
𝐸(th𝐻(𝐸)) when 𝐴 is 𝜂-periodic. (2.2.6.b)

Definition 2.2.7. Let 𝐴 ∈ SH(𝑆) be a hyperbolically oriented ring spectrum. When 𝐸 → 𝑋 is a
vector bundle with 𝑋 ∈ Sm𝑆 , we define its Euler class

𝑒(𝐸) = 𝑧∗𝐸(𝔬𝐸) ∈ 𝐴
∗,∗(𝑋; 𝐸)

(the map 𝑧𝐸 was defined in (2.1)), and its top Pontryagin class

𝜋(𝐸) = 𝑧∗𝐸⊕𝐸(𝔬𝐸) ∈ 𝐴
∗,∗(𝑋).

If 𝐸 has constant rank 𝑟, then 𝑒(𝐸) ∈ 𝐴2𝑟,𝑟(𝑋; 𝐸) and 𝜋(𝐸) ∈ 𝐴4𝑟,2𝑟(𝑋).

2.2.8. The following basic properties of the Euler and top Pontryagin classes are easily verified,
where 𝐸 → 𝑋 is a vector bundle with 𝑋 ∈ Sm𝑆:

(i) the elements 𝑒(𝐸) ∈ 𝐴∗,∗(𝑋; 𝐸) and 𝜋(𝐸) ∈ 𝐴∗,∗(𝑋) are 𝐴∗,∗(𝑋)-central,
(ii) 𝑒(𝑓∗𝐸) = 𝑓∗𝑒(𝐸) and 𝜋(𝑓∗𝐸) = 𝑓∗(𝜋(𝐸)) for any morphism 𝑓∶ 𝑌 → 𝑋 in Sm𝑆 ,
(iii) 𝑒(1) = 0 and 𝜋(1) = 0,
(iv) 𝑒(0) = 1 and 𝜋(0) = 1,
(v) 𝑒(𝐸 ⊕ 𝐹) = 𝑒(𝐸) ∪ 𝑒(𝐹) and 𝜋(𝐸 ⊕ 𝐹) = 𝜋(𝐸)𝜋(𝐹) for any vector bundle 𝐹 → 𝑋.

The next proposition expresses the familiar fact that the top Pontryagin class is the square of
the Euler class.

Proposition 2.2.9. Let 𝐴 ∈ SH(𝑆) be a hyperbolically oriented ring spectrum. Let 𝑋 ∈ Sm𝑆 , and
𝐸 → 𝑋 be a vector bundle. Then,

𝑒(𝐸) ∪ 𝑒(𝐸) = 𝜋(𝐸) ∪ 𝔬𝐸 ∈ 𝐴
∗,∗(𝑋; 𝐸 ⊕ 𝐸).
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1434 HAUTION

Proof. Consider the maps in SH(𝑆)

𝑎∶ Th𝑋(𝐸
⊕2) → Th𝑋(𝐸

⊕4), 𝑏∶ Th𝑋(𝐸
⊕2) → Th𝑋(𝐸

⊕4), 𝑐 ∶ Th𝑋(𝐸
⊕4) → Th𝑋(𝐸

⊕4),

respectively, given by the injective matrices

𝐴 =

⎛⎜⎜⎜⎜⎝
0 0

1 0

0 0

0 1

⎞⎟⎟⎟⎟⎠
, 𝐵 =

⎛⎜⎜⎜⎜⎝
0 0

0 0

1 0

0 1

⎞⎟⎟⎟⎟⎠
, 𝐶 =

⎛⎜⎜⎜⎜⎝
−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
.

Then, in 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸),

𝑒(𝐸) ∪ 𝑒(𝐸) = 𝑎∗(𝔬𝐸 ∪ 𝔬𝐸) ; 𝜋(𝐸) ∪ 𝔬𝐸 = 𝑏
∗(𝔬𝐸 ∪ 𝔬𝐸). (2.2.9.a)

Since 𝐶𝐴 = 𝐵, we have 𝑐◦𝑎 = 𝑏. As the matrix 𝐶 has coefficients in ℤ and determinant one, it is
a product of transvections, and hence, we have 𝑐 = id in SH(𝑆) (see, e.g. [2, Lemma 1] where the
fact 𝑆 is the spectrum of a field plays no role). Thus, 𝑎 = 𝑏 in SH(𝑆), and the result follows from
the formulas (2.2.9.a). □

The next proposition is a variant of results of Ananyevskiy [1, Corollary 2], [3, Theorem 7.4] and
Levine [9, Lemma 4.3].

Proposition 2.2.10. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝐸
be a vector bundle over 𝑋 ∈ Sm𝑆 . If 𝐸 admits a quotient of constant odd rank, then

𝑒(𝐸) = 0 and 𝜋(𝐸) = 0.

Proof. Let 𝐹 ⊂ 𝐸 be a subbundle such that 𝐸∕𝐹 has odd rank. Then, by definition, 𝑒(𝐸) is the
image of 𝔬𝐸 under the pullback along the composite Th𝑋(𝐸)

𝑧𝐹
AA→ Th𝑋(𝐹 ⊕ 𝐸) → Th𝑋(𝐸 ⊕ 𝐸) in

SH(𝑆). The latter vanishes in SH(𝑆)[𝜂−1] by (2.1.4) (applied to the subbundle 𝐹 ⊕ 𝐸 ⊂ 𝐸 ⊕ 𝐸),
hence 𝑒(𝐸) = 0. Therefore, 𝜋(𝐸) = 𝑧∗

𝐸
(𝑒(𝐸)) = 0. □

2.3 Weak hyperbolic orientations

Definition 2.3.1. Let 𝐴 ∈ SH(𝑆) be a ring spectrum. A weak hyperbolic orientation on 𝐴 is the
datum of a class

𝔱𝐸 ∈ 𝐴
0,0(𝑋; 𝐸 ⊕ 𝐸)

for each rank 2 vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 , subject to the following conditions:

(i) the class 𝔱𝐸 is 𝐴∗,∗(𝑋)-central,
(ii) if 𝑓∶ 𝑌 → 𝑋 is a morphism in Sm𝑆 and 𝐸 → 𝑋 a rank 2 vector bundle, then 𝑓∗𝔱𝐸 = 𝔱𝑓∗𝐸 ,
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1435

(iii) if 𝐸
∼
A→ 𝐹 is an isomorphism of rank 2 vector bundles over 𝑋 ∈ Sm𝑆 , then the induced

isomorphism 𝐴∗,∗(𝑋; 𝐹 ⊕ 𝐹)
∼
A→ 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)maps 𝔱𝐹 to 𝔱𝐸 ,

(iv) 𝔱1⊕2 = sw∗1,1(Σ
8,41) (in the notation of (2.2)).

Remark 2.3.2. Using a standard notation (see, e.g. [10, Lemma 6.3.4]), we have sw∗
1,1
(Σ8,41) =

Σ8,4⟨−1⟩.
Remark 2.3.3. It is clear that a hyperbolic orientation (see (2.2.2)) on a motivic ring spectrum 𝐴

induces aweak hyperbolic orientation.Wewill see in (4.4.11) that the two notions, in fact, coincide
when 𝐴 is 𝜂-periodic.

2.3.4. As explained in (2.2.4), the axiom (2.3.1.i) is automatically satisfied when the ring spectrum
𝐴 is commutative.

Lemma 2.3.5. Let𝐴 ∈ SH(𝑆) be a hyperbolically oriented ring spectrum. If𝐸 → 𝑋 is a rank 2 vector
bundle with 𝑋 ∈ Sm𝑆 , then the morphism

𝐴∗,∗(𝑋)
∼
A→ 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸), 𝑥 ↦ 𝑥 ∪ 𝔱𝐸

is bijective.

Proof. By a Mayer–Vietoris argument and (2.3.1.ii), we can assume that 𝐸 ≃ 1⊕2, and then, by
(2.3.1.iii) that 𝐸 = 1⊕2. Then the statement follows from (2.3.1.iv). □

Definition 2.3.6. Let𝐴 ∈ SH(𝑆) be a ring spectrumwith aweak hyperbolic orientation. For every
rank 2 vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 , we define its Euler class

𝑒(𝐸) = 𝑧∗𝐸(𝔱𝐸) ∈ 𝐴
4,2(𝑋; 𝐸)

(the map 𝑧𝐸 was defined in (2.1)), and top Pontryagin class

𝜋(𝐸) = 𝑧∗𝐸⊕𝐸(𝔱𝐸) ∈ 𝐴
8,4(𝑋).

Lemma 2.3.7. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum with a weak hyperbolic orientation.
Let 𝑋 ∈ Sm𝑆 and 𝐸 → 𝑋 be a rank 2 vector bundle. Then,

𝜋(𝐸) = 𝜋(𝐸∨).

Proof. By (2.1.3), we may assume that the line bundle det 𝐸 admits a trivialisation. Then,
the alternated form 𝐸⊗2 → Λ2𝐸 = det 𝐸 ≃ 1 is non-degenerate, hence 𝐸 ≃ 𝐸∨ as vector
bundles. □

Remark 2.3.8. Lemma (2.3.7) will be generalised to vector bundles of higher rank when 𝐴 is
hyperbolically oriented (see (4.3.10) and (4.3.11)).
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1436 HAUTION

2.4 Pushforwards along closed immersions

2.4.1. (See, e.g. [7, §3.5].) Let 𝑖 ∶ 𝑌 → 𝑋 be a closed immersion in Sm𝑆 with normal bundle𝑁, and
𝑢∶ 𝑈 → 𝑋 its open complement. There exists a canonical isomorphism𝑋∕𝑈 ≃ Th𝑌(𝑁) inH∙(𝑆),
called purity isomorphism. We consider the composite

𝑖 ∶ 𝑋+ → 𝑋∕𝑈 ≃ Th𝑌(𝑁) in H∙(𝑆).

More generally, when 𝑉 → 𝑋 is a vector bundle, a map in H∙(𝑆)

𝑖 ∶ Th𝑋(𝑉) → Th𝑌(𝑁 ⊕ 𝑖
∗𝑉)

is constructed from the abovemap by first using the functor 𝑓♯ ∶ H∙(𝑋) → H∙(𝑆) of (1.3) to reduce
to the case when 𝑆 = 𝑋, and then applying the functor Σ𝑉 of (1.5) to reduce to the case 𝑉 = 0. We
then have a distinguished triangle in SH(𝑆)

Th𝑈(𝑉)
𝑢
A→ Th𝑋(𝑉)

𝑖
A→ Th𝑌(𝑁 ⊕ 𝑖

∗𝑉) → Σ1,0 Th𝑈(𝑉). (2.4.1.a)

2.4.2. In the situation of (2.4), let𝐴 ∈ SH(𝑆) be a ring spectrum.When𝑁 has constant rank 𝑟, we
will write

𝑖∗ ∶ 𝐴
𝑝−2𝑟,𝑞−𝑟(𝑌;𝑁 ⊕ 𝑖∗𝑉) = 𝐴𝑝,𝑞(Th𝑌(𝑁 ⊕ 𝑖

∗𝑉))
𝑖
∗

AA→ 𝐴𝑝,𝑞(𝑋; 𝑉),

and extend this notation in an obvious fashion to the case when 𝑁 is arbitrary. We thus have a
long exact sequence

⋯→ 𝐴∗,∗(𝑌;𝑁 ⊕ 𝑖∗𝑉)
𝑖∗
AA→ 𝐴∗,∗(𝑋; 𝑉)

𝑢∗

AA→ 𝐴∗,∗(𝑈;𝑉) → ⋯ (2.4.2.a)

2.4.3. Let 𝑋 ∈ Sm𝑆 , and 𝐸 → 𝑋 be a vector bundle. It follows from the discussion in [13, §2.4.5]
that the purity isomorphism 𝐸∕𝐸◦ ≃ Th𝑋(𝐸) in H∙(𝑆) coincides with the identification arising
from the definition of the Thom space Th𝑋(𝐸).

2.4.4. (See, e.g. [7, p. 233].) Let 𝑖 ∶ 𝑌 → 𝑋 and 𝑗 ∶ 𝑍 → 𝑌 be closed immersions in Sm𝑆 . Denote by
𝑁𝑖,𝑁𝑗,𝑁𝑗◦𝑖 the respective normal bundles of 𝑖, 𝑗, 𝑗◦𝑖. Then, we have an exact sequence of vector
bundles over 𝑍

0 → 𝑁𝑗 → 𝑁𝑗◦𝑖 → 𝑗∗𝑁𝑖 → 0.

Let 𝑉 → 𝑋 be a vector bundle. Then, the composite

Th𝑋(𝑉)
𝑖
A→ Th𝑌(𝑁𝑖 ⊕ 𝑖

∗𝑉)
𝑗
A→ Th𝑍(𝑁𝑗 ⊕ 𝑗

∗𝑁𝑖 ⊕ 𝑗
∗𝑖∗𝑉)

(1.7)
≃ Th𝑍(𝑁𝑗◦𝑖)

coincides with 𝑖◦𝑗 in H∙(𝑆).
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1437

2.4.5. Consider a cartesian square in Sm𝑆

(2.4.5.a)

where 𝑖, 𝑖′ are closed immersions with respective normal bundles 𝑁,𝑁′. Let 𝑉 → 𝑋 be a vec-
tor bundle. Then, we have a commutative diagram in H∙(𝑆), where 𝑒 is induced by the natural
inclusion 𝑁′ ⊂ g∗𝑁, and ℎ = 𝑖◦g = 𝑓◦𝑖′,

(2.4.5.b)

2.4.6. If 𝑌′ = ∅ in (2.4.5), then it follows from the commutative diagram (2.4.5.b) that the

composite Th𝑋′(𝑉)
𝑓
A→ Th𝑋(𝑉)

𝑖
A→ Th𝑌(𝑁 ⊕ 𝑖

∗𝑉) vanishes in H∙(𝑆).

2.4.7. We say that the cartesian square (2.4.5.a) is transverse if the natural inclusion 𝑁′ ⊂ g∗𝑁 is
an isomorphism, in which case the map 𝑒 in the diagram (2.4.5.b) is an isomorphism.
We will use the following form of the projection formula.

Lemma 2.4.8. Let𝐴 ∈ SH(𝑆) be a ring spectrum. Let 𝑖 ∶ 𝑌 → 𝑋 be a closed immersion in Sm𝑆 with
normal bundle𝑁.

(i) Let 𝑉 → 𝑋 be a vector bundle, and 𝑥 ∈ 𝐴∗,∗(𝑌;𝑁) and 𝑎 ∈ 𝐴∗,∗(𝑋; 𝑉). Then

𝑖∗(𝑥 ∪ 𝑖
∗𝑎) = 𝑖∗(𝑥) ∪ 𝑎 ∈ 𝐴

∗,∗(𝑋; 𝑉).

(ii) If 𝑏 ∈ 𝐴∗,∗(𝑋) and 𝑦 ∈ 𝐴∗,∗(𝑌;𝑁), then we have

𝑖∗(𝑖
∗𝑏 ∪ 𝑦) = 𝑏 ∪ 𝑖∗(𝑦) ∈ 𝐴

∗,∗(𝑋)

Proof. We use the notation of (1.12). The cartesian squares in Sm𝑆

are transverse, and thus, yield by (2.4.5) and (2.4.7) commutative diagrams in H∙(𝑆)
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1438 HAUTION

The left vertical morphism of the left square factors as

Th𝑌(𝑁 ⊕ 𝑖
∗𝑉)

Δ𝑌
AAA→ Th𝑌(𝑁) ∧ Th𝑌(𝑉)

id∧𝑖
AAAA→ Th𝑌(𝑁) ∧ Th𝑋(𝑉),

while the left vertical morphism of the right square factors as

Th𝑌(𝑁)
Δ𝑌
AAA→ 𝑌+ ∧ Th𝑌(𝑁)

𝑖∧id
AAAA→ 𝑋+ ∧ Th𝑌(𝑁).

Thus, denoting by 𝜇∶ 𝐴 ∧ 𝐴 → 𝐴 the product, for 𝑥, 𝑎 as in (i), we have

𝑖∗(𝑥 ∪ 𝑖
∗𝑎) = 𝑖∗◦Δ

∗
𝑌◦(id ∧𝑖)

∗(𝜇◦(𝑥 ∧ 𝑎))

= Δ∗𝑋◦(𝑖 ∧ id)
∗(𝜇◦(𝑥 ∧ 𝑎))

= 𝑖∗(𝑥) ∪ 𝑎,

proving the first formula. The other formula follows from the computation

𝑖∗(𝑖
∗𝑏 ∪ 𝑦) = 𝑖∗◦Δ

∗
𝑌◦(𝑖 ∧ id)

∗(𝜇◦(𝑏 ∧ 𝑦))

= Δ∗𝑋◦(id ∧𝑖)
∗(𝜇◦(𝑏 ∧ 𝑦))

= 𝑏 ∪ 𝑖∗(𝑦). □

2.4.9. Let 𝑋 ∈ Sm𝑆 and 𝐸 → 𝑋 be a vector bundle. Let 𝑠 be a section of 𝐸, and consider its zero-
locus 𝑖 ∶ 𝑌 → 𝑋, defined as the equaliser of 𝑠 and the zero-section in the category of 𝑆-schemes.
We will say that 𝑠 is transverse to the zero-section if 𝑌 ∈ Sm𝑆 and the natural inclusion 𝑁 ⊂ 𝑖∗𝐸 is
an isomorphism, where 𝑁 is the normal bundle of 𝑖.

Lemma 2.4.10. Let 𝐸,𝑉 be vector bundles over 𝑋 ∈ Sm𝑆 . Let 𝑠 ∶ 𝑋 → 𝐸 be a section transverse to
the zero-section, whose zero-locus we denote by 𝑖 ∶ 𝑌 → 𝑋. Then inH∙(𝑆) the composite

Th𝑋(𝑉)
𝑖
A→ Th𝑌(𝐸 ⊕ 𝑉)

𝑖
A→ Th𝑋(𝐸 ⊕ 𝑉)

coincides with 𝑧𝐸 (see (2.1)).

Proof. Using the functor𝑓♯ ∶ H∙(𝑋) → H∙(𝑆) of (1.3), we reduce to the casewhen 𝑆 = 𝑋. Applying
the functor Σ𝑉 of (1.5), we reduce to the case 𝑉 = 0.
Let us denote by 𝑧∶ 𝑋 → 𝐸 the zero-section. The cartesian square in Sm𝑆
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1439

is transverse, and yields by (2.4.5) and (2.4.7) a commutative square in H∙(𝑆)

Now the maps 𝑠, 𝑧∶ 𝑋 → 𝐸 coincide in H(𝑆), being sections of the vector bundle projection 𝐸 →
𝑋. Thus, 𝑠+ = 𝑧+ ∶ 𝑋+ → 𝐸+ in H∙(𝑆). In view of (2.4.3) and (2.1), the composite 𝑧◦𝑧+ ∶ 𝑋+ →
Th𝑋(𝐸) coincides with 𝑧𝐸 , and the statement follows. □

Lemma 2.4.11. Let 𝐴 ∈ SH(𝑆) be a ring spectrum. Let 𝑋 ∈ Sm𝑆 , and 𝐸 → 𝑋 be a vector bun-
dle. Assume that 𝐸, resp. 𝐸 ⊕ 𝐸, admits a section transverse to the zero-section, whose zero-locus
we denote by 𝑖 ∶ 𝑌 → 𝑋.

(i) If 𝐴 is endowed with a hyperbolic orientation, then the composite

𝐴∗,∗(𝑋)
𝑖∗

AA→ 𝐴∗,∗(𝑌)
∪𝔬𝑖∗𝐸
AAAAA→ 𝐴∗,∗(𝑌; 𝐸 ⊕ 𝐸)

𝑖∗
AA→ 𝐴∗,∗(𝑋; 𝐸),

resp. 𝐴∗,∗(𝑋)
𝑖∗

AA→ 𝐴∗,∗(𝑌)
∪𝔬𝑖∗𝐸
AAAAA→ 𝐴∗,∗(𝑌; 𝐸 ⊕ 𝐸)

𝑖∗
AA→ 𝐴∗,∗(𝑋),

is (left or right) multiplication with 𝑒(𝐸), resp. 𝜋(𝐸).
(ii) Assume that 𝐸 has rank 2. If 𝐴 is endowed with a weak hyperbolic orientation, then the

composite

𝐴∗,∗(𝑋)
𝑖∗

AA→ 𝐴∗,∗(𝑌)
∪𝔱𝑖∗𝐸
AAAAA→ 𝐴∗,∗(𝑌; 𝐸 ⊕ 𝐸)

𝑖∗
AA→ 𝐴∗,∗(𝑋; 𝐸),

resp. 𝐴∗,∗(𝑋)
𝑖∗

AA→ 𝐴∗,∗(𝑌)
∪𝔱𝑖∗𝐸
AAAAA→ 𝐴∗,∗(𝑌; 𝐸 ⊕ 𝐸)

𝑖∗
AA→ 𝐴∗,∗(𝑋)

is (left or right) multiplication with 𝑒(𝐸), resp. 𝜋(𝐸).

Proof. Let 𝔥𝐸 = 𝔬𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸) in case (i), and 𝔥𝐸 = 𝔱𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸) in case (ii). Then,
the composite of the statement coincides with

𝐴∗,∗(𝑋)
∪𝔥𝐸
AAAA→ 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)

𝑖∗

AA→ 𝐴∗,∗(𝑌; 𝐸 ⊕ 𝐸)
𝑖∗
AA→ 𝐴∗,∗(𝑋; 𝐸),

resp. 𝐴∗,∗(𝑋)
∪𝔥𝐸
AAAA→ 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)

𝑖∗

AA→ 𝐴∗,∗(𝑌; 𝐸 ⊕ 𝐸)
𝑖∗
AA→ 𝐴∗,∗(𝑋),

hencemaps 1 to 𝑒(𝐸), resp.𝜋(𝐸), by (2.4.10) (with𝑉 = 𝐸, resp.𝑉 = 0). The statement then follows
from the projection formula (2.4.8.ii). □

3 GRASSMANNIANS OF 2-PLANES

3.1 Projective bundles

We will use the following.

Proposition 3.1.1 [6, (4.1.6) and (4.1.5)]. Let 𝐸 → 𝑋 be a vector bundle of constant rank 𝑟, with
𝑋 ∈ Sm𝑆 .
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1440 HAUTION

(i) If 𝑟 is odd, then the map Σ∞+ ℙ(𝐸) → Σ∞+ 𝑋 is an isomorphism in SH(𝑆)[𝜂−1].
(ii) If 𝑟 is even, then Thℙ(𝐸)(ℙ(𝐸)(1)) = 0 in SH(𝑆)[𝜂−1].

3.1.2. Let 𝐸 → 𝑋 be a vector bundle with 𝑋 ∈ Sm𝑆 , and denote by 𝑞∶ ℙ(𝐸) → 𝑋 the projection.
Then, ℙ(𝐸)(−1) is naturally a subbundle of 𝑞∗𝐸, and we denote by 𝐸 = 𝑞

∗𝐸∕ℙ(𝐸)(−1) the
quotient bundle.

Lemma 3.1.3. Let 𝐸 → 𝑋 be a vector bundle of constant even rank, with 𝑋 ∈ Sm𝑆 . Then
Thℙ(𝐸)(𝐸) = 0 in SH(𝑆)[𝜂−1].

Proof. By (1.7), we have an isomorphism in SH(𝑆)

Thℙ(𝐸)(𝐸 ⊕ ℙ(𝐸)(−1) ⊕ ℙ(𝐸)(−1)) ≃ Thℙ(𝐸)(𝑞
∗𝐸 ⊕ ℙ(𝐸)(−1)),

where 𝑞∶ ℙ(𝐸) → 𝑋 is the projection. Now in SH(𝑆)[𝜂−1], we have Thℙ(𝐸)(𝐸 ⊕ ℙ(𝐸)(−1) ⊕

ℙ(𝐸)(−1)) ≃ Thℙ(𝐸)(𝐸) by [6, (3.3.1.i)], and Thℙ(𝐸)(𝑞∗𝐸 ⊕ ℙ(𝐸)(−1)) = 0 by [6, (4.1.5)]. This
proves the statement. □

Lemma 3.1.4. Let 𝐸 → 𝑋 be a vector bundle of constant even rank, with 𝑋 ∈ Sm𝑆 . Consider the
closed immersion 𝑖 ∶ 𝑋 = ℙ(1) → ℙ(𝐸 ⊕ 1). Then the natural isomorphism 𝐸

∼
A→ 𝑖∗𝐸⊕1 induces

an isomorphism in SH(𝑆)[𝜂−1] (see (2.4))

𝑖 ∶ Thℙ(𝐸⊕1)(𝐸⊕1)
∼
A→ Th𝑋(𝐸 ⊕ 𝐸).

Proof. The open complement 𝑊 of 𝑖 is a line bundle over ℙ(𝐸) (namely ℙ(𝐸)(1)). Its zero-
sectionℙ(𝐸) → 𝑊 induces an isomorphism in SH(𝑆), and the compositeℙ(𝐸) → 𝑊 ⊂ ℙ(𝐸 ⊕ 1) is
the closed immersion 𝑗 ∶ ℙ(𝐸) → ℙ(𝐸 ⊕ 1) induced by the inclusion 𝐸 ⊂ 𝐸 ⊕ 1. Since the normal
bundle to 𝑖 is 𝐸 and 𝑗∗𝐸⊕1 = 𝐸 ⊕ 1, this yields by (2.4) a distinguished triangle in SH(𝑆)

Thℙ(𝐸)(𝐸 ⊕ 1)
𝑗
A→ Thℙ(𝐸⊕1)(𝐸⊕1)

𝑖
A→ Th𝑋(𝐸 ⊕ 𝑖

∗𝐸⊕1) → Σ1,0 Thℙ(𝐸)(𝐸 ⊕ 1).

Now Thℙ(𝐸)(𝐸 ⊕ 1) = 0 by (3.1.3), and hence 𝑖 is an isomorphism. The compositeℙ(𝐸⊕1)(−1) ⊂
𝑞∗(𝐸 ⊕ 1) → 1 restricts to an isomorphismon the open complement of 𝑗, where 𝑞∶ ℙ(𝐸 ⊕ 1) → 𝑋

is the projection. Since 𝑖 factors through that open subscheme, it follows that the composite
𝑖∗ℙ(𝐸⊕1)(−1) → 𝐸 ⊕ 1 → 1 is an isomorphism, and hence so is the composite 𝐸 ⊂ 𝐸 ⊕ 1 →
(𝐸 ⊕ 1)∕𝑖∗ℙ(𝐸⊕1)(−1) = 𝑖

∗𝐸⊕1. This induces an isomorphism Th𝑋(𝐸 ⊕ 𝑖
∗𝐸⊕1) ≃ Th𝑋(𝐸 ⊕

𝐸), completing the proof. □

3.2 Grassmann bundles

Wenowgather basic observations onGrassmann bundles thatwill be used repeatedly in the paper.

3.2.1. Let𝑋 ∈ Sm𝑆 and𝐸 → 𝑋 be a vector bundle. Let𝑛 ∈ ℤ.Wewill denote byGr(𝑛, 𝐸) theGrass-
mann bundle of 𝑛-planes in 𝐸, classifying the rank 𝑛 subbundles of 𝑈 ⊂ 𝐸 (for us, a subbundle
is locally split, so 𝐸∕𝑈 is also a vector bundle). Denoting by 𝑞∶ Gr(𝑛, 𝐸) → 𝑋 the projection,
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1441

the scheme Gr(𝑛, 𝐸) carries a universal rank 𝑛 subbundle 𝑛 ⊂ 𝑞∗𝐸, and quotient bundle 𝑛 =
𝑞∗𝐸∕𝑛.

3.2.2. When 𝐸 → 𝑋 is a vector bundle with 𝑋 ∈ Sm𝑆 , we have Gr(1, 𝐸) = ℙ(𝐸) and1 = (−1).
Moreover, 1 is the quotient bundle  = 𝑞∗𝐸∕(−1), where 𝑞∶ ℙ(𝐸) → 𝑋 is the projection.

3.2.3. In the situation of (3.2.1), assume that 𝑛 ⩾ 1. We have a closed immersion

g𝐸 ∶ Gr(𝑛, 𝐸) → Gr(𝑛, 𝐸 ⊕ 1) ; (𝑈 ⊂ 𝐸) ↦ (𝑈 ⊕ 0 ⊂ 𝐸 ⊕ 1),

which satisfies

g∗𝐸𝑛 = 𝑛 ; g∗𝐸𝑛 = 𝑛 ⊕ 1. (3.2.3.a)

We also have a closed immersion

ℎ𝐸 ∶ Gr(𝑛 − 1, 𝐸) → Gr(𝑛, 𝐸 ⊕ 1) ; (𝑈 ⊂ 𝐸) ↦ (𝑈 ⊕ 1 ⊂ 𝐸 ⊕ 1),

which satisfies

ℎ∗𝐸𝑛 = 𝑛−1 ⊕ 1 ; ℎ∗𝐸𝑛 = 𝑛−1. (3.2.3.b)

3.2.4. The closed immersion g𝐸 of (3.2.3) is the zero-locus of a section of the vector bundle ∨
𝑛 →

Gr(𝑛, 𝐸 ⊕ 1) transverse to the zero-section, and hence, its normal bundle is g∗
𝐸
 ∨
𝑛 =  ∨

𝑛 . The
open complement 𝑌 ⊂ Gr(𝑛, 𝐸 ⊕ 1) of g𝐸 is naturally a vector bundle over Gr(𝑛 − 1, 𝐸). Its zero-
section Gr(𝑛 − 1, 𝐸) → 𝑌 induces an isomorphism in SH(𝑆), and the composite Gr(𝑛 − 1, 𝐸) →
𝑌 ⊂ Gr(𝑛, 𝐸 ⊕ 1) is the closed immersion ℎ𝐸 . In view of (2.4.1.a), we thus have a distinguished
triangle in SH(𝑆), for any vector bundle 𝑉 → Gr(𝑛, 𝐸 ⊕ 1)

ThGr(𝑛−1,𝐸)(𝑉)
ℎ𝐸
AA→ ThGr(𝑛,𝐸⊕1)(𝑉)

g𝐸
AA→ ThGr(𝑛,𝐸)(

∨
𝑛 ⊕ g∗𝐸𝑉) → Σ1,0 ThGr(𝑛−1,𝐸)(𝑉),

and thus, by (2.4.2.a), for any ring spectrum 𝐴 ∈ SH(𝑆), a long exact sequence

⋯→ 𝐴∗,∗(Gr(𝑛, 𝐸); ∨
𝑛 ⊕ g∗𝐸𝑉)

g𝐸∗
AAA→ 𝐴∗,∗(Gr(𝑛, 𝐸 ⊕ 1); 𝑉)

ℎ∗
𝐸
AA→ 𝐴∗,∗(Gr(𝑛 − 1, 𝐸); 𝑉) →⋯

3.2.5. The closed immersion ℎ𝐸 of (3.2.3) is the zero-locus of a section of𝑛 → Gr(𝑛, 𝐸 ⊕ 1) trans-
verse to the zero-section, and hence, its normal bundle is ℎ∗

𝐸
𝑛 = 𝑛−1. The open complement

𝑊 ⊂ Gr(𝑛, 𝐸 ⊕ 1) of ℎ𝐸 is a vector bundle over Gr(𝑛, 𝐸). Its zero-section Gr(𝑛, 𝐸) → 𝑊 induces
an isomorphism in SH(𝑆), and the composite Gr(𝑛, 𝐸) → 𝑊 ⊂ Gr(𝑛, 𝐸 ⊕ 1) is the closed immer-
sion g𝐸 . In view of (2.4.1.a), we thus have a distinguished triangle in SH(𝑆), for any vector bundle
𝑉 → Gr(𝑛, 𝐸 ⊕ 1)

ThGr(𝑛,𝐸)(𝑉)
g𝐸
AA→ ThGr(𝑛,𝐸⊕1)(𝑉)

ℎ𝐸
AA→ ThGr(𝑛−1,𝐸)(𝑛−1 ⊕ ℎ

∗
𝐸𝑉) → Σ1,0 ThGr(𝑛,𝐸)(𝑉),

and thus, by (2.4.2.a), for any ring spectrum 𝐴 ∈ SH(𝑆), a long exact sequence

⋯→ 𝐴∗,∗(Gr(𝑛 − 1, 𝐸);𝑛−1 ⊕ ℎ
∗
𝐸𝑉)

ℎ𝐸∗
AAA→ 𝐴∗,∗(Gr(𝑛, 𝐸 ⊕ 1); 𝑉)

g∗
𝐸
AA→ 𝐴∗,∗(Gr(𝑛, 𝐸); 𝑉) → ⋯
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1442 HAUTION

3.2.6. When 𝑋 = 𝑆, we will write Gr(𝑛, 𝑠) instead of Gr(𝑛, 1⊕𝑠).

Lemma 3.2.7. Let𝐸 → 𝑆 be a vector bundle of constant even rank. Denote by 𝑞∶ Gr(2, 𝐸 ⊕ 1⊕2) →
𝑆 the projection. Then, we have isomorphisms in SH(𝑆)[𝜂−1]

g𝐸 ∶ Σ
∞
+ Gr(2, 𝐸)

∼
A→ Σ∞+ Gr(2, 𝐸 ⊕ 1), (3.2.7.a)

g𝐸 ∶ ThGr(2,𝐸⊕1)(
∨
2 )

∼
A→ ThGr(2,𝐸)(

∨
2 ⊕ ∨

2 ), (3.2.7.b)

(𝑞, g𝐸⊕1)∶ Σ
∞
+ Gr(2, 𝐸 ⊕ 1

⊕2) → 𝟏𝑆 ⊕ ThGr(2,𝐸⊕1)(
∨
2 ). (3.2.7.c)

Proof. In view of (3.2.2), we have by (3.2.5) a distinguished triangle in SH(𝑆)

Σ∞+ Gr(2, 𝐸)
g𝐸
AA→ Σ∞+ Gr(2, 𝐸 ⊕ 1)

ℎ𝐸
AA→ Thℙ(𝐸)() → Σ1,0Σ∞+ Gr(2, 𝐸).

Since Thℙ(𝐸)() = 0 in SH(𝑆)[𝜂−1] by (3.1.3), we deduce (3.2.7.a).
The vector bundle  ∨

2
restricts to (1) ⊕ 1 along ℎ𝐸 ∶ ℙ(𝐸) → Gr(2, 𝐸 ⊕ 1) (see (3.2.2) and

(3.2.3.b)). Thus, by (3.2.4), we have a distinguished triangle in SH(𝑆)

Thℙ(𝐸)((1) ⊕ 1)
ℎ𝐸
AA→ ThGr(2,𝐸⊕1)(

∨
2 )

g𝐸
AA→ ThGr(2,𝐸)(

∨
2 ⊕ ∨

2 ) → Σ1,0 Thℙ(𝐸)((1) ⊕ 1).

Since Thℙ(𝐸)((1) ⊕ 1) = 0 in SH(𝑆)[𝜂−1] by (3.1.1.ii), we deduce (3.2.7.b).
We now prove (3.2.7.c). Since the projection ℙ(𝐸 ⊕ 1) → 𝑆 induces an isomorphism in

SH(𝑆)[𝜂−1] by (3.1.1.i), so does its section 𝑠 ∶ 𝑆 = ℙ(1) → ℙ(𝐸 ⊕ 1). The closed immersion 𝑗 ∶ 𝑆 =
Gr(2, 1⊕2) → Gr(2, 𝐸 ⊕ 1⊕2) factors as 𝑗 = ℎ𝐸⊕1◦𝑠. Therefore, by (3.2.4), we have a distinguished
triangle in SH(𝑆)[𝜂−1]

𝟏𝑆
𝑗
A→ Σ∞+ Gr(2, 𝐸 ⊕ 1

⊕2)
g𝐸⊕1
AAAA→ ThGr(2,𝐸⊕1)(

∨
2 ) → Σ1,0𝟏𝑆.

Since 𝑞◦𝑗 = id𝑆 , this triangle splits, and we deduce (3.2.7.c) □

3.2.8. Let 𝐸 be a vector bundle over 𝑋 ∈ Sm𝑆 , and 𝐹 ⊂ 𝐸 a subbundle. Then, for every 𝑛 ∈ ℕ, the
closed immersion

𝑖 ∶ Gr(𝑛, 𝐹) → Gr(𝑛, 𝐸) ; (𝑈 ⊂ 𝐹) ↦ (𝑈 ⊂ 𝐸)

is the zero-locus of a section of Hom(2, 𝑞∗(𝐸∕𝐹)) ≃  ∨
2
⊗ 𝑞∗(𝐸∕𝐹) transverse to the zero-

section (namely, the composite2 ⊂ 𝑞∗𝐸 → 𝑞∗(𝐸∕𝐹)).

Lemma 3.2.9. Let 𝐸,𝐷 be vector bundles over 𝑆. Assume that𝐷 has rank 2 and that 𝐸 has constant
even rank. Consider the closed immersion 𝑖 ∶ Gr(2, 𝐸) → Gr(2, 𝐸 ⊕ 𝐷) induced by the inclusion
𝐸 ⊂ 𝐸 ⊕ 𝐷 (see (3.2.8)), and the projection 𝑞∶ Gr(2, 𝐸 ⊕ 𝐷) → 𝑆. Then we have an isomorphism
in SH(𝑆)[𝜂−1]

(𝑞, 𝑖)∶ Σ∞+ Gr(2, 𝐸 ⊕ 𝐷)
∼
A→ 𝟏𝑆 ⊕ ThGr(2,𝐸)(

∨
2 ⊗ 𝑞

∗𝐷).
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1443

Proof. The statement is local in the Zariski topology of 𝑆, so wemay assume that the vector bundle
𝐷 is trivial. Then 𝑖 factors as

𝑖 ∶ Gr(2, 𝐸)
g𝐸
AA→ Gr(2, 𝐸 ⊕ 1)

g𝐸⊕1
AAAA→ Gr(2, 𝐸 ⊕ 1⊕2).

In view of (2.4.4), the statement follows by combining (3.2.7.b) with (3.2.7.c). □

Remark 3.2.10. Taking 𝐸 = 1⊕2 and 𝐷 = 1⊕2 in (3.2.9) yields a natural isomorphism

Σ∞+ Gr(2, 4) ≃ 𝟏𝑆 ⊕ Σ
8,4𝟏𝑆 ∈ SH(𝑆)[𝜂

−1].

3.3 Cohomology of 2-grassmannians

3.3.1. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum. Let 𝑋 ∈ Sm𝑆 and 𝐸,𝐷 → 𝑋 vector bundles,
with 𝐷 of rank 2. Denote by 𝑞∶ Gr(2, 𝐸 ⊕ 𝐷) → 𝑋 the projection. The inclusions 𝐸 ⊂ 𝐸 ⊕ 𝐷 and
𝐷 ⊂ 𝐸 ⊕ 𝐷 yield closed immersions (see (3.2.8))

𝑖 ∶ Gr(2, 𝐸) → Gr(2, 𝐸 ⊕ 𝐷) and 𝑗 ∶ 𝑋 = Gr(2, 𝐷) → Gr(2, 𝐸 ⊕ 𝐷).

Since 𝑖 factors through the open complement of 𝑗, it follows from (2.4.6) that
𝑗∗◦𝑖∗ ∶ 𝐴

∗,∗(Gr(2, 𝐸); ∨
2
⊗ 𝑞∗𝐷) → 𝐴∗,∗(𝑋) vanishes. As 𝑞◦𝑗 = id, Lemma (3.2.9) yields a

split exact sequence of 𝐴∗,∗(𝑋)-modules

0 → 𝐴∗,∗(Gr(2, 𝐸); ∨
2 ⊗ 𝑞

∗𝐷)
𝑖∗
AA→ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 𝐷))

𝑗∗

AA→ 𝐴∗,∗(𝑋) → 0.

3.3.2. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum with a weak hyperbolic orientation (see
(2.3.1)). Consider the situation of (3.3), and assume that 𝐷 = 1⊕2. By (3.2.8), the closed immer-
sion 𝑖 ∶ Gr(2, 𝐸) → Gr(2, 𝐸 ⊕ 1⊕2) is the zero-locus of a section of  ∨

2
⊗ (1⊕2) =  ∨

2
⊕ ∨

2
transverse to the zero-section; hence, by (2.4.11.ii), we have

𝑖∗(𝔱 ∨
2
) = 𝜋( ∨

2 ) ∈ 𝐴
∗,∗(Gr(2, 𝐸 ⊕ 1⊕2)). (3.3.2.a)

Together with the projection formula (2.4.8.ii), this implies that, for any 𝑘 ∈ ℕ,

𝑖∗(𝜋(
∨
2 )
𝑘 ∪ 𝔱 ∨

2
) = 𝜋( ∨

2 )
𝑘+1 ∈ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 1⊕2)). (3.3.2.b)

Proposition 3.3.3. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum with a weak hyperbolic orienta-
tion (see (2.3.1)). Let 𝑑 ∈ ℕ and 𝑠 ∈ {2𝑑, 2𝑑 + 1}. Sending 𝑢 to the top Pontryagin class 𝜋( ∨

2
) (see

(2.3.6)) yields an isomorphism of 𝐴∗,∗(𝑆)-algebras

𝐴∗,∗(Gr(2, 𝑠)) ≃ 𝐴∗,∗(𝑆)[𝑢]∕𝑢𝑑.

In addition, when 𝑠 is odd, the (left or right) 𝐴∗,∗(Gr(2, 𝑠))-module 𝐴∗,∗(Gr(2, 𝑠); ∨
2
) is freely

generated by the Euler class 𝑒( ∨
2
) (see (2.3.6)).

Proof. Case s = 2d: The case 𝑠 = 0, being clear, we may assume that 𝑠 ⩾ 2. Consider the closed
immersion 𝑖 ∶ Gr(2, 𝑠 − 2) → Gr(2, 𝑠) given by the vanishing of the last two coordinates. We are

 17538424, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12317 by C
ochraneItalia, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1444 HAUTION

in the situation of (3.3) with 𝐸 = 1⊕𝑠 and 𝐷 = 1⊕2, so that, taking into account (2.3.5), we obtain
an exact sequence of 𝐴∗,∗(𝑆)-modules

0 → 𝐴∗,∗(Gr(2, 𝑠 − 2))
𝛼
A→ 𝐴∗,∗(Gr(2, 𝑠))

𝑗∗

AA→ 𝐴∗,∗(𝑆) → 0,

where 𝛼 is given by 𝑥 ↦ 𝑖∗(𝑥 ∪ 𝔱 ∨
2
), and 𝑗 ∶ 𝑆 = Gr(2, 2) → Gr(2, 𝑠) is given by the vanishing of

the first 𝑠 − 2 coordinates. Note that 𝛼(𝜋( ∨
2
)𝑘) = 𝜋( ∨

2
)𝑘+1 by (3.3.2.b). Since 𝜋( ∨

2
)𝑑−1 = 0 in

𝐴∗,∗(Gr(2, 𝑠 − 2)) by induction, it follows that𝜋( ∨
2
)𝑑 = 0 in𝐴∗,∗(Gr(2, 𝑠)).Moreover, 𝑗∗𝜋( ∨

2
) =

𝑗∗◦𝛼(1) = 0. We thus obtain a commutative diagram with exact rows

Since the left vertical arrow is an isomorphism by induction, it follows that the middle vertical
arrow is one, concluding the proof in this case.
Case 𝑠 = 2𝑑 + 1: Since by (3.2.7.a) (with 𝐸 = 1⊕2𝑑), we have an isomorphism of 𝐴∗,∗(𝑆)-

algebras 𝐴∗,∗(Gr(2, 2𝑑 + 1)) ≃ 𝐴∗,∗(Gr(2, 2𝑑)) mapping 𝜋( ∨
2
) to 𝜋( ∨

2
), the isomorphism

𝐴∗,∗(Gr(2, 2𝑑 + 1)) ≃ 𝐴∗,∗(𝑆)[𝑢]∕𝑢𝑑 follows from the case 𝑠 = 2𝑑 above. To prove the remaining
statement, note that the composite

𝐴∗,∗(Gr(2, 2𝑑 + 1))
g∗
2𝑑
AAA→ 𝐴∗,∗(Gr(2, 2𝑑))

∪𝔱
∨
2

AAAAA→

𝐴∗,∗(Gr(2, 2𝑑); ∨
2 ⊕ ∨

2 )
g2𝑑∗
AAAA→ 𝐴∗,∗(Gr(2, 2𝑑 + 1); ∨

2 )

is bijective by (3.2.7.a), (2.3.5) and (3.2.7.b). By (2.4.11.ii), that composite is multiplication by the
Euler class 𝑒( ∨

2
). □

Remark 3.3.4. Let 𝑋 ∈ Sm𝑆 with structural morphism 𝑓∶ 𝑋 → 𝑆. Since the image under
𝑓∗ ∶ SH(𝑆) → SH(𝑋) of an 𝜂-periodic ring spectrum with a weak hyperbolic orientation remains
one, it follows that (3.3.3) provides a computation of 𝐴∗,∗(Gr(2, 𝑠) ×𝑆 𝑋).

Corollary 3.3.5. Let𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrumwith a weak hyperbolic orientation.
Let𝑑 ∈ ℕ ⧵ {0}. Let𝑋 ∈ Sm𝑆 , and𝐸,𝑉 → 𝑋 vector bundles, with𝐸 of constant rank 𝑠 ∈ {2𝑑, 2𝑑 + 1}.
Denote by 𝑞∶ Gr(2, 𝐸) → 𝑋 the projection.

(i) We have an isomorphism of 𝐴∗,∗(𝑋)-bimodules

𝜑𝑋,𝑉 ∶ 𝐴
∗,∗(𝑋; 𝑉)⊕𝑑

∼
A→ 𝐴∗,∗(Gr(2, 𝐸); 𝑞∗𝑉), (𝑎0, … , 𝑎𝑑−1) ↦

𝑑−1∑
𝑖=0

𝑞∗(𝑎𝑖)𝜋(
∨
2 )
𝑖.

(ii) If 𝑠 = 2𝑑 + 1, we have an isomorphism of 𝐴∗,∗(Gr(2, 𝐸))-bimodules

𝐴∗,∗(Gr(2, 𝐸); 𝑝∗𝑉)
∼
A→ 𝐴∗,∗(Gr(2, 𝐸); 𝑝∗𝑉 ⊕ ∨

2 ), 𝑥 ↦ 𝑥 ∪ 𝑒( ∨
2 ).
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1445

Proof. Using a Mayer–Vietoris argument, we may assume that both 𝐸 and 𝑉 are trivial. Using
the isomorphism (1.9.a), we reduce to the case 𝑉 = 0. Then, the statements follow from (3.3.3) (in
view of (3.3.4)). □

4 PONTRYAGIN CLASSES

4.1 Pontryagin structures

In this section, we introduce a structure which will turn out to be equivalent to that of a weak
hyperbolic orientation, where instead of Thom classes of rank 2 vector bundles, we specify their
top Pontryagin classes.

4.1.1. Let us denote by 𝑖 ∶ 𝑆 = Gr(2, 2) → Gr(2, 4) the closed immersion induced by the inclusion
1⊕2 ⊂ 1⊕4 given by the vanishing of the last two coordinates. Then, 𝑖 is the zero-locus of a sec-
tion of  ∨

2
⊕ ∨

2
transverse to the zero-section, namely (𝑠3, 𝑠4), where 𝑠𝑘 is the section of  ∨

2
corresponding to the 𝑘th coordinate for 𝑘 ∈ {3, 4} (i.e. dual to the composite2 ⊂ 1⊕4 → 1where
the last map is the 𝑘th projection). This choice of a section permits to identify the normal bundle
of 𝑖 with 𝑖∗( ∨

2
⊕ ∨

2
) = 1⊕4.

Definition 4.1.2. Let𝐴 ∈ SH(𝑆) be a ring spectrum. A Pontryagin structure on𝐴 is the datum of
a class 𝜋𝐸 ∈ 𝐴8,4(𝑋) for each rank 2 vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 , such that:

(i) the class 𝜋𝐸 is 𝐴∗,∗(𝑋)-central,
(ii) if 𝑓∶ 𝑌 → 𝑋 is a morphism in Sm𝑆 and 𝐸 → 𝑋 a vector bundle of rank 2, then 𝑓∗𝜋𝐸 = 𝜋𝑓∗𝐸 ,
(iii) if 𝜑∶ 𝐸

∼
A→ 𝐹 is an isomorphism of rank 2 vector bundles over 𝑋, then 𝜋𝐹 = 𝜋𝐸 ,

(iv) in the notation of (4.1.1) and (2.2), we have 𝜋 ∨
2
= 𝑖∗◦ sw

∗
1,1
(Σ8,41).

4.1.3. It follows from (2.4.11.ii) that a weak hyperbolic orientation (see (2.3.1)) induces a
Pontryagin structure, by setting 𝜋𝐸 = 𝜋(𝐸) for any rank 2 vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 .

Lemma 4.1.4. Let 𝐴 ∈ SH(𝑆) be a ring spectrum with a Pontryagin structure. Then 𝜋1⊕2 = 0 ∈
𝐴8,4(𝑆).

Proof. Let 𝑗 ∶ 𝑆 = Gr(2, 2) → Gr(2, 4) be the immersion given by the vanishing of the first two
coordinates. Then 𝑗∗ ∨

2
≃ 1⊕2, and 𝑗 factors through the open complement of the immersion 𝑖

of (4.1.1), hence by (2.4.6)

0 = 𝑗∗◦𝑖∗◦ sw
∗
1,1(Σ

8,41)
(4.1.2.iv)
= 𝑖∗𝜋 ∨

2

(4.1.2.ii)
= 𝜋𝑖∗ ∨

2

(4.1.2.iii)
= 𝜋1⊕2 .

□

Proposition 4.1.5. Let𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum. Then each Pontryagin structure
on 𝐴 is induced by a unique weak hyperbolic orientation (in the sense of (4.1.3)).

Proof. Let 𝐸 → 𝑋 be a rank 2 vector bundle, with 𝑋 ∈ Sm𝑆 . Then ∨
2
corresponds to 𝐸 under the

identification 𝑋 = Gr(2, 𝐸∨). Thus, by (3.3) (with 𝐷 = 1⊕2 and 𝐸 replaced with 𝐸∨), we have an
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1446 HAUTION

exact sequence

0 → 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)
𝑖∗
AA→ 𝐴∗,∗(Gr(2, 𝐸∨ ⊕ 1⊕2))

𝑗∗

AA→ 𝐴∗,∗(𝑋) → 0.

Recall from (3.3.2.a) that if 𝐴 is endowed with a weak hyperbolic orientation, we have

𝑖∗(𝔱𝐸) = 𝑖∗(𝔱 ∨
2
) = 𝜋( ∨

2 ). (4.1.5.a)

In view of the injectivity 𝑖∗, the uniqueness part of the statement follows.
Assumenow that𝐴 is endowedwith a Pontryagin structure.As 𝑗∗2 = 1⊕2, the element𝜋 ∨

2
∈

𝐴8,4(Gr(2, 𝐸 ⊕ 1⊕2)) satisfies 𝑗∗𝜋 ∨
2
= 𝜋1⊕2 , which vanishes by (4.1.4). Therefore, by the above

exact sequence, there exists a unique element 𝔱𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸) such that 𝑖∗(𝔱𝐸) = 𝜋 ∨
2
. It is

then easy to verify that the association 𝐸 ↦ 𝔱𝐸 defines a weak hyperbolic orientation of 𝐴. Now,
as 𝐸 = 𝑖∗ ∨

2
, we have

𝜋(𝐸) = 𝑖∗𝜋( ∨
2 )

(4.1.5.a)
= 𝑖∗◦𝑖∗(𝔱𝐸) = 𝑖

∗𝜋 ∨
2
= 𝜋𝐸,

so that this weak hyperbolic orientation induces the original Pontryagin structure. □

4.2 The splitting principle

Theorem 4.2.1 (Splitting principle). Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring
spectrum. Let𝑋 ∈ Sm𝑆 , and 𝐸 → 𝑋 a vector bundle of constant rank. Then, there exists a morphism
𝑓∶ 𝑌 → 𝑋 in Sm𝑆 and vector bundles 𝐸1, … , 𝐸𝑟 over 𝑌 such that:

(i) for any vector bundle 𝑉 → 𝑋, the morphism of 𝐴∗,∗(𝑆)-bimodules 𝑓∗ ∶ 𝐴∗,∗(𝑋; 𝑉) →
𝐴∗,∗(𝑌; 𝑉) admits a retraction,

(ii) 𝑓∗𝐸 ≃ 𝐸1 ⊕⋯⊕𝐸𝑟,
(iii) rank𝐸𝑖 ∈ {1, 2} and det 𝐸𝑖 ≃ 1 for 𝑖 = 1, … , 𝑟.

Proof. We proceed by induction on the rank of 𝐸, the statement being clear when 𝐸 = 0.
If rank𝐸 = 1, this follows from (2.1.3). Assume that rank𝐸 ⩾ 2, and consider the morphism
𝑞∶ Gr(2, 𝐸) → 𝑋. Then 𝑞∗ ∶ 𝐴∗,∗(𝑋; 𝑉) → 𝐴∗,∗(Gr(2, 𝐸); 𝑉) is a split injection by (3.3.5), and 𝑞∗𝐸
admits a rank 2 subbundle2. Consider the vector bundle2 = 𝑝∗𝐸∕2. By (1.8), we find a mor-
phism g ∶ 𝑇 → Gr(2, 𝐸) such that g∗𝑞∗𝐸 ≃ g∗2 ⊕ g∗2 and g∗ ∶ 𝐴∗,∗(Gr(2, 𝐸); 𝑉) → 𝐴∗,∗(𝑇; 𝑉)

is bijective. By (2.1.3), we find amorphism ℎ∶ 𝑍 → 𝑇, such that the vector bundleℎ∗g∗2 has triv-
ial determinant, and ℎ∗ ∶ 𝐴∗,∗(𝑇; 𝑉) → 𝐴∗,∗(𝑍; 𝑉) is split injective. We conclude by applying the
inductive hypothesis to the vector bundle ℎ∗g∗2, whose rank is rank𝐸 − 2. □

As a corollary, we obtain an SL-oriented splitting principle, generalising [1, §9]. (Recall from
(2.2.6) that a commutative ring spectrum in SH(𝑆) equipped with a normalised Sp-orientation
in the sense of [3, Definition 3.3], and a fortiori one equipped with a normalised SL-orientation,
inherits a hyperbolic orientation.)

Corollary 4.2.2. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝑋 ∈
Sm𝑆 , and 𝐸 → 𝑋 a SL-oriented vector bundle of constant rank (see, e.g. [3, Definition 2.2]). Then
there exists a morphism 𝑓∶ 𝑌 → 𝑋 in Sm𝑆 such that
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1447

(i) for any vector bundle𝑉 → 𝑋, themorphismof𝐴∗,∗(𝑆)-bimodules𝑓∗ ∶ 𝐴∗,∗(𝑋; 𝑉) → 𝐴∗,∗(𝑌; 𝑉)

admits a retraction,
(ii) the SL-oriented vector bundle 𝑓∗𝐸 splits as a direct sum of SL-oriented vector bundles of ranks 1

or 2.

Proof. Denote by 𝜆∶ 1
∼
A→ det 𝐸 the isomorphism giving the SL-orientation of 𝐸. Let us pick

𝑓∶ 𝑌 → 𝑋 and𝐸1, … , 𝐸𝑟 as in (4.2.1), togetherwith isomorphisms 𝜆𝑖 ∶ 1
∼
A→ det 𝐸𝑖 for 𝑖 = 1, … , 𝑟 −

1. We may assume that 𝐸 ≠ 0, so that 𝑟 ⩾ 1. Letting

𝜆𝑟 ∶ 1
𝜆⊗(𝜆−1

1
⊗⋯⊗𝜆−1

𝑟−1
)∨

AAAAAAAAAAAAAAAAAA→ det 𝐸 ⊗ (det 𝐸1 ⊗⋯⊗ det 𝐸𝑟−1)
∨ ≃ det 𝐸𝑟,

we have, as SL-oriented vector bundles,

(𝐸, 𝜆) = (𝐸1, 𝜆1) ⊕⋯⊕ (𝐸𝑟, 𝜆𝑟).
□

For the next statement, we use the terminology of [3, Definition 3.3].

Corollary 4.2.3. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic commutative ring spectrum. Then each
Sp-orientation of 𝐴 is induced by at most one normalised SL-orientation.

Proof. Let us assume that 𝐴 is endowed with a normalised SL-orientation. Then 𝐴 carries an
induced Sp-orientation, and thus, by (2.2.6) an induced hyperbolic orientation. In view of (4.2.2),
it will suffice to prove that the Thom class (for the SL-orientation) of an SL-oriented vector bundle
𝐸 → 𝑋 is determined by the induced Sp-orientation of 𝐴, when 𝐸 has rank 1 or 2.
If 𝐸 has rank 1, it is isomorphic to the trivial SL-oriented line bundle, and hence, its Thom

class in 𝐴0,0(𝑋; 𝐸) must be the image of Σ2,11 ∈ 𝐴0,0(𝑋; 1), as the SL-orientation is normalised
by assumption. If 𝐸 has rank 2, as SL2 = Sp2, the vector bundle 𝐸 is Sp-oriented (explicitly, the
symplectic form is given by the morphism 𝐸 ⊗ 𝐸 → Λ2𝐸 = det 𝐸 ≃ 1), and so, its Thom class is
determined by the induced Sp-orientation. □

4.3 Higher Pontryagin classes

Throughout this section, 𝐴 ∈ SH(𝑆) will be an 𝜂-periodic ring spectrum with a weak hyperbolic
orientation.

Definition 4.3.1. Let𝑋 ∈ Sm𝑆 , and𝐸 → 𝑋 be a vector bundle of constant rank 2𝑑 or 2𝑑 + 1, with
𝑑 ∈ ℕ. Consider the Grassmann bundle 𝑞𝐸 ∶ Gr(2, 𝐸∨) → 𝑋. We define the Pontryagin classes

𝑝𝑘(𝐸) ∈ 𝐴
8𝑘,4𝑘(𝑋) for 𝑘 ∈ ℤ

by the formulas

𝑝0(𝐸) = 1 and 𝑝𝑘(𝐸) = 0 when 𝑘 ∉ {0, … , 𝑑},

and, in view of (3.3.5),

𝑑∑
𝑘=0

(−1)𝑘𝑞∗𝐸(𝑝𝑑−𝑘(𝐸))𝜋(
∨
2 )
𝑘 = 0 ∈ 𝐴8𝑑,4𝑑(Gr(2, 𝐸∨)). (4.3.1.a)
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1448 HAUTION

This definition extends in an obvious way to the case when the rank of 𝐸 is not constant.

Remark 4.3.2. In view of (2.3.7), we may replace 𝜋( ∨
2
) with 𝜋(2) in the formula (4.3.1.a).

4.3.3. The Pontryagin classes𝑝𝑘(𝐸) are functorial in𝑋 ∈ Sm𝑆 , central in𝐴∗,∗(𝑋) and depend only
on the isomorphism class of the vector bundle 𝐸 → 𝑋.

4.3.4. Assume that 𝑑 = 1 and so 𝐸 has rank 2. Then the morphism 𝑞𝐸 ∶ Gr(2, 𝐸
∨) → 𝑋 is an

isomorphism, and ∨
2
= 𝑞∗

𝐸
𝐸. Therefore, (4.3.1.a) implies that

𝑝1(𝐸) = 𝜋(𝐸) ∈ 𝐴
8,4(𝑋). (4.3.4.a)

Lemma 4.3.5. Let𝑋 ∈ Sm𝑆 . Let 𝐸 → 𝑋 be a vector bundle, and 𝐹 the quotient of 𝐸 by a subbundle
of rank 1. Then

𝑝𝑘(𝐸) = 𝑝𝑘(𝐹) for any 𝑘 ∈ ℤ.

Proof. We may assume that 𝐸 has constant rank 𝑟. If 𝑟 = 2𝑑 + 1 is odd, pulling back the relation
(4.3.1.a) along the morphism Gr(2, 𝐹∨) → Gr(2, 𝐸∨) induced by the inclusion 𝐹∨ ⊂ 𝐸∨ yields

0 =

𝑑∑
𝑘=0

(−1)𝑘𝑞∗𝐹(𝑝𝑑−𝑘(𝐸))𝜋(
∨
2 )
𝑘 ∈ 𝐴8𝑑,4𝑑(Gr(2, 𝐹∨)),

which proves the lemma, in view of the definition of the Pontryagin classes of 𝐹.
Assume now that 𝑟 = 2𝑑 is even. By (1.8), we may assume that 𝐸 = 𝐹 ⊕ 𝐿 with 𝐿 → 𝑋 a line

bundle. By (2.1.3), we may assume that 𝐿 = 1 and that 𝐹 = 𝐺 ⊕ 1 for some vector bundle 𝐺 → 𝑋.
Consider the closed immersion 𝑖 ∶ Gr(2, 𝐺∨) → Gr(2, 𝐸∨) induced by the inclusion 𝐺∨ ⊂ 𝐺∨ ⊕
1⊕2 = 𝐸∨. Since 𝐺 has rank 2(𝑑 − 1), the defining relation (4.3.1.a) reads

0 =

𝑑−1∑
𝑘=0

(−1)𝑘𝑞∗𝐺(𝑝𝑑−1−𝑘(𝐺))𝜋(
∨
2 )
𝑘 ∈ 𝐴8(𝑑−1),4(𝑑−1)(Gr(2, 𝐺∨)).

Applying the map 𝑥 ↦ −𝑖∗(𝑥 ∪ 𝔱 ∨
2
) to this relation yields in 𝐴8𝑑,4𝑑(Gr(2, 𝐸∨))

0 = −

𝑑−1∑
𝑘=0

(−1)𝑘𝑞∗𝐸(𝑝𝑑−1−𝑘(𝐺))𝑖∗(𝜋(
∨
2 )
𝑘 ∪ 𝔱 ∨

2
) by (2.4.8.ii), as 𝑞𝐺 = 𝑞𝐸◦𝑖

=

𝑑−1∑
𝑘=0

(−1)𝑘+1𝑞∗𝐸(𝑝𝑑−1−𝑘(𝐺))𝜋(
∨
2 )
𝑘+1 by (3.3.2.b)

=

𝑑∑
𝑘=0

(−1)𝑘𝑞∗𝐸(𝑝𝑑−𝑘(𝐺))𝜋(
∨
2 )
𝑘 as 𝑝𝑑(𝐺) = 0 by definition.

It thus follows that 𝑝𝑘(𝐺) = 𝑝𝑘(𝐸) for all 𝑘. Since 𝑝𝑘(𝐺) = 𝑝𝑘(𝐺 ⊕ 1) = 𝑝𝑘(𝐹) by the odd rank
case considered above, this concludes the proof. □

Remark 4.3.6. It follows from (4.3.5) that 𝑝𝑘(1⊕𝑟) = 0 for 𝑘 ≠ 0 and 𝑟 ∈ ℕ.
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1449

Lemma 4.3.7. Let 𝑈1,… ,𝑈𝑑 be rank 2 vector bundles over 𝑋 ∈ Sm𝑆 , and set 𝐸 = 𝑈1 ⊕⋯⊕𝑈𝑑.
Consider the Grassmann bundle 𝑞𝐸 ∶ Gr(2, 𝐸∨) → 𝑋 and its universal rank 2 vector bundle 2.
Then

𝑑∏
𝑘=1

(
𝜋( ∨

2 ) − 𝑞
∗
𝐸𝜋(𝑈𝑘)

)
= 0 ∈ 𝐴8𝑑,4𝑑(Gr(2, 𝐸∨)).

Proof. We proceed by induction on 𝑑, the case 𝑑 = 0 being clear. Assume that 𝑑 ⩾ 1. Set 𝐹 =
𝑈1 ⊕⋯⊕𝑈𝑑−1. By (3.3), we have an exact sequence

𝐴∗,∗(Gr(2, 𝐹∨); ∨
2 ⊗ 𝑞

∗
𝐹𝑈

∨
𝑑
)
𝑖∗
AA→ 𝐴∗,∗(Gr(2, 𝐸∨))

𝑗∗

AA→ 𝐴∗,∗(𝑋),

where 𝑖 ∶ Gr(2, 𝐹∨) → Gr(2, 𝐸∨) and 𝑗 ∶ 𝑋 = Gr(2,𝑈∨
𝑑
) → Gr(2, 𝐸∨) are the natural closed

immersions. Since 𝑗∗2 = 𝑈∨𝑑 , the element 𝜋(
∨
2
) − 𝑞∗

𝐸
𝜋(𝑈𝑑) ∈ 𝐴

8,4(Gr(2, 𝐸∨)) belongs to the
kernel of 𝑗∗. Thus, there exists an element 𝑥 ∈ 𝐴0,0(Gr(2, 𝐹∨); ∨

2
⊗ 𝑞∗

𝐹
𝑈∨
𝑑
) such that 𝑖∗(𝑥) =

𝜋( ∨
2
) − 𝑞∗

𝐸
𝜋(𝑈𝑑). Then we have in 𝐴8𝑑,4𝑑(Gr(2, 𝐸∨))

𝑑∏
𝑘=1

(
𝜋( ∨

2 ) − 𝑞
∗
𝐸𝜋(𝑈𝑘)

)
=

(
𝑑−1∏
𝑘=1

(
𝜋( ∨

2 ) − 𝑞
∗
𝐸𝜋(𝑈𝑘)

))
∪ 𝑖∗(𝑥)

= 𝑖∗

(
𝑑−1∏
𝑘=1

(
𝜋( ∨

2 ) − 𝑞
∗
𝐹𝜋(𝑈𝑘)

)
∪ 𝑥

)
,

by the projection formula (2.4.8.ii). This element vanishes by induction. □

Theorem 4.3.8. Let 𝑋 ∈ Sm𝑆 . Let 𝑈1,… ,𝑈𝑑 be rank 2 vector bundles over 𝑋, and 𝐿1, … , 𝐿𝑟 line
bundles over 𝑋. Then for any 𝑘 ∈ ℕ, we have 𝐴8𝑘,4𝑘(𝑋)

𝑝𝑘(𝑈1 ⊕⋯⊕𝑈𝑑 ⊕ 𝐿1 ⊕⋯⊕ 𝐿𝑟) = 𝜎𝑘(𝜋(𝑈1), … , 𝜋(𝑈𝑑)).

where 𝜎𝑘 denotes the 𝑘th elementary symmetric polynomial in 𝑑 variables.

Proof. By (4.3.5), we may assume that 𝑟 = 0. Then the theorem follows by expanding the product
in (4.3.7) and comparing with the defining relation (4.3.1.a). □

Corollary 4.3.9 (Whitney sum formula). If 0 → 𝐸′ → 𝐸 → 𝐸′′ → 0 is an exact sequence of vector
bundles over 𝑋 ∈ Sm𝑆 , for any 𝑘 ∈ ℤ, we have in 𝐴8𝑘,4𝑘(𝑋)

𝑝𝑘(𝐸) =

𝑘∑
𝑖=0

𝑝𝑖(𝐸
′)𝑝𝑘−𝑖(𝐸

′′).

Proof. By (1.8), we may assume that the sequence splits. By the splitting principle (4.2.1), we may
further assume that 𝐸′ and 𝐸′′ split as direct sums of vector bundles of ranks 1 or 2. Then the
corollary follows from (4.3.8). □
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1450 HAUTION

Corollary 4.3.10. If 𝑋 ∈ Sm𝑆 and 𝐸 → 𝑋 is a vector bundle, we have

𝑝𝑘(𝐸) = 𝑝𝑘(𝐸
∨) for any 𝑘 ∈ ℤ.

Proof. This follows by combining (4.2.1), (4.3.8) and (2.3.7). □

Corollary 4.3.11. Assume that the weak hyperbolic orientation of 𝐴 extends to a hyperbolic ori-
entation. Let 𝑋 ∈ Sm𝑆 , and 𝐸 → 𝑋 be a vector bundle of constant rank 2𝑑, with 𝑑 ∈ ℕ. Then
𝑝𝑑(𝐸) = 𝜋(𝐸) in 𝐴8𝑑,4𝑑(𝑋).

Proof. This follows by combining (4.2.1), (4.3.8) and (2.2.8.v). □

Remark 4.3.12. We will see in (4.4.11) that the assumption of (4.3.11) is automatically fulfilled.

Remark 4.3.13. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic commutative ring spectrum equipped with a nor-
malised Sp-orientation, in the sense of [3, Definition 3.3]. Recall from (2.2.6) that 𝐴 inherits a
hyperbolic orientation. Then we claim that the Pontryagin classes 𝑝𝑖 , defined in (4.3.1) from the
hyperbolic orientation, coincide with the Pontryagin classes 𝑝′

𝑖
, defined in [3, Definition 7.7] from

the Sp-orientation (and denoted by 𝑝𝑖 there).
Indeed, by the splitting principle (4.2.1) and the Whitney sum formulas (see (4.3.9) and [3,

Corollary 7.9 (2)]), it will suffice to show that 𝑝𝑖(𝐸) = 𝑝′𝑖 (𝐸) when 𝐸 is a vector bundle of rank
𝑟 ∈ {1, 2}. Note that for 𝑖 > 𝑟∕2, we have 𝑝𝑖(𝐸) = 0 by definition (4.3.1), and 𝑝′𝑖 (𝐸) = 0 by [3, Corol-
lary 7.9 (3)]. It will thus suffice to assume that 𝑟 = 2 and show that 𝑝1(𝐸) = 𝑝′1(𝐸). But, using the
notation of (2.2.6), we have

𝑝1(𝐸)
(4.3.4.𝑎)
= 𝜋(𝐸)

(2.2.7)
= 𝑧∗𝐸⊕𝐸(𝔬𝐸)

(2.2.6.𝑏)
= 𝑧∗𝐸⊕𝐸◦𝜎

∗
𝐸(th𝐻(𝐸))

(1.15.𝑏)
= 𝑧∗

𝐸⊕𝐸∨
(th𝐻(𝐸)),

which equals 𝑏2(𝐻(𝐸)) = 𝑝′1(𝐸) by [17, (13.3)], as required.

4.4 Orientations and weak orientations

In this section, we prove that, for an 𝜂-periodic motivic ring spectrum, the datum of a
hyperbolic orientation (see (2.2.2)) is equivalent to that of a weak hyperbolic orientation (see
(2.3.1)). Throughout this section, 𝐴 ∈ SH(𝑆) will be an 𝜂-periodic ring spectrum with a weak
hyperbolic orientation.

4.4.1. It will be convenient to introduce the polynomials, for 𝑟 ∈ ℤ

𝑓𝑟,𝐸 =

𝑟∑
𝑘=0

(−1)𝑘𝑝𝑟−𝑘(𝐸)𝑢
𝑘 ∈ 𝐴∗,∗(𝑋)[𝑢], (4.4.1.a)

for any vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 . Those satisfy the inductive formula

𝑝𝑟(𝐸) = 𝑓𝑟,𝐸 + 𝑢𝑓𝑟−1,𝐸. (4.4.1.b)

4.4.2. Let 𝐸 → 𝑋 be a vector bundle, with 𝑋 ∈ Sm𝑆 . It follows from (4.3.5) that 𝑓𝑟,𝐸 = 𝑓𝑟,𝐸⊕1 for
any 𝑟 ∈ ℤ.
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1451

4.4.3. Consider an exact sequence 0 → 𝐷 → 𝐸 → 𝑄 → 0 of vector bundles over 𝑋 ∈ Sm𝑆 , where
𝐷 has rank 2. Then, by the Whitney sum formula (4.3.9) and (4.3.4.a), we have 𝑝𝑘(𝐸) = 𝑝𝑘(𝑄) +
𝜋(𝐷)𝑝𝑘−1(𝑄). Plugging this relation into (4.4.1.a) yields, for any 𝑟 ∈ ℤ

𝑓𝑟,𝐸 = 𝑓𝑟,𝑄 + 𝜋(𝐷)𝑓𝑟−1,𝑄. (4.4.3.a)

In view of (4.4.1.b), we deduce by induction on 𝑟 that, for any 𝑟 ∈ ℤ (the case 𝑟 < 0 being clear),

𝑓𝑟,𝐸(𝜋(𝐷)) = 𝑝𝑟(𝑄) ∈ 𝐴
8𝑟,4𝑟(𝑋). (4.4.3.b)

4.4.4. Let 𝑋 ∈ Sm𝑆 , and 𝐸 → 𝑋 be a vector bundle. We will implicitly view 𝐴∗,∗(Gr(2, 𝐸)) as an
𝐴∗,∗(𝑋)-bimodule, via the pullback along the projection Gr(2, 𝐸) → 𝑋. By (4.4.3.b), we have for
any 𝑟 ∈ ℤ

𝑓𝑟,𝐸(𝜋(2)) = 𝑝𝑟(2) ∈ 𝐴
8𝑟,4𝑟(Gr(2, 𝐸)). (4.4.4.a)

4.4.5. Let 𝐸 → 𝑋 be a vector bundle of rank 2𝑑 over 𝑋 ∈ Sm𝑆 , with 𝑑 ∈ ℕ. The inclusion 1⊕2 ⊂
𝐸 ⊕ 1⊕2 induces a closed immersion

𝑠𝐸 ∶ 𝑋 = Gr(2, 1
⊕2) → Gr(2, 𝐸 ⊕ 1⊕2). (4.4.5.a)

Observe that 𝑠𝐸 is defined by the vanishing of a section ofHom(1⊕2,2) = 2 ⊕2 transverse to
the zero-section, namely the composite 1⊕2 ⊂ 𝑞∗(𝐸 ⊕ 1⊕2) → 2, where 𝑞∶ Gr(2, 𝐸 ⊕ 1⊕2) → 𝑋

is the projection. Since 𝑠∗
𝐸
2 = 𝐸, the closed immersion 𝑠𝐸 has normal bundle 𝐸 ⊕ 𝐸.

By (3.2.5), we have a long exact sequence

⋯→ 𝐴∗,∗(Gr(1, 𝐸 ⊕ 1);1)
ℎ𝐸⊕1∗
AAAAAA→ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 1⊕2))

g∗
𝐸⊕1
AAAA→ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 1)) → ⋯ .

It follows from (3.3.5.i) that in this sequence, themap g∗
𝐸⊕1

is surjective, and hence, ℎ𝐸⊕1∗ is injec-
tive.Moreover,Gr(1, 𝐸 ⊕ 1) = ℙ(𝐸 ⊕ 1)with1 corresponding to the quotient bundle of (3.2.2).
Consider the closed immersion 𝑓∶ 𝑋 = ℙ(1) → ℙ(𝐸 ⊕ 1) = Gr(1, 𝐸 ⊕ 1) induced by the inclu-
sion 1 ⊂ 𝐸 ⊕ 1. Then, the composite 𝑠𝐸 = ℎ𝐸⊕1◦𝑓. By (3.1.4), the pushforward 𝑓∗ ∶ 𝐴∗,∗(𝑋; 𝐸 ⊕
𝐸) → 𝐴∗,∗(ℙ(𝐸 ⊕ 1);) is bijective. We thus obtain a short exact sequence of 𝐴∗,∗(𝑋)-bimodules

0 → 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)
𝑠𝐸∗
AAA→ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 1⊕2))

g∗
𝐸⊕1
AAAA→ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 1)) → 0.

Next, we have in 𝐴8𝑑,4𝑑(Gr(2, 𝐸 ⊕ 1))

g∗𝐸⊕1(𝑓𝑑,𝐸(𝜋(2))) = 𝑓𝑑,𝐸(𝜋(2))
(4.4.2)
= 𝑓𝑑,𝐸⊕1(𝜋(2))

(4.4.4.𝑎)
= 𝑝𝑑(2),

which vanishes since the vector bundle 2 → Gr(2, 𝐸 ⊕ 1) has rank 2𝑑 − 1. Thus, by the short
exact sequence above, there exists a unique element

𝔬𝐸 ∈ 𝐴
0,0(𝑋; 𝐸 ⊕ 𝐸) such that 𝑠𝐸∗(𝔬𝐸) = 𝑓𝑑,𝐸(𝜋(2)). (4.4.5.b)

Lemma 4.4.6. Let 𝑋 ∈ Sm𝑆 , and 𝐸 → 𝑋 a rank 2 vector bundle. Then

𝔬𝐸 = 𝔱𝐸 ∈ 𝐴
0,0(𝑋; 𝐸 ⊕ 𝐸),

 17538424, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12317 by C
ochraneItalia, W

iley O
nline L

ibrary on [22/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1452 HAUTION

where 𝔬𝐸 is defined in (4.4.5.b), and 𝔱𝐸 is given by the weak hyperbolic orientation of 𝐴.

Proof. Recall that the closed immersion 𝑠𝐸 ∶ 𝑋 → Gr(2, 𝐸 ⊕ 1⊕2) of (4.4.5.a) is defined by the
vanishing of a section of 2 ⊕2 transverse to the zero-section. Therefore,

𝑠𝐸∗(𝔱𝐸)
(2.4.11.𝑖𝑖)
= 𝜋(2)

(4.3.4.𝑎)
= 𝑝1(2)

(4.4.4.𝑎)
= 𝑓1,𝐸(𝜋(2)). □

Lemma 4.4.7. Let 𝑋 ∈ Sm𝑆 , and 𝐸,𝐷 → 𝑋 vector bundles. Assume that 𝐷 has rank 2, and that 𝐸
has constant even rank. Then the elements defined in (4.4.5.b) satisfy

𝔬𝐸⊕𝐷 = sw
∗
𝐸,𝐷(𝔬𝐸 ∪ 𝔬𝐷).

Proof. Let 𝑞∶ Gr(2, 𝐸 ⊕ 𝐷 ⊕ 1⊕2) → 𝑋 be the projection. The inclusions 𝐸 ⊕ 1⊕2 ⊂ 𝐸 ⊕ 𝐷 ⊕
1⊕2 and 𝐷 ⊂ 𝐸 ⊕ 𝐷 ⊕ 1⊕2 induce closed immersions

𝑖 ∶ Gr(2, 𝐸 ⊕ 1⊕2) → Gr(2, 𝐸 ⊕ 𝐷 ⊕ 1⊕2) and 𝑗 ∶ 𝑋 = Gr(2, 𝐷) → Gr(2, 𝐸 ⊕ 𝐷 ⊕ 1⊕2).

As explained in (3.3), we have an exact sequence of 𝐴∗,∗(𝑋)-bimodules

0 → 𝐴∗,∗(Gr(2, 𝐸 ⊕ 1⊕2); ∨
2 ⊗ 𝑞

∗𝐷)
𝑖∗
AA→ 𝐴∗,∗(Gr(2, 𝐸 ⊕ 𝐷 ⊕ 1⊕2))

𝑗∗

AA→ 𝐴∗,∗(𝑋) → 0.

Since 𝑗∗2 = 𝐷, there exists a unique element

𝜔 ∈ 𝐴0,0(Gr(2, 𝐸 ⊕ 1⊕2); ∨
2 ⊗ 𝑞

∗𝐷)

such that

𝑖∗(𝜔) = 𝑞
∗𝜋(𝐷) − 𝜋(2) ∈ 𝐴

8,4(Gr(2, 𝐸 ⊕ 𝐷 ⊕ 1⊕2)). (4.4.7.a)

Consider now the cartesian square in Sm𝑆

where 𝑠𝐷, 𝑠𝐸 are defined in (4.4.5.a), and 𝑘 is induced by the inclusion 𝐷 ⊕ 1⊕2 ⊂ 𝐸 ⊕ 𝐷 ⊕ 1⊕2.
Set 𝑞′ = 𝑘◦𝑞. The cartesian square above is transverse; hence, by (2.4.5) and (2.4.7), we have in
𝐴8,4(Gr(2, 𝐷 ⊕ 1⊕2))

𝑠𝐷∗◦𝑠
∗
𝐸(𝜔) = 𝑘

∗◦𝑖∗(𝜔) = 𝑘
∗(𝑞∗𝜋(𝐷) − 𝜋(2)) = 𝑞

′∗𝜋(𝐷) − 𝜋(2) = 𝑓1,𝐷(𝜋(2)),

which by definition of 𝔬𝐷 (see (4.4.5.b)) implies that

𝑠∗𝐸(𝜔) = 𝔬𝐷 ∈ 𝐴
0,0(𝑋; 𝐷 ⊕ 𝐷). (4.4.7.b)
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1453

Next, it follows from (2.4.4) that we have a commutative square in H∙(𝑆)

(4.4.7.c)

Let now 𝑑 ∈ ℕ be such that𝐸 has rank 2𝑑. Then, viewing𝐴∗,∗(Gr(2, 𝐷 ⊕ 𝐸 ⊕ 1⊕2)) as an𝐴∗,∗(𝑋)-
algebra via 𝑞∗, we have

(𝑠𝐸⊕𝐷)∗◦ sw
∗
𝐸,𝐷
(𝔬𝐸 ∪ 𝔬𝐷)

= 𝑖∗◦(𝑠𝐸)∗(𝔬𝐸 ∪ 𝔬𝐷) by (4.4.7.c)

= 𝑖∗◦(𝑠𝐸)∗(𝔬𝐸 ∪ 𝑠
∗
𝐸
(𝜔)) by (4.4.7.b)

= 𝑖∗((𝑠𝐸)∗(𝔬𝐸) ∪ 𝜔) by (2.4.8.i)

= 𝑖∗
(
𝑓𝑑,𝐸(𝜋(2)) ∪ 𝜔

)
by (4.4.5.b)

= 𝑓𝑑,𝐸(𝜋(2)) ∪ 𝑖∗(𝜔) by (2.4.8.ii)

= 𝑓𝑑,𝐸(𝜋(2)) ⋅ 𝜋(𝐷) − 𝑓𝑑,𝐸(𝜋(2)) ⋅ 𝜋(2) by (4.4.7.a)

= 𝑓𝑑,𝐸(𝜋(2)) ⋅ 𝜋(𝐷) + 𝑓𝑑+1,𝐸(𝜋(2)) − 𝑝𝑑+1(𝐸) by (4.4.1.b)

= 𝑓𝑑,𝐸(𝜋(2)) ⋅ 𝜋(𝐷) + 𝑓𝑑+1,𝐸(𝜋(2)) as rank𝐸 ⩽ 2𝑑 + 1

= 𝑓𝑑+1,𝐷⊕𝐸(𝜋(2)) by (4.4.3.a),

from which the statement follows. □

Proposition 4.4.8. Let 𝐸, 𝐹 be vector bundles of constant even ranks over 𝑋 ∈ Sm𝑆 . Then the
elements defined in (4.4.5.b) satisfy

𝔬𝐸⊕𝐹 = sw
∗
𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹).

Proof. This follows from the splitting principle (4.2.1) and (4.4.7). □

4.4.9. Let 𝐸 → 𝑋 be a vector bundle with 𝑋 ∈ Sm𝑆 . Recall that if 𝐸 has constant even rank, we
have defined in (4.4.5.b) a class 𝔬𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸). If 𝐸 has constant odd rank, we define

𝔬𝐸 = (Σ
4,2)−1◦(sw∗𝐸,1)

−1(𝔬𝐸⊕1) ∈ 𝐴
0,0(𝑋; 𝐸 ⊕ 𝐸). (4.4.9.a)

This permits in an obvious way to define a class 𝔬𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸) when the rank of 𝐸 is not
necessarily constant.

Lemma 4.4.10. Let 𝐸, 𝐹 be vector bundles over 𝑋 ∈ Sm𝑆 , with 𝐹 of constant odd rank. Then

sw∗𝐸,𝐹⊕1(𝔬𝐸 ∪ 𝔬𝐹⊕1) = sw
∗
𝐸⊕𝐹,1 ◦Σ

4,2◦ sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹).
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1454 HAUTION

Proof. Consider the commutative square in SH(𝑆)

(4.4.10.a)

where 𝜏𝐸,𝐹 , resp. 𝜎𝐸,𝐹 , is given by

(𝑒, 𝑓, 𝑒′, 𝑓′, 𝑥, 𝑥′) ↦ (𝑒, 𝑒′, 𝑓, 𝑓′, 𝑥, 𝑥′), resp. (𝑒, 𝑒′, 𝑓, 𝑥, 𝑓′, 𝑥′) ↦ (𝑒, 𝑒′, 𝑓, 𝑓′, 𝑥, 𝑥′).

Note that we have commutative squares in SH(𝑆)

(4.4.10.b)

(4.4.10.c)
Now we compute in 𝐴0,0(𝑋; 𝐸 ⊕ 𝐹 ⊕ 1⊕ 𝐸 ⊕ 𝐹 ⊕ 1)

sw∗𝐸,𝐹⊕1(𝔬𝐸 ∪ 𝔬𝐹⊕1) = sw
∗
𝐸,𝐹⊕1(𝔬𝐸 ∪ sw

∗
𝐹,1(Σ

4,2𝔬𝐹)) by (4.4.9.a)

= sw∗𝐸,𝐹⊕1 ◦𝜎
∗
𝐸,𝐹(𝔬𝐸 ∪ Σ

4,2𝔬𝐹) by (4.4.10.c)

= sw∗𝐸⊕𝐹,1 ◦𝜏
∗
𝐸,𝐹(𝔬𝐸 ∪ Σ

4,2𝔬𝐹) by (4.4.10.a)

= sw∗𝐸⊕𝐹,1 ◦𝜏
∗
𝐸,𝐹◦Σ

4,2(𝔬𝐸 ∪ 𝔬𝐹) by (1.12.a)

= sw∗𝐸⊕𝐹,1 ◦Σ
4,2◦ sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹) by (4.4.10.b). □

Theorem 4.4.11. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum. Then, every weak hyperbolic
orientation on 𝐴 (see (2.3.1)) is induced by a unique hyperbolic orientation (see (2.2.2)).

Proof. Let us assume that 𝐴 carries a weak hyperbolic orientation. We will show below that the
assignment 𝐸 ↦ 𝔬𝐸 defined in (4.4.6) is a hyperbolic orientation of 𝐴. Once this is done, it will
follow from (4.4.6) that this hyperbolic orientation induces the original weak hyperbolic orien-
tation. The uniqueness of a hyperbolic orientation having this property is a consequence of the
splitting principle (4.2.1), and the proof of the theorem will thus be complete.
We now proceed with the proof that 𝐸 ↦ 𝔬𝐸 is a hyperbolic orientation. The axioms (2.2.2.i),

(2.2.2.ii) and (2.2.2.iii) are easily verified. The axiom (2.2.2.iv) follows from the computation

𝔬1
(4.4.9.𝑎)
= (Σ4,2)−1◦(sw∗1,1)

−1(𝔬1⊕2)
(4.4.6)
= (Σ4,2)−1◦(sw∗1,1)

−1(𝔱1⊕2)
(2.3.1.𝑖𝑣)
= Σ4,21.
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1455

It remains to show that the axiom (2.2.2.v) holds. So, we consider vector bundles 𝐸, 𝐹 over
𝑋 ∈ Sm𝑆 , and prove that

𝔬𝐸⊕𝐹 = sw
∗
𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹) ∈ 𝐴

0,0(𝑋; 𝐸 ⊕ 𝐹 ⊕ 𝐸 ⊕ 𝐹). (4.4.11.a)

We may assume that 𝐸, 𝐹 have constant respective ranks 𝑟𝐸, 𝑟𝐹 , and we distinguish four cases
according to the parities of 𝑟𝐸, 𝑟𝐹 .
Case 1: 𝑟𝐸 is even and 𝑟𝐹 is even. The equality (4.4.11.a) has been proved in (4.4.8).
Case 2: 𝑟𝐸 is even and 𝑟𝐹 is odd. We have

𝔬𝐸⊕𝐹 = (Σ
4,2)−1◦(sw∗𝐸⊕𝐹,1)

−1(𝔬𝐸⊕𝐹⊕1) by (4.4.9.a)

= (Σ4,2)−1◦(sw∗𝐸⊕𝐹,1)
−1◦ sw∗𝐸,𝐹⊕1(𝔬𝐸 ∪ 𝔬𝐹⊕1) by (4.4.8)

= sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹) by (4.4.10),

proving (4.4.11.a) in this case.
Case 3: 𝑟𝐸 is odd and 𝑟𝐹 is even. Consider the commutative square in SH(𝑆)

where 𝛼, resp. 𝜌, is given by

(𝑒, 𝑓, 𝑒′, 𝑓′) ↦ (𝑓, 𝑒, 𝑓′, 𝑒′), resp. (𝑒, 𝑒′, 𝑓, 𝑓′) ↦ (𝑓, 𝑓′, 𝑒, 𝑒′).

Then, using Case 2 treated above (with the roles of 𝐸 and 𝐹 exchanged), we have

sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹) = sw
∗
𝐸,𝐹 ◦𝜌

∗(𝔬𝐹 ∪ 𝔬𝐸) = 𝛼
∗◦ sw∗𝐹,𝐸(𝔬𝐹 ∪ 𝔬𝐸) = 𝛼

∗(𝔬𝐹⊕𝐸),

which equals 𝔬𝐸⊕𝐹 since 𝛼 is induced by the morphism 𝐸 ⊕ 𝐹 → 𝐹 ⊕ 𝐸 given by (𝑒, 𝑓) ↦ (𝑓, 𝑒),
and the axiom (2.2.2.iii) holds. This proves (4.4.11.a) in this case.
Case 4: 𝑟𝐸 is odd and 𝑟𝐹 is odd. Using Case 3 for the pair (𝐸, 𝐹 ⊕ 1) and Case 2 for the pair

(𝐸 ⊕ 𝐹, 1), we have

sw∗𝐸⊕𝐹,1 ◦Σ
4,2◦ sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹)

(4.4.10)
= sw∗𝐸,𝐹⊕1(𝔬𝐸 ∪ 𝔬𝐹⊕1) = 𝔬𝐸⊕𝐹⊕1 = sw

∗
𝐸⊕𝐹,1(𝔬𝐸⊕𝐹 ∪ 𝔬1).

Applying (sw∗
𝐸⊕𝐹,1

)−1, we deduce that (recall that the axiom (2.2.2.iv) has already been established
above)

Σ4,2◦ sw∗𝐸,𝐹(𝔬𝐸 ∪ 𝔬𝐹) = 𝔬𝐸⊕𝐹 ∪ 𝔬1
(2.2.2.𝑖𝑣)
= 𝔬𝐸⊕𝐹 ∪ Σ

4,21
(1.12.𝑎)
= Σ4,2𝔬𝐸⊕𝐹,

from which (4.4.11.a) follows upon applying (Σ4,2)−1. □
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1456 HAUTION

5 COHOMOLOGY OF HIGHER GRASSMANNIANS

5.1 Algebraic interlude

In this section, we introduce the notation required to express the cohomology of higher
Grassmannians in (5.2.2) below, and prove certain purely algebraic results that will be required.

5.1.1. Let 𝑟 ∈ ℕ. Let 𝐵 be a ring (unital and associative as usual), and consider the polynomial ring
in 𝑟 variables 𝐵[𝑝1, … , 𝑝𝑟] (the variables 𝑝𝑖 are central). We define

𝑠𝑗 = 𝑠𝑗(𝑝1, … , 𝑝𝑟) ∈ 𝐵[𝑝1, … , 𝑝𝑟] for 𝑗 ∈ ℤ

by the formula

(1 + 𝑡𝑝1 +⋯ + 𝑡𝑟𝑝𝑟)
−1 =

∑
𝑗∈ℤ

𝑠𝑗𝑡
𝑗 ∈ (𝐵[𝑝1, … , 𝑝𝑟])[[𝑡]].

Thus, 𝑠0 = 1 and 𝑠𝑗 = 0 for 𝑗 < 0, and we have the inductive relation

𝑠𝑗 = −𝑝1𝑠𝑗−1 −⋯ − 𝑝𝑟𝑠𝑗−𝑟 for 𝑗 ∈ ℤ ⧵ {0}. (5.1.1.a)

Note that the elements 𝑠𝑗 are central in the ring 𝐵[𝑝1, … , 𝑝𝑟].

5.1.2. Let 𝑑 ∈ ℤ. We denote by 𝐽𝑑,𝑟, or simply 𝐽𝑑, the (two-sided) ideal of 𝐵[𝑝1, … , 𝑝𝑟] generated
by 𝑠𝑗 for 𝑗 ⩾ 𝑑. In particular, 𝐽𝑑 = 𝐵[𝑝1, … , 𝑝𝑟] when 𝑑 ⩽ 0.

5.1.3. When 𝑑 ⩾ 0, the relation (5.1.1.a) shows that the ideal 𝐽𝑛 is generated by the elements
𝑠𝑑, … , 𝑠𝑑+𝑟−1.

Lemma 5.1.4. Assume that 𝑟 ⩾ 1. For any 𝑑 ∈ ℤ, we have an exact sequence of 𝐵-bimodules

𝐵[𝑝1, … , 𝑝𝑟]∕𝐽𝑑−1,𝑟
𝑝𝑟 ⋅
AAA→ 𝐵[𝑝1, … , 𝑝𝑟]∕𝐽𝑑,𝑟

𝑝𝑟↦0
AAAAA→ 𝐵[𝑝1, … , 𝑝𝑟−1]∕𝐽𝑑,𝑟−1 → 0,

where the first morphism is induced by the multiplication by 𝑝𝑟, and the second by the morphism of
𝐵[𝑝1, … , 𝑝𝑟−1]-algebras g ∶ 𝐵[𝑝1, … , 𝑝𝑟] → 𝐵[𝑝1, … , 𝑝𝑟−1] given by 𝑝𝑟 ↦ 0.

Proof. We may assume that 𝑑 > 0. It follows by induction from (5.1.1.a) that g(𝑠𝑗) = 𝑠𝑗 for any 𝑗,
and thus, g(𝐽𝑑,𝑟) = 𝐽𝑑,𝑟−1. Thus, the exact sequence

𝐵[𝑝1, … , 𝑝𝑟]
𝑝𝑟 ⋅
AAA→ 𝐵[𝑝1, … , 𝑝𝑟]

g
A→ 𝐵[𝑝1, … , 𝑝𝑟−1] → 0

descends to an exact sequence

𝐵[𝑝1, … , 𝑝𝑟]
𝑝𝑟 ⋅
AAA→ 𝐵[𝑝1, … , 𝑝𝑟]∕𝐽𝑑,𝑟 → 𝐵[𝑝1, … , 𝑝𝑟−1]∕𝐽𝑑,𝑟−1 → 0.

As 𝑑 − 1 + 𝑟 > 0, it follows from (5.1.1.a) that

𝑝𝑟𝑠𝑑−1 = −𝑝𝑟−1𝑠𝑑 −⋯ − 𝑝1𝑠𝑑−2+𝑟 − 𝑠𝑑−1+𝑟 ∈ 𝐽𝑑,𝑟,

hence 𝑝𝑟𝐽𝑑−1,𝑟 ⊂ 𝐽𝑑,𝑟, concluding the proof. □
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1457

5.1.5. We will denote by 𝐿 be the (two-sided) ideal generated by 𝑝1, … , 𝑝𝑟 in 𝐵[𝑝1, … , 𝑝𝑟].

Lemma 5.1.6. For any 𝑘 ∈ ℕ, we have 𝐽𝑟𝑘 ⊂ 𝐿𝑘 in 𝐵[𝑝1, … , 𝑝𝑟].

Proof. We can assume that 𝑘 ⩾ 1. The relation (5.1.1.a) implies that 𝐽𝑟𝑘 ⊂ 𝐿𝐽𝑟𝑘−𝑟, from which the
statement follows by induction on 𝑘. □

Lemma 5.1.7. For each 𝑑 ∈ ℤ, there exists 𝑠 ∈ ℕ such that 𝐿𝑠𝐽𝑑 ⊂ 𝐽𝑑+1 in 𝐵[𝑝1, … , 𝑝𝑟].

Proof. We proceed by induction on 𝑑, the statement being clear when 𝑑 < 0. Let us fix an integer
𝑑 ⩾ 0. For 𝑖 ∈ ℕ ⧵ {0}, let us denote by 𝐿𝑖 ⊂ 𝐵[𝑝1, … , 𝑝𝑟] the ideal generated by the variables 𝑝𝑗 for
𝑗 ∈ {𝑖, … , 𝑟}. We will show that for each 𝑖 ∈ ℕ ⧵ {0}, there exists an integer 𝑡 (depending on 𝑖) such
that

𝐿𝑡𝐿𝑖𝐽𝑑 ⊂ 𝐽𝑑+1. (5.1.7.a)

Since 𝐿 = 𝐿1, this will complete the proof of the lemma.
We prove (5.1.7.a) by descending induction on 𝑖, the case 𝑖 > 𝑟 being clear (as 𝐿𝑖 = 0). Assume

that 𝑖 ⩽ 𝑟. From the relation (5.1.1.a), we deduce that

𝑝𝑖𝑠𝑑 = (−𝑠𝑑+𝑖 −⋯ − 𝑝𝑖−1𝑠𝑑+1) + (−𝑝𝑖+1𝑠𝑑−1 −⋯ − 𝑝𝑟𝑠𝑑+𝑖−𝑟) ∈ 𝐽𝑑+1 + 𝐿𝑖+1𝐽𝑑+𝑖−𝑟.

Since the ideal 𝐿𝑖𝐽𝑑 is generated by 𝑝𝑖𝑠𝑑 and 𝐽𝑑+1 + 𝐿𝑖+1𝐽𝑑, it follows that

𝐿𝑖𝐽𝑑 ⊂ 𝐽𝑑+1 + 𝐿𝑖+1𝐽𝑑+𝑖−𝑟. (5.1.7.b)

By induction on 𝑑 (i.e. using the lemma where 𝑑 is replaced by 𝑑 − 1,… , 𝑑 + 𝑖 − 𝑟), we find 𝑢 ∈ ℕ
such that 𝐿𝑢𝐽𝑑+𝑖−𝑟 ⊂ 𝐽𝑑. Together with (5.1.7.b), this implies that

𝐿𝑢𝐿𝑖𝐽𝑑 ⊂ 𝐽𝑑+1 + 𝐿𝑖+1𝐽𝑑. (5.1.7.c)

By induction on 𝑖 (i.e. using (5.1.7.a) where 𝑖 is replaced by 𝑖 + 1), we find 𝑣 ∈ ℕ such that
𝐿𝑣𝐿𝑖+1𝐽𝑑 ⊂ 𝐽𝑑+1. Combiningwith (5.1.7.c), we see that (5.1.7.a) holds true if we take 𝑡 = 𝑢 + 𝑣. □

Lemma 5.1.8. For each 𝑛 ∈ ℤ, there exists 𝑘 ∈ ℕ such that 𝐿𝑘 ⊂ 𝐽𝑛 in 𝐵[𝑝1, … , 𝑝𝑟].

Proof. We proceed by induction on 𝑛, the case 𝑛 ⩽ 0 being clear. Let 𝑛 ⩾ 1. By induction, we
find an integer 𝑡 such that 𝐿𝑡 ⊂ 𝐽𝑛−1. By (5.1.7), we find an integer 𝑠 such that 𝐿𝑠𝐽𝑛−1 ⊂ 𝐽𝑛. The
statement follows by taking 𝑘 = 𝑠 + 𝑡. □

Proposition 5.1.9. Let𝑀 be an abelian group, and 𝑚 ∈ 𝑀. Assume that the ring 𝐵 is𝑀-graded.
Letting each 𝑝𝑖 have degree𝑚𝑖, we have (see (1.14))

lim
𝑑
𝐵[𝑝1, … , 𝑝𝑟]∕𝐽𝑑 = 𝐵[[𝑝1, … , 𝑝𝑟]]ℎ,

where the limit is computed in the category of𝑀-graded rings.
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1458 HAUTION

Proof. Using (5.1.1.a), we see that the element 𝑠𝑖 is homogeneous of degree 𝑚𝑖. Therefore, the
ideals 𝐽𝑑 are homogeneous. Since by definition

lim
𝑑
𝐵[𝑝1, … , 𝑝𝑟]∕𝐿

𝑑 = 𝐵[[𝑝1, … , 𝑝𝑟]]ℎ,

the statement follows from (5.1.6) and (5.1.8). □

In the next statement, we denote by 𝐽′
𝑑
⊂ 𝐵[𝑝′

1
, … , 𝑝′𝑟] the image of 𝐽𝑑 under 𝑝𝑖 ↦ 𝑝′

𝑖
.

Also, when 𝐼 ⊂ 𝐵[𝑝1, … , 𝑝𝑟] and 𝐼′ ⊂ 𝐵[𝑝′1, … , 𝑝
′
𝑟] are two-sided ideals, we denote by 𝐼 + 𝐼′ ⊂

𝐵[𝑝1, … , 𝑝𝑟, 𝑝
′
1
, … , 𝑝′𝑟] the two-sided ideal generated by 𝐼 ∪ 𝐼

′.

Proposition 5.1.10. Let𝑀 be an abelian group, and𝑚 ∈ 𝑀. Assume that the ring 𝐵 is𝑀-graded.
Letting each 𝑝𝑖 and 𝑝′𝑖 have degree𝑚𝑖, we have (see (1.14))

lim
𝑑
𝐵[𝑝1, … , 𝑝𝑟, 𝑝

′
1, … , 𝑝

′
𝑟]∕(𝐽𝑑 + 𝐽

′
𝑑
) = 𝐵[[𝑝1, … , 𝑝𝑟, 𝑝

′
1, … , 𝑝

′
𝑟]]ℎ,

where the limit is computed in the category of𝑀-graded rings.

Proof. Again, it follows from (5.1.1.a) that the ideals 𝐽𝑑 + 𝐽′𝑑 are homogeneous. Let 𝐿′ ⊂
𝐵[𝑝′

1
, … , 𝑝′𝑟] be the ideal generated by 𝑝

′
1
, … , 𝑝′𝑟. Observe that by (5.1.6)

𝐽𝑟𝑘 + 𝐽
′
𝑟𝑘
⊂ 𝐿𝑘 + 𝐿′𝑘 ⊂ (𝐿 + 𝐿′)𝑘.

On the other hand, by (5.1.8), we find for each 𝑛 ∈ ℕ an integer 𝑘 such that

(𝐿 + 𝐿′)2𝑘 ⊂ 𝐿𝑘 + 𝐿′𝑘 ⊂ 𝐽𝑛 + 𝐽
′
𝑛,

and we conclude using the fact that, by definition,

lim
𝑑
𝐵[𝑝1, … , 𝑝𝑟, 𝑝

′
1, … , 𝑝

′
𝑟]∕(𝐿 + 𝐿

′)𝑑 = 𝐵[[𝑝1, … , 𝑝𝑟, 𝑝
′
1, … , 𝑝

′
𝑟]]ℎ. □

5.2 Higher grassmannians

We recall from (3.2.6) that Gr(𝑛, 𝑠) denotes the grassmannian of 𝑛-planes in 𝑠-space over 𝑆. It is
equipped with a universal subbundle𝑛 ⊂ 1⊕𝑠 of rank 𝑛, and a quotient bundle𝑛 = 1⊕𝑠∕𝑛 of
rank 𝑠 − 𝑛.

Proposition 5.2.1. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic ring spectrum with a weak hyperbolic
orientation (see (2.3.1)). Let 𝑛 ∈ ℕ be odd and 𝑠 ∈ ℕ be even. Then,

𝐴∗,∗(Gr(𝑛, 𝑠); ∨
𝑛 ) = 0.

Proof. We proceed by induction on 𝑛. When 𝑛 = 1, this follows from (3.1.1.ii), in view of (3.2.2).
Assume that 𝑛 ⩾ 3. Let us denote by 𝑌 the 𝑆-scheme classifying the vector bundle inclusions
𝑃 ⊂ 𝑄 ⊂ 1⊕𝑠 with 𝑃,𝑄 of respective ranks 𝑛 − 2, 𝑛. We have natural morphisms

Gr(𝑛 − 2, 𝑠)
𝑝
←A 𝑌

𝑞
A→ Gr(𝑛, 𝑠),
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1459

where 𝑝, resp. 𝑞, maps a flag 𝑃 ⊂ 𝑄 ⊂ 1⊕𝑠 to 𝑃 ⊂ 1⊕𝑠, resp. to 𝑄 ⊂ 1⊕𝑠. We have a natural inclu-
sion 𝑝∗𝑛−2 ⊂ 𝑞∗𝑛 of vector bundles over 𝑌. Let us denote by  = 𝑞∗𝑛∕𝑝∗𝑛−2 the quotient.
The morphism 𝑝∶ 𝑌 → Gr(𝑛 − 2, 𝑠) is the Grassmann bundle Gr(2,𝑛−2), with universal rank 2
subbundle  ⊂ 𝑝∗𝑛−2. The morphism 𝑞∶ 𝑌 → Gr(𝑛, 𝑠) is the Grassmann bundleGr(𝑛 − 2,𝑛),
which may be identified with Gr(2, ∨

𝑛 ).
Since rank𝑛−2 = 𝑠 − 𝑛 + 2 is odd, applying (3.3.5.ii) to the Grassmann bundle 𝑝 yields an

isomorphism

(−) ∪ 𝑒(∨)∶ 𝐴∗,∗(𝑌; 𝑝∗ ∨
𝑛−2)

∼
A→ 𝐴∗,∗(𝑌; 𝑝∗ ∨

𝑛−2 ⊕ ∨) ≃ 𝐴∗,∗(𝑌; 𝑞∗ ∨
𝑛 ), (5.2.1.a)

where the last isomorphism is induced by the exact sequence (see (1.7))

0 → ∨ → 𝑞∗ ∨
𝑛 → 𝑝∗ ∨

𝑛−2 → 0.

As 𝐴∗,∗(Gr(𝑛 − 2, 𝑠); ∨
𝑛−2
) = 0 by induction, it follows from (3.3.5.i) (applied to the bundle 𝑝)

that𝐴∗,∗(𝑌; 𝑝∗ ∨
𝑛−2
) = 0. Using (5.2.1.a), we deduce that𝐴∗,∗(𝑌; 𝑞∗ ∨

𝑛 ) = 0. Applying (3.3.5.i) to
the Grassmann bundle 𝑞 then shows that 𝐴∗,∗(Gr(𝑛, 𝑠); ∨

𝑛 ) = 0, completing the proof. □

Proposition 5.2.2. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝑑 ⩾
𝑟 ∈ ℕ, and 𝑠 ∈ {2𝑑, 2𝑑 + 1} and𝑛 ∈ {2𝑟, 2𝑟 + 1}. If𝑛 is odd, assume that 𝑠 is also odd. Thenmapping
𝑝𝑗 to the 𝑗th Pontryagin class 𝑝𝑗( ∨

𝑛 ) yields an isomorphism of 𝐴∗,∗(𝑆)-algebras (see (1.13))

𝐴∗,∗(𝑆)[𝑝1, … , 𝑝𝑟]∕𝐽𝑑−𝑟+1
∼
A→ 𝐴∗,∗(Gr(𝑛, 𝑠)),

where 𝐽𝑑−𝑟+1 is the ideal defined in (5.1.2).

Proof. By (4.3.6) and the Whitney sum formula (4.3.9), we have for any 𝑘 ∈ ℕ ⧵ {0}

𝑝𝑘(
∨
𝑛) = −𝑝1(

∨
𝑛 )𝑝𝑘−1(

∨
𝑛) −⋯ − 𝑝𝑘−1(

∨
𝑛 )𝑝1(

∨
𝑛) − 𝑝𝑘(

∨
𝑛 ) ∈ 𝐴

8𝑘,4𝑘(Gr(𝑛, 𝑠)).

Recall that 𝑝𝑗( ∨
𝑛 ) vanishes when 2𝑗 > rank

∨
𝑛 = 𝑛, and therefore, when 𝑗 > 𝑟. We deduce by

induction on 𝑘 from (5.1.1.a) that for any 𝑘 ∈ ℤ (the case 𝑘 ⩽ 0 being clear)

𝑝𝑘(
∨
𝑛) = 𝑠𝑘(𝑝1(

∨
𝑛 ), … , 𝑝𝑟(

∨
𝑛 )) ∈ 𝐴

8𝑘,4𝑘(Gr(𝑛, 𝑠)). (5.2.2.a)

Now the vector bundle ∨𝑛 has rank 𝑠 − 𝑛 ⩽ 2(𝑑 − 𝑟) + 1, so that 𝑝𝑘(
∨
𝑛) vanishes when 𝑘 ⩾ 𝑑 −

𝑟 + 1. In view of (5.2.2.a), it follows that the ideal 𝐽𝑑−𝑟+1 is mapped to zero in 𝐴∗,∗(Gr(𝑛, 𝑠)), so
that the morphism of the statement is well defined.
To prove that it is an isomorphism, we proceed by induction on 𝑛 + 𝑠. The cases 𝑛 = 0 or

𝑠 = 0 are clear, so we assume that 𝑛 ⩾ 1 and 𝑠 ⩾ 1. Let us consider the closed immersions g =
g1⊕𝑠−1 ∶ Gr(𝑛, 𝑠 − 1) → Gr(𝑛, 𝑠) and ℎ = ℎ1⊕𝑠−1 ∶ Gr(𝑛 − 1, 𝑠 − 1) → Gr(𝑛, 𝑠) described in (3.2.3).
Case 𝑛 odd and 𝑠 odd: By (3.2.4), we have a long exact sequence

⋯→ 𝐴∗,∗(Gr(𝑛, 𝑠 − 1); ∨
𝑛 )

g∗
AA→ 𝐴∗,∗(Gr(𝑛, 𝑠))

ℎ∗

AA→ 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 1)) → ⋯

Since the term on the left vanishes by (5.2.1), it follows that ℎ∗ is bijective. Since ℎ∗ is a morphism
of 𝐴∗,∗(𝑆)-algebras mapping 𝑝𝑗( ∨

𝑛 ) to 𝑝𝑗(
∨
𝑛 ), we deduce the statement by induction.
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1460 HAUTION

Case 𝑛 even and 𝑠 even: By (3.2.4), we have a long exact sequence

⋯→ 𝐴∗,∗(Gr(𝑛, 𝑠 − 1); ∨
𝑛 )

g∗
AA→ 𝐴∗,∗(Gr(𝑛, 𝑠))

ℎ∗

AA→ 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 1)) → ⋯

Note that ℎ∗ is surjective, since by induction, the 𝐴∗,∗(𝑆)-algebra 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 1)) is gener-
ated by the Pontryagin classes 𝑝𝑗( ∨

𝑛 ), which lie in the image of ℎ
∗. Thus g∗ is injective. By (3.2.4),

letting g ′ = g1⊕𝑠−2 , we have an infinite long exact sequence

𝐴∗,∗(Gr(𝑛, 𝑠 − 2); ∨
𝑛 ⊕ ∨

𝑛 )
g′∗
AA→ 𝐴∗,∗(Gr(𝑛, 𝑠 − 1); ∨

𝑛 ) → 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 2); ∨
𝑛 ).

By (5.2.1), the term on the right vanishes, and hence, g ′∗ above is an isomorphism. By (2.2.5), we
obtain an exact sequence

0 → 𝐴∗,∗(Gr(𝑛, 𝑠 − 2))
𝑢
A→ 𝐴∗,∗(Gr(𝑛, 𝑠))

ℎ∗

AA→ 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 1)) → 0,

where 𝑢 is given by 𝑥 ↦ (g◦g ′)∗(𝑥 ∪ 𝔬 ∨
𝑛
). By (2.4.11.i), the composite

𝐴∗,∗(Gr(𝑛, 𝑠))
(g◦g′)∗
AAAAAAA→ 𝐴∗,∗(Gr(𝑛, 𝑠 − 2))

𝑢
A→ 𝐴∗,∗(Gr(𝑛, 𝑠))

is multiplication by the element 𝜋( ∨
𝑛 ), which coincides with 𝑝𝑟(

∨
𝑛 ) by (4.3.11). In particular,

ℎ∗𝑝𝑟(
∨
𝑛 ) = ℎ

∗◦𝑢(1) = 0. We thus have a commutative diagram

Here, for𝑚 ∈ {𝑟, 𝑟 − 1}, we have written 𝐵𝑚 = 𝐴∗,∗(𝑆)[𝑝1, … , 𝑝𝑚], and the upper row is the exact
sequence of (5.1.4). We have seen that the lower row is also exact. The left and right vertical mor-
phisms are isomorphisms by induction, hence so is the middle one by a diagram chase, proving
the statement in this case.
Case 𝑛 even and 𝑠 odd: By (3.2.5), we have a long exact sequence

⋯→ 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 1);𝑛−1)
ℎ∗
AA→ 𝐴∗,∗(Gr(𝑛, 𝑠))

g∗

AA→ 𝐴∗,∗(Gr(𝑛, 𝑠 − 1)) →⋯

Set 𝐺 = Gr(𝑛 − 1, 𝑠 − 1). Then,

𝐴∗,∗(𝐺;𝑛−1)
(2.2.5)
≃ 𝐴∗,∗(𝐺;𝑛−1 ⊕𝑛−1 ⊕𝑛−1)

(1.7)
≃ 𝐴∗,∗(𝐺; 1⊕𝑠−1 ⊕𝑛−1),

which vanishes by (1.15) and (5.2.1). Therefore, the morphism g∗ in the above exact sequence is an
isomorphism. Since g∗ is a morphism of𝐴∗,∗(𝑆)-algebras mapping 𝑝𝑗( ∨

𝑛 ) to 𝑝𝑗(
∨
𝑛 ), we deduce

the statement by induction,which concludes the proof of the proposition. Let us nonethelessmake
one additional observation. Recall from (3.2.4) that we have an infinite long exact sequence

𝐴∗,∗(Gr(𝑛, 𝑠 − 1); ∨
𝑛 ⊕ ∨

𝑛 )
g∗
AA→ 𝐴∗,∗(Gr(𝑛, 𝑠); ∨

𝑛 )
ℎ∗

AA→ 𝐴∗,∗(Gr(𝑛 − 1, 𝑠 − 1); ∨
𝑛−1 ⊕ 1).
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1461

The term on the right vanishes by (5.2.1), and hence, g∗ above is an isomorphism. By (2.2.5), the
composite

𝐴∗,∗(Gr(𝑛, 𝑠))
g∗

AA→ 𝐴∗,∗(Gr(𝑛, 𝑠 − 1))
∪𝔬

∨𝑛
AAAAA→

𝐴∗,∗(Gr(𝑛, 𝑠 − 1); ∨
𝑛 ⊕ ∨

𝑛 )
g∗
AA→ 𝐴∗,∗(Gr(𝑛, 𝑠); ∨

𝑛 )

is thus bijective, and it coincides with the (left or right) cup product with the Euler class 𝑒( ∨
𝑛 )

by (2.4.11.i), which proves (5.2.3) below. □

We record the following statement, obtained in the course of the proof of (5.2.2):

Proposition 5.2.3. Let𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let𝑛 ∈ ℕ
be even and 𝑠 ∈ ℕ be odd. Then the (left or right) 𝐴∗,∗(Gr(𝑛, 𝑠))-module 𝐴∗,∗(Gr(𝑛, 𝑠); ∨

𝑛 ) is freely
generated by the Euler class 𝑒( ∨

𝑛 ).

Remark 5.2.4. The parity assumption in (5.2.2) is necessary, as the case 𝑛 = 1, 𝑠 = 2 shows.

5.3 Cohomology of 𝐁𝐆𝐋

5.3.1. (See, e.g. [15, Lemma 2.1.3].) Consider a sequence of pointed motivic spaces 𝐸𝑡 → 𝐸𝑡+1 for
𝑡 ∈ ℕ ⧵ {0}, and denote by 𝐸 ∈ Spc∙(𝑆) its homotopy colimit. Then, for any 𝐴 ∈ SH(𝑆) and 𝑝, 𝑞 ∈
ℤ, we have theMilnor exact sequence

0 → lim
𝑡

1𝐴𝑝−1,𝑞(𝐸𝑡) → 𝐴𝑝,𝑞(𝐸) → lim
𝑡
𝐴𝑝,𝑞(𝐸𝑡) → 0.

By cofinality and compatibility of homotopy colimits with the smash product, we also have an
exact sequence

0 → lim
𝑡

1𝐴𝑝−1,𝑞(𝐸𝑡 ∧ 𝐸𝑡) → 𝐴𝑝,𝑞(𝐸 ∧ 𝐸) → lim
𝑡
𝐴𝑝,𝑞(𝐸𝑡 ∧ 𝐸𝑡) → 0.

5.3.2. Recall that the étale classifying space BGL𝑛 is obtained as the (homotopy) colimit in
Spc(𝑆) of the grassmannians Gr(𝑛, 𝑛𝑡) over 𝑡 ∈ ℕ ⧵ {0} (see, e.g. [6, (5.1.4)] with 𝑝 = 𝑛). Here, the
transition morphisms

Gr(𝑛, 𝑛𝑡) → Gr(𝑛, 𝑛(𝑡 + 1)) (5.3.2.a)

are the closed immersions induced by the inclusions

1⊕𝑛𝑡 = (1⊕𝑡)⊕𝑛 ⊂ (1⊕𝑡+1)⊕𝑛 = 1⊕𝑛(𝑡+1),

where the inclusion 1⊕𝑡 ⊂ 1⊕𝑡+1 is given by the vanishing of the last coordinate. Since the vector
bundle  ∨

𝑛 pulls back to  ∨
𝑛 along (5.3.2.a), there are induced maps of pointed motivic spaces

ThGr(𝑛,𝑛𝑡)(
∨
𝑛 ) → ThGr(𝑛,𝑛(𝑡+1))(

∨
𝑛 ), and we define

ThBGL𝑛(
∨
𝑛 ) = colim𝑡 ThGr(𝑛,𝑛𝑡)(

∨
𝑛 ) ∈ Spc∙(𝑆),
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1462 HAUTION

and if 𝐴 ∈ SH(𝑆) is a ring spectrum, we set

𝐴∗,∗(BGL𝑛;
∨
𝑛 ) = 𝐴

∗+2𝑛,∗+𝑛(ThBGL𝑛(
∨
𝑛 )).

The next result generalises a computation of Levine [9, Theorem 4.1] (see also [6, (6.3.7)]).

Theorem 5.3.3. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝑟 ∈
ℕ, and 𝑛 ∈ {2𝑟, 2𝑟 + 1}. Letting 𝑝𝑖 have degree (8𝑖, 4𝑖), there exists an isomorphism of ℤ2-graded
𝐴∗,∗(𝑆)-algebras (see (1.14)),

𝐴∗,∗(BGL𝑛) ≃ 𝐴
∗,∗(𝑆)[[𝑝1, … , 𝑝𝑟]]ℎ.

In addition the (left of right)𝐴∗,∗(BGL𝑛)-module𝐴∗,∗(BGL𝑛; ∨
𝑛 ) vanishes if 𝑛 is odd, and is free of

rank 1 if 𝑛 is even.

Proof. By (5.2.2), themorphism𝐴∗,∗(Gr(𝑛, 𝑛(𝑡 + 2))) → 𝐴∗,∗(Gr(𝑛, 𝑛𝑡)) is surjectivewhen 𝑡 is odd,
so that the system 𝐴∗,∗(Gr(𝑛, 𝑛𝑡)) for 𝑡 ∈ ℕ ⧵ {0} satisfies the Mittag–Leffler condition, and thus,
lim1𝑡 𝐴

∗,∗(Gr(𝑛, 𝑛𝑡)) = 0. In addition, by (5.2.2) and (5.1.9) (and a cofinality argument), we have an
isomorphism

lim
𝑡
𝐴∗,∗(Gr(𝑛, 𝑛𝑡)) ≃ 𝐴∗,∗(𝑆)[[𝑝1, … , 𝑝𝑟]]ℎ.

The first statement thus follows from the Milnor sequence (5.3.1).
Next, assume that 𝑛 is odd. Then, by (5.2.1), we have 𝐴∗,∗(Gr(𝑛, 𝑛𝑡); ∨

𝑛 ) = 0 when 𝑡 is even,
hence

lim
𝑡

1𝐴∗,∗(Gr(𝑛, 𝑛𝑡); ∨
𝑛 ) = 0 and lim

𝑡
𝐴∗,∗(Gr(𝑛, 𝑛𝑡); ∨

𝑛 ) = 0,

so that 𝐴∗,∗(BGL𝑛; ∨
𝑛 ) = 0 by the Milnor sequence (5.3.1).

Finally, let us assume that 𝑛 is even and prove the remaining statement. The case 𝑛 = 0 being
clear, we assume that 𝑛 ⩾ 2. A cofinality argument shows that BGL𝑛, resp. ThBGL𝑛(

∨
𝑛 ), is the

colimit of Gr(𝑛, 𝑛𝑡 + 1), resp. ThGr(𝑛,𝑛𝑡+1)( ∨
𝑛 ), the transition morphisms being induced by the

inclusions

1⊕𝑛𝑡+1 = 1⊕𝑡+1 ⊕ (1⊕𝑡)⊕𝑛−1 ⊂ 1⊕𝑡+2 ⊕ (1⊕𝑡+1)⊕𝑛−1 = 1⊕𝑛(𝑡+1)+1,

where the inclusions 1⊕𝑡+1 ⊂ 1⊕𝑡+2 and 1⊕𝑡 ⊂ 1⊕𝑡+1 are given by the vanishing of the last coor-
dinates. By (5.2.3), we have isomorphisms of 𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1))-modules 𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1))

∼
A→

𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1); ∨
𝑛 ) which are compatible with the transition morphisms as 𝑡 varies. This

yields isomorphisms of 𝐴∗,∗(BGL𝑛)-modules

0 = lim
𝑡

1𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1))
∼
A→ lim

𝑡

1𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1); ∨
𝑛 )

lim
𝑡
𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1))

∼
A→ lim

𝑡
𝐴∗,∗(Gr(𝑛, 𝑛𝑡 + 1); ∨

𝑛 ).

We conclude using again the Milnor sequence (5.3.1). □
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1463

Corollary 5.3.4. Let𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Then there
exist isomorphisms of ℤ2-graded 𝐴∗,∗(𝑆)-algebras, where deg 𝑝𝑖 = (8𝑖, 4𝑖),

𝐴∗,∗(BSL2𝑟+1) ≃ 𝐴
∗,∗(BSL𝑐2𝑟+1) ≃ 𝐴

∗,∗(𝑆)[[𝑝1, … , 𝑝𝑟]]ℎ.

Proof. This follows by combining (5.3.3) with [6, (6.2.1), (6.3.3)]. □

Remark 5.3.5. Ananyevskiy computed in [1, Theorem 10] the ring 𝐴∗,∗(BSL𝑛) when 𝐴 ∈ SH(𝑆)
is an 𝜂-periodic SL-oriented commutative ring spectrum and 2 is invertible in 𝑆 (see [6, (6.2.2)]
for more details). When 𝑛 is even, the result involves Euler classes of SL-oriented vector bundles
(with values in untwisted cohomology), whose existence seems to require that 𝐴 be SL-oriented.

We will need the following complement to (5.3.3) in the next section.

Proposition 5.3.6. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Let 𝑟 ∈
ℕ, and 𝑛 ∈ {2𝑟, 2𝑟 + 1}. Then, letting 𝑝𝑖, 𝑝′𝑖 have degree (8𝑖, 4𝑖), there exists an isomorphism of ℤ2-
graded 𝐴∗,∗(𝑆)-algebras (see (1.14))

𝐴∗,∗((BGL𝑛)+ ∧ (BGL𝑛)+) ≃ 𝐴
∗,∗(𝑆)[[𝑝1, … , 𝑝𝑟, 𝑝

′
1, … , 𝑝

′
𝑟]]ℎ.

Proof. Let us write 𝑅𝑡 = 𝐴∗,∗(Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑛, 𝑛𝑡)), for 𝑡 ∈ ℕ ⧵ {0}. Then, the morphisms
Gr(𝑛, 𝑛𝑡) → Gr(𝑛, 𝑛(𝑡 + 1)) described at the beginning of §5.3 induce transition morphisms
𝑅𝑡+1 → 𝑅𝑡. Applying (5.2.2) over the base Gr(𝑛, 𝑛𝑡), and then over 𝑆, we obtain for 𝑡 odd

𝑅𝑡 ≃ 𝐴
∗,∗(𝑆)[𝑝1, … , 𝑝𝑟, 𝑝

′
1, … , 𝑝

′
𝑟]∕(𝐽𝑑−𝑟+1 + 𝐽

′
𝑑−𝑟+1

),

where 𝑑 is the integer such that 𝑛𝑡 ∈ {2𝑑, 2𝑑 + 1} (we use the notation described just above
(5.1.10)). We deduce that the morphisms 𝑅𝑡+2 → 𝑅𝑡 are surjective when 𝑡 is odd, so that the sys-
tem 𝑅𝑡 for 𝑡 ∈ ℕ ⧵ {0} satisfies the Mittag–Leffler condition, and thus, lim1𝑡 𝑅𝑡 = 0. By (5.1.10) (and
a cofinality argument), we have

lim
𝑡
𝑅𝑡 ≃ 𝐴

∗,∗(𝑆)[[𝑝1, … , 𝑝𝑟, 𝑝
′
1, … , 𝑝

′
𝑟]]ℎ,

and the statement follows from the Milnor sequence (5.3.1). □

5.3.7. For later reference, let us note the following facts, established in the course of the proofs of
(5.3.3) and (5.3.6).

(i) We have

lim
𝑡

1𝐴∗,∗(Gr(𝑛, 𝑛𝑡)) = 0 and lim
𝑡

1𝐴∗,∗(Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑛, 𝑛𝑡)) = 0.

(ii) The following natural morphisms are bijective:

𝐴∗,∗(BGL𝑛)
∼
A→ lim

𝑡
𝐴∗,∗(Gr(𝑛, 𝑛𝑡)),

𝐴∗,∗((BGL𝑛)+ ∧ (BGL𝑛)+)
∼
A→ lim

𝑡
𝐴∗,∗(Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑛, 𝑛𝑡)).
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1464 HAUTION

(iii) Under the identification of (5.3.3), resp. (5.3.6), the elements 𝑝𝑖 , resp. 𝑝𝑖 and 𝑝′𝑖 , are mapped,
under the morphism induced by (ii), to 𝑝𝑖(𝑛) ∈ 𝐴∗,∗(Gr(𝑛, 𝑛𝑡)), resp. 𝑝𝑖(𝑛 ×𝑆 Gr(𝑛, 𝑛𝑡))
and 𝑝𝑖(Gr(𝑛, 𝑛𝑡) ×𝑆 𝑛).

6 THE UNIVERSAL THEORY

Until the end of the paper, we will assume that the scheme 𝑆 is regular separated (and noetherian
of finite dimension).

6.1 Hyperbolic preorientations

In this section, we introduce a notion destined to facilitate some proofs in the next sections.

Definition 6.1.1. Let 𝐴 ∈ SH(𝑆) and 𝑛 ∈ ℕ. A hyperbolic 𝑛-preorientation of 𝐴 is the datum of
a class 𝔭𝐸 ∈ 𝐴0,0(𝑋; 𝐸 ⊕ 𝐸) for each rank 𝑛 vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 , subject to the
following conditions:

(i) if 𝑓∶ 𝑌 → 𝑋 is a morphism in Sm𝑆 and 𝐸 → 𝑋 a vector bundle, then 𝑓∗𝔭𝐸 = 𝔭𝑓∗𝐸 ,
(ii) if 𝐸

∼
A→ 𝐹 is an isomorphism of vector bundles over 𝑋 ∈ Sm𝑆 , then the induced isomorphism

𝐴∗,∗(𝑋; 𝐹 ⊕ 𝐹)
∼
A→ 𝐴∗,∗(𝑋; 𝐸 ⊕ 𝐸)maps 𝔭𝐹 to 𝔭𝐸 .

6.1.2. A weak hyperbolic orientation (see (2.3.1)) is, in particular, a hyperbolic 2-preorientation.

6.1.3. A hyperbolic orientation (see (2.2.2)) induces a hyperbolic 𝑛-preorientation for every
𝑛 ∈ ℕ. The hyperbolic orientation is determined by the collection of its induced hyperbolic
𝑛-preorientations, for 𝑛 ∈ ℕ.

6.1.4. Let 𝜓∶ 𝐴 → 𝐵 be a morphism in SH(𝑆). If 𝐸 ↦ 𝔭𝐸 is a hyperbolic 𝑛-preorientation of 𝐴,
then 𝐸 ↦ 𝜓∗(𝔭𝐸) defines a hyperbolic 𝑛-preorientation of 𝐵.

6.1.5. (Jouanolou’s trick). If𝑋 ∈ Sm𝑆 , then𝑋 is a regular separated noetherian scheme, and hence
by [19, II, 2.2.7.1], it admits an ample family of line bundles. Therefore, by [20, Proposition 4.4],
there exists an affine bundle 𝑋̃ → 𝑋 in Sm𝑆 with 𝑋̃ affine.

Proposition 6.1.6. A hyperbolic 𝑛-preorientation of a ring spectrum 𝐴 ∈ SH(𝑆) is determined by
the elements 𝔭𝑛 ∈ 𝐴

0,0(Gr(𝑛, 𝑛𝑡);𝑛 ⊕𝑛) for 𝑡 ∈ ℕ ⧵ {0}.

Proof. Let 𝐸 → 𝑋 be a rank 𝑛 vector bundle with 𝑋 ∈ Sm𝑆 . Pick an affine bundle 𝑝∶ 𝑋 →
𝑋 such that the scheme 𝑋 is affine, using Jouanolou’s trick (6.1.5). Then, we may find an
inclusion 𝐸 ⊂ 1⊕𝑛𝑡 for some 𝑡 ∈ ℕ ⧵ {0}, giving a morphism 𝑓∶ 𝑋 → Gr(𝑛, 𝑛𝑡) and an isomor-
phism 𝛼∶ 𝑝∗𝐸

∼
A→ 𝑓∗𝑛. Consider the induced isomorphism Th(𝛼 ⊕ 𝛼)∶ Th𝑋(𝑝

∗𝐸 ⊕ 𝑝∗𝐸)
∼
A→

Th𝑋(𝑓
∗𝑛 ⊕ 𝑓

∗𝑛). Then

𝔭𝐸 = (𝑝
−1)∗◦(Th(𝛼 ⊕ 𝛼))∗◦𝑓∗(𝔭𝑛 ). □
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1465

6.2 The spaces𝐌𝐇𝒏

6.2.1. For 𝑛, 𝑠 ∈ ℕ, let us consider the pointed motivic spaces

Th(𝑛, 𝑠) = ThGr(𝑛,𝑠)(𝑛 ⊕𝑛) ∈ Spc∙(S).

For 𝑡 ∈ ℕ ⧵ {0}, the closed immersion Gr(𝑛, 𝑛𝑡) → Gr(𝑛, 𝑛(𝑡 + 1) described in (5.3.2.a), along
which the vector bundle𝑛 pulls back to𝑛, yields a map in Spc∙(𝑆)

Th(𝑛,nt) → Th(𝑛, 𝑛(𝑡 + 1)). (6.2.1.a)

Taking the colimit over 𝑡 ∈ ℕ ⧵ {0}, we obtain pointed motivic spaces, for 𝑛 ∈ ℕ

MH𝑛 = colim𝑡Th(𝑛,nt),

together with canonical maps in Spc∙(𝑆), for 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0}

𝜆𝑛,𝑡 ∶ Th(𝑛,nt) → MH𝑛. (6.2.1.b)

Lemma 6.2.2. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Then, the
morphisms induced by (6.2.1.b)

𝐴∗,∗(MH𝑛) → lim
𝑡
𝐴∗,∗(Th(𝑛,nt))

𝐴∗,∗(MH𝑛 ∧MH𝑛) → lim
𝑡
𝐴∗,∗(Th(𝑛,nt) ∧ Th(𝑛,nt))

are bijective.

Proof. The isomorphisms for 𝑝, 𝑞 ∈ ℤ and 𝑟 ∈ {1, 2} (see (2.2.5))

(−) ∪ (𝔬𝑛 )
∪𝑟 ∶ 𝐴𝑝−4rn,𝑞−2rn(Gr(𝑛,nt)×𝑆𝑟)

∼
A→ 𝐴𝑝,𝑞(Th(𝑛,nt)∧𝑟),

are compatible with the transition maps when 𝑡 varies. Thus, by (5.3.7.i), we have
lim1𝑡 𝐴

∗,∗(Th(𝑛,nt)∧𝑟) = 0, whence the statements by the Milnor sequence (5.3.1). □

Lemma6.2.3. Let 𝑛 ∈ ℕ. There exists a uniqueway to associate to each rank 𝑛 vector bundle𝐸 → 𝑋

with 𝑋 ∈ Sm𝑆 a map 𝜃𝐸 ∶ Th𝑋(𝐸 ⊕ 𝐸) → MH𝑛 inH∙(𝑆) such that:

(i) if 𝑓∶ 𝑌 → 𝑋 is a morphism in Sm𝑆 , then the following diagram commutes:
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1466 HAUTION

(ii) if 𝛼∶ 𝐸
∼
A→ 𝐹 is an isomorphism of vector bundles over 𝑋 ∈ Sm𝑆 , then the following diagram

commutes:

(iii) for every 𝑡 ∈ ℕ ⧵ {0}, the map 𝜆𝑛,𝑡 ∶ Th(𝑛,nt) → MH𝑛 of (6.2.1.b) is 𝜃𝑛 .

Proof. Let 𝐸 → 𝑋 be a rank 𝑛 vector bundle, with 𝑋 ∈ Sm𝑆 . Assume first that 𝑋 is affine.
Then there exists an integer 𝑡 ∈ ℕ ⧵ {0} and a vector bundle inclusion 𝑖 ∶ 𝐸 → 1⊕𝑛𝑡. This gives
a morphism 𝑋 → Gr(𝑛, 𝑛𝑡) along which𝑛 pulls back to 𝐸, and thus, a map g𝑖 ∶ Th𝑋(𝐸 ⊕ 𝐸) →
Th(𝑛,nt) in Spc∙(𝑆). We claim that the composite in H∙(𝑆)

𝜃𝐸 = 𝜃𝐸(𝑖) ∶ Th𝑋(𝐸 ⊕ 𝐸)
g𝑖
AA→ Th(𝑛,nt)

𝜆𝑛,𝑡
AAA→ MH𝑛

does not depend on 𝑡 or 𝑖. Indeed, let 𝑗 ∶ 𝐸 → 1⊕𝑛𝑡
′ be an inclusion, with 𝑡′ ∈ ℕ ⧵ {0}. While

proving that 𝜃𝐸(𝑖) = 𝜃𝐸(𝑗), we may assume that 𝑡 ⩾ 𝑡′. Composing 𝑗 with the inclusion 1⊕𝑛𝑡
′
=

(1⊕𝑡
′
)⊕𝑛 ⊂ (1⊕𝑡)⊕𝑛 = 1⊕𝑛𝑡 induced by the inclusion 1⊕𝑡′ ⊂ 1⊕𝑡 given by the vanishing of the last

𝑡 − 𝑡′ coordinates, we are reduced to assuming that 𝑡′ = 𝑡. Let 𝑘 ∶ Th(𝑛,nt) → Th(𝑛, 2nt) be the
map given by the vanishing of the last 𝑛𝑡 coordinates. By (6.2.4) below, we have

𝑘◦g𝑖 = 𝑘◦g𝑗 ∶ Th𝑋(𝐸 ⊕ 𝐸) → Th(𝑛, 2𝑛𝑡) in H∙(𝑆). (6.2.3.a)

Now the morphism

(1⊕𝑡)⊕𝑛 ⊕ (1⊕𝑡)⊕𝑛
∼
A→ (1⊕𝑡 ⊕ 1⊕𝑡)⊕𝑛, ((𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛)) ↦ ((𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛))

induces a map 𝑐∶ Th(𝑛, 2𝑛𝑡) → Th(𝑛, 2𝑛𝑡), such that 𝑐◦𝑘∶ Th(𝑛, 𝑛𝑡) → Th(𝑛, 2𝑛𝑡) is the com-
posite of the transition maps (6.2.1.a). In particular, the map 𝜆𝑛,𝑡 ∶ Th(𝑛, 𝑡) → MH𝑛 factors
through 𝑘, and hence, (6.2.3.a) implies that 𝜃𝐸(𝑖) = 𝜃𝐸(𝑗) in H∙(𝑆), proving the claim. It is then
easy to verify the conditions (i) and (ii), under the additional assumption that 𝑋 and 𝑌 are affine.
When𝑋 is not necessarily affine, by Jouanolou’s trick (6.1.5), we find an affine bundle 𝑝∶ 𝑋̃ →

𝑋 with 𝑋̃ ∈ Sm𝑆 affine. We claim that the composite in H∙(𝑆)

𝜃𝐸 ∶ Th𝑋(𝐸 ⊕ 𝐸)
𝑝−1

AAA→ Th𝑋̃(𝑝
∗𝐸 ⊕ 𝑝∗𝐸)

𝜃𝑝∗𝐸
AAAA→ MH𝑛

does not depend on 𝑋̃ and 𝑝. Indeed, let 𝑝′ ∶ 𝑋̃′ → 𝑋 be an affine bundle. Let 𝑌 = 𝑋̃ ×𝑆 𝑋̃′, and
denote by 𝑞∶ 𝑌 → 𝑋̃ and 𝑞′ ∶ 𝑌 → 𝑋̃′ the induced morphisms. Then we have an isomorphism
𝛽∶ 𝑞∗𝑝∗𝐸

∼
A→ 𝑞′∗𝑝′∗𝐸 yielding a commutative diagram in H∙(𝑆)
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1467

(here we have used the validity of the condition (ii) over the scheme 𝑌, which is affine as 𝑆 is
separated). Since 𝜃𝑝∗𝐸◦𝑞 = 𝜃𝑞∗𝑝∗𝐸 and 𝜃𝑝′∗𝐸◦𝑞′ = 𝜃𝑞′∗𝑝′∗𝐸 by the condition (ii) in the affine case,
we deduce that 𝜃𝑝∗𝐸◦𝑝−1 = 𝜃𝑝′∗𝐸◦𝑝′−1, proving the claim. It is now easy to verify the conditions
(i), (ii), (iii), as well as the uniqueness part of the statement. □

Lemma 6.2.4. Let𝑉 → 𝑆 be a vector bundle, and 𝑟 ∈ ℕ. Let 𝑓∶ 𝑋 → 𝑆 in Sm𝑆 , and 𝐸 → 𝑋 a rank
𝑛 vector bundle. If 𝑘∶ 𝐸 ⊂ 𝑓∗𝑉 ⊕ 𝑓∗𝑉 is a vector bundle inclusion, corresponding to a morphism
𝑋 → Gr(𝑛, 𝑉 ⊕ 𝑉) in Sm𝑆 , let us denote by 𝜑𝑘 ∶ Th𝑋(𝐸⊕𝑟) → ThGr(𝑛,𝑉⊕𝑉)(

⊕𝑟
𝑛 ) the induced map

in Spc∙(𝑆). Then the image of 𝜑(𝑖,0) inH∙(𝑆) does not depend on the inclusion 𝑖 ∶ 𝐸 ⊂ 𝑓∗𝑉.

Proof. Let 𝑖, 𝑗 ∶ 𝐸 ⊂ 𝑓∗𝑉 be vector bundle inclusions. Let𝑝∶ 𝔸1 ×𝑆𝑋 → 𝑋 be the projection. Con-
sider the vector bundle inclusion (𝑝∗𝑖, 𝑡𝑝∗𝑗)∶ 𝑝∗𝐸 ⊂ 𝑝∗𝑓∗𝑉 ⊕ 𝑝∗𝑓∗𝑉, where 𝑡 is the tautological
section over 𝔸1. Then the induced morphism Th𝔸1 ×𝑆𝑋(𝑝

∗𝐸⊕𝑟) → ThGr(𝑛,𝑉⊕𝑉)(
⊕𝑟
𝑛 ) restricts to

𝜑(𝑖,0) at 0 ∈ 𝔸1 and to 𝜑(𝑖,𝑗) at 1 ∈ 𝔸1. This yields 𝜑(𝑖,0) = 𝜑(𝑖,𝑗) inH∙(𝑆). Similarly, 𝜑(0,𝑗) = 𝜑(𝑖,𝑗) in
H∙(𝑆). Therefore, in H∙(𝑆), we have

𝜑(𝑖,0) = 𝜑(𝑖,𝑗) = 𝜑(0,𝑗) = 𝜑(𝑗,𝑗) = 𝜑(𝑗,0). □

6.2.5. Let 𝐴 ∈ SH(𝑆) be a ring spectrum equipped with a hyperbolic 𝑛-preorientation. Then the
elements 𝔱𝑛 ∈ 𝐴

4𝑛,2𝑛(Th(𝑛,nt)) are compatible with the transition maps (6.2.1.a) as 𝑡 varies in
ℕ ⧵ {0}, hence by (6.2.2) are the images of a unique element of 𝔱 ∈ 𝐴4𝑛,2𝑛(MH𝑛).

6.2.6. Conversely, let 𝐴 ∈ SH(𝑆) be a ring spectrum and 𝑛 ∈ ℕ. Assume given an element 𝔱 ∈
𝐴4𝑛,2𝑛(MH𝑛). Applying (6.2.3), we associate to each rank 𝑛 vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆
an element 𝔱𝐸 = 𝜃∗𝐸(𝔱) ∈ 𝐴

0,0(𝑋; 𝐸 ⊕ 𝐸).

Proposition 6.2.7. Let 𝐴 ∈ SH(𝑆) be a ring spectrum. The procedures described in (6.2.5) and
(6.2.6) yield mutually inverse bijections between the set of hyperbolic 𝑛-preorientations of 𝐴 and the
elements of 𝐴4𝑛,2𝑛(MH𝑛).

Proof. This follows from (6.1.6) and (6.2.3.iii). □

Corollary 6.2.8. Let 𝐴 ∈ SH(𝑆) be a commutative ring spectrum. The procedures described in
(6.2.5) and (6.2.6) yield mutually inverse bijections between the set of weak hyperbolic orientations
of 𝐴 (see (2.3.1)) and the elements of 𝐴8,4(MH2) whose restriction along 𝜃1⊕2 ∶ Th𝑆(1⊕4) → MH2 is
sw∗

1,1
(Σ8,41) ∈ 𝐴0,0(𝑆; 1⊕4) = 𝐴8,4(Th𝑆(1

⊕4)).

Proof. This follows from (2.3.4). □

6.3 The ring spectrum𝐌𝐇

In this section, we assemble the pointed motivic spacesMH𝑛 defined in the previous section into
a commutative ring spectrum MH ∈ SH(𝑆). We follow very closely the strategy employed in
[14, §2.1] to construct the spectrum MGL, the main difference being that we naturally obtain
a 𝑇∧2-spectrum instead of a 𝑇-spectrum, as was the case for the spectrum MSp constructed by
Panin–Walter [16, §6]. Since the model categories of symmetric 𝑇- and 𝑇∧2-spectra have equiv-
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1468 HAUTION

alent homotopy categories (with their symmetric monoidal structures) by [16, Theorem 3.2], we
still obtain a commutative ring spectrum in SH(𝑆).

6.3.1. Let us first describe a constructionwhichwill be useful in this section. Let𝐸𝑖 → 𝑋𝑖 be vector
bundles with𝑋𝑖 ∈ Sm𝑆 , for 𝑖 ∈ {1, 2}. Set 𝑃 = 𝑋1 ×𝑆 𝑋2 and let𝑉𝑖 → 𝑃 be the pullback of 𝐸𝑖 → 𝑋𝑖
along the 𝑖th projection 𝑃 → 𝑋𝑖 , for 𝑖 ∈ {1, 2}. Assume given a morphism 𝑓∶ 𝑃 → 𝑍 in Sm𝑆 , and
𝑊 → 𝑍 a vector bundle together with an isomorphism 𝑓∗𝑊 ≃ 𝑉1 ⊕ 𝑉2. Then there is an induced
map in Spc∙(𝑆)

Th𝑋1(𝐸1 ⊕ 𝐸1) ∧ Th𝑋2(𝐸2 ⊕ 𝐸2) = Th𝑃(𝑉1 ⊕ 𝑉1 ⊕ 𝑉2 ⊕ 𝑉2)

(sw𝑉1,𝑉2 )
−1

AAAAAAAAAAA→ Th𝑃(𝑉1 ⊕ 𝑉2 ⊕ 𝑉1 ⊕ 𝑉2)
𝑓
A→ Th𝑍(𝑊 ⊕𝑊).

6.3.2. For 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0}, consider the closed immersions

𝛾𝑛,𝑡 ∶ Gr(𝑛, 𝑛𝑡) → Gr(𝑛 + 1, (𝑛 + 1)𝑡)) (6.3.2.a)

given by mapping a subbundle 𝐸 ⊂ 1⊕𝑛𝑡 to 𝐸 ⊕ 1 ⊂ 1⊕𝑛𝑡 ⊕ 1⊕𝑡 = 1⊕(𝑛+1)𝑡, where the inclusion
1 ⊂ 1⊕𝑡 is induced by the vanishing of the 𝑡 − 1 last coordinates. Along the morphism (6.3.2.a),
the vector bundle 𝑛+1 pulls back to 𝑛 ⊕ 1. Using the procedure described in (6.3.1), we thus
obtain maps in Spc∙(𝑆), for 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0} (recall that 𝑇 = Th𝑆(1))

𝜏𝑛,𝑡 ∶ Th(𝑛,nt) ∧ 𝑇∧2 → Th(𝑛 + 1, (𝑛 + 1)𝑡), (6.3.2.b)

which are compatible with the transition maps (6.2.1.a) as 𝑡 varies. Taking the colimit over 𝑡 ∈
ℕ ⧵ {0}, we obtain maps in Spc∙(𝑆), for 𝑛 ∈ ℕ

MH𝑛 ∧𝑇
∧2 → MH𝑛+1 . (6.3.2.c)

6.3.3. Let 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0}. The natural action of the symmetric group 𝔖𝑛 (where 𝔖0 = 1)
on (1⊕𝑡)⊕𝑛 induces an action on Gr(𝑛, 𝑛𝑡), for which the vector bundle 𝑛 is 𝔖𝑛-equivariant.
This yields a 𝔖𝑛-action on Th(𝑛,nt) = ThGr(𝑛,nt)(𝑛 ⊕𝑛). The transition maps Gr(𝑛, 𝑛𝑡) →
Gr(𝑛, 𝑛(𝑡 + 1)) of (5.3.2.a) and Th(𝑛,nt) → Th(𝑛, 𝑛(𝑡 + 1)) of (6.2.1.a) are 𝔖𝑛-equivariant. For
𝑚 ∈ ℕ, consider the (𝔖𝑛 ×𝔖𝑚)-equivariant morphism in Sm𝑆

𝜇𝑛,𝑚,𝑡 ∶ Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑚,𝑚𝑡) → Gr(𝑛 + 𝑚, (𝑛 + 𝑚)𝑡) (6.3.3.a)

given by

(𝑈 ⊂ 1⊕𝑛𝑡, 𝑉 ⊂ 1⊕𝑚𝑡) ↦ 𝑈 ⊕𝑉 ⊂ 1⊕𝑛𝑡 ⊕ 1⊕𝑚𝑡 = 1⊕(𝑛+𝑚)𝑡,

under which the vector bundle 𝑛+𝑚 pulls back to 𝑝∗
1
𝑛 ⊕ 𝑝

∗
2
𝑚, where 𝑝1 ∶ Gr(𝑛, 𝑛𝑡) ×𝑆

Gr(𝑚,𝑚𝑡) → Gr(𝑛, 𝑛𝑡) and 𝑝2 ∶ Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑚,𝑚𝑡) → Gr(𝑚,𝑚𝑡) are the two projections. By
the procedure described in (6.3.1), we obtain a (𝔖𝑛 ×𝔖𝑚)-equivariant map in Spc∙(𝑆)

Th(𝑛,nt) ∧ Th(𝑚,mt) → Th(𝑛 + 𝑚, (𝑛 + 𝑚)𝑡). (6.3.3.b)

These morphisms are compatible with the transition maps (5.3.2.a) and (6.2.1.a) as 𝑡 varies in ℕ ⧵
{0}. Taking the colimit over 𝑡, we obtain a𝔖𝑛-action on eachMH𝑛, and a (𝔖𝑛 ×𝔖𝑚)-equivariant
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1469

map in Spc∙(𝑆), for 𝑛,𝑚 ∈ ℕ

𝜇𝑛,𝑚 ∶ MH𝑛 ∧MH𝑚 → MH𝑛+𝑚 .

We also have in Spc∙(𝑆) a canonical isomorphism and a map (see (6.2.1.b))

𝑒0 ∶ 𝑆+
∼
A→ MH0 and 𝑒1 ∶ 𝑇

∧2 = Th(1, 1)
𝜆1,1
AAA→ MH1 . (6.3.3.c)

Definition 6.3.4. A straightforward verification shows that the data described in (6.3.3) define a
commutative 𝑇∧2-monoid in Spc∙(𝑆) in the sense of [16, Definition 3.3], and thus, by [16, Theo-
rem 3.4] a commutative monoid in the category of symmetric 𝑇∧2-spectra, that we denote byMH.
Using the natural equivalence between the homotopy categories of symmetric 𝑇∧2-spectra and of
𝑇-spectra (see [16, Theorem 3.2] and [8, Theorem 4.31]), we may viewMH as a commutative ring
spectrum in SH(𝑆).

6.3.5. By definition, the bonding maps of the 𝑇∧2-spectrumMH are the composites

MH𝑛 ∧𝑇
∧2

id∧𝑒1
AAAAA→ MH𝑛 ∧MH1

𝜇𝑛,1
AAA→ MH𝑛+1, (6.3.5.a)

and it follows form the construction that they coincide with the maps (6.3.2.c).

6.3.6. Let 𝑛 ∈ ℕ. The functor mapping a 𝑇∧2-spectrum 𝐸 to its level 𝑛 component 𝐸𝑛 admits a
left adjoint, which maps a pointed motivic space 𝑌 to the spectrum Σ∞

𝑇∧2
𝑌(−𝑛) given by (∗, … , ∗

, 𝑌, 𝑇∧2 ∧ 𝑌,… ), whose image in SH(𝑆) is naturally isomorphic toΣ−4𝑛,−2𝑛Σ∞𝑌. Thus, the identity
ofMH𝑛 yields, by adjunction and application of the functor Σ4𝑛,2𝑛, a canonical map in SH(𝑆)

𝜌𝑛 ∶ Σ
∞MH𝑛 → Σ4𝑛,2𝑛 MH . (6.3.6.a)

Note that, under the above adjunction for 𝑛 = 1, the unit 1MH∶ 𝟏𝑆 → MH of the ring spectrum
MH corresponds to the map 𝑒1 of (6.3.3.c), hence factors in SH(𝑆) as

1MH∶ 𝟏𝑆 = Σ
−4,−2Σ∞𝑇∧2

Σ−4,−2Σ∞𝑒1
AAAAAAAAAA→ Σ−4,−2Σ∞MH1

Σ−4,−2𝜌1
AAAAAAAA→ MH . (6.3.6.b)

Moreover, it follows from the construction of the product 𝜇∶ MH∧MH → MH that the following
diagram commutes in SH(𝑆) (using the identification (6.3.7) below)

(6.3.6.c)

6.3.7. Let 𝐴, 𝐵 ∈ SH(𝑆) and 𝑎, 𝑏 ∈ ℕ. The isomorphism 𝜏∶ 𝑇∧𝑎 ∧ 𝐵 → 𝐵 ∧ 𝑇∧𝑎 exchanging the
factors 𝐵 and 𝑇∧𝑎 induces an identification

Σ2𝑎,𝑎𝐴 ∧ Σ2𝑏,𝑏𝐵 = 𝐴 ∧ 𝑇∧𝑎 ∧ 𝐵 ∧ 𝑇∧𝑏 ≃ 𝐴 ∧ 𝐵 ∧ 𝑇∧𝑎 ∧ 𝑇∧𝑏 = Σ2(𝑎+𝑏),𝑎+𝑏(𝐴 ∧ 𝐵),

where the middle isomorphism is id𝐴 ∧𝜏 ∧ id𝑇∧𝑏 .
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1470 HAUTION

Proposition 6.3.8. One may define a hyperbolic orientation on the ring spectrum MH using the
elements 𝜃𝐸 of (6.2.3), by setting

𝔬𝐸 = 𝜌𝑛◦Σ
∞𝜃𝐸 ∈ MH

4𝑛,2𝑛(Th𝑋(𝐸 ⊕ 𝐸)) = MH
0,0(𝑋; 𝐸 ⊕ 𝐸)

for every vector bundle 𝐸 → 𝑋 of rank 𝑛 ∈ ℕ, with 𝑋 ∈ Sm𝑆 (and extending this definition to
arbitrary vector bundles in an obvious way).

Proof. We verify the axioms of (2.2.2). Centrality (2.2.2.i) is automatic because the ring spec-
trumMH is commutative (see (2.2.4)). Compatibility with pullbacks (2.2.2.ii) and isomorphisms
(2.2.2.iii) follow from (6.2.3.i) and (6.2.3.ii). Applying (6.2.3.iii) with 𝑛 = 𝑡 = 1 shows that 𝜃1 is the
map 𝜆1,1 = 𝑒1 of (6.3.3.c). Thus, it follows from the factorisation (6.3.6.b) that 𝔬1 = Σ4,21MH, where
1MH∶ 𝟏𝑆 → MH is the unit of the ring spectrumMH, proving the normalisation axiom (2.2.2.iv).
Finally, let us prove the multiplicativity axiom (2.2.2.v). Let 𝐸, 𝐹 be vector bundles over 𝑋 ∈

Sm𝑆 , of respective ranks 𝑛,𝑚 ∈ ℕ. In view of the diagram (6.3.6.c), it will suffice to prove that the
map 𝜃𝐸⊕𝐹 in H∙(𝑆) factors as (see (2.2) and (1.12))

Th𝑋(𝐸 ⊕ 𝐹 ⊕ 𝐸 ⊕ 𝐹)
sw𝐸,𝐹
AAAAA→Th𝑋(𝐸 ⊕ 𝐸 ⊕ 𝐹 ⊕ 𝐹)

Δ𝑋
AAA→ Th𝑋(𝐸 ⊕ 𝐸) ∧ Th𝑋(𝐹 ⊕ 𝐹)

𝜃𝐸∧𝜃𝐹
AAAAAA→ MH𝑛 ∧MH𝑚

𝜇𝑛,𝑚
AAAA→ MH𝑛+𝑚 .

While doing so, wemay assume that𝑋 is affine by Jouanolou’s trick (6.1.5), and thus, assume given
inclusions 𝐸 ⊂ 1⊕𝑛𝑡 and 𝐹 ⊂ 1⊕𝑚𝑡 for some 𝑡 ∈ ℕ ⧵ {0}, corresponding to morphisms 𝑒∶ 𝑋 →
Gr(𝑛, 𝑛𝑡) and 𝑓∶ 𝑋 → Gr(𝑚,𝑚𝑡). Then we have a commutative diagram in H∙(𝑆)

Consider the morphism ℎ∶ 𝑋 → Gr(𝑛 + 𝑚, (𝑛 + 𝑚)𝑡) in Sm𝑆 corresponding to the inclusion 𝐸 ⊕
𝐹 ⊂ 1⊕𝑛𝑡 ⊕ 1⊕𝑚𝑡 = 1⊕(𝑛+𝑚)𝑡. Then 𝜃𝐸⊕𝐹 factors as

Th𝑋(𝐸 ⊕ 𝐹 ⊕ 𝐸 ⊕ 𝐹)
ℎ
A→ Th(𝑛 + 𝑚, (𝑛 + 𝑚)𝑡)

𝜆𝑛+𝑚,(𝑛+𝑚)𝑡
AAAAAAAAAA→ MH𝑛+𝑚.

Therefore, it will suffice to prove that the composite

Th𝑋(𝐸 ⊕ 𝐹 ⊕ 𝐸 ⊕ 𝐹)
𝑠𝑤𝐸,𝐹
AAAAA→ Th𝑋(𝐸 ⊕ 𝐸 ⊕ 𝐹 ⊕ 𝐹)

Δ𝑋
AAA→ Th𝑋(𝐸 ⊕ 𝐸) ∧ Th𝑋(𝐹 ⊕ 𝐹)

𝑒∧𝑓
AAA→ Th(𝑛,nt) ∧ Th(𝑚,mt)

(6.3.3.b)
AAAAAAA→ Th(𝑛 + 𝑚, (𝑛 + 𝑚)𝑡)

is the morphism induced by ℎ. Set 𝑃 = Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑚,𝑚𝑡). Let 𝑈 → 𝑃 be the pullback of
𝑛 under the first projection, and 𝑉 → 𝑃 the pullback of 𝑚 under the second projection. The
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MOTIVIC PONTRYAGIN CLASSES AND HYPERBOLIC ORIENTATIONS 1471

consideration of the commutative diagram in H∙(𝑆)

concludes the proof. □

6.3.9. Let us denote by 𝐸 ↦ 𝔬MH
𝐸

the hyperbolic orientation of MH described in (6.3.8). Let 𝐴 ∈
SH(𝑆) be a commutative ring spectrum. If 𝜓∶ MH → 𝐴 is a morphism of ring spectra in SH(𝑆),
then 𝐸 ↦ 𝜓∗(𝔬

MH
𝐸
) defines a hyperbolic orientation of 𝐴.

Lemma 6.3.10. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic hyperbolically oriented ring spectrum. Then for
any 𝑝, 𝑞 ∈ ℤ, the morphisms

𝐴𝑝,𝑞(MH) → lim
𝑛
𝐴𝑝+4𝑛,𝑞+2𝑛(MH𝑛) and 𝐴𝑝,𝑞(MH∧MH) → lim

𝑛
𝐴𝑝+8𝑛,𝑞+4𝑛(MH𝑛 ∧MH𝑛)

induced by (6.3.6.a) are bijective.

Proof. Let 𝑟 ∈ {1, 2}. By [15, Corollaries 2.1.4, 2.1.5] (see also [16, Theorem 5.6]), we have for each
𝑝, 𝑞 ∈ ℤ a short exact sequence of abelian groups

0 → lim
𝑛

1𝐴𝑝+4𝑟𝑛−1,𝑞+2𝑟𝑛(MH∧𝑟𝑛 ) → 𝐴𝑝,𝑞(MH∧𝑟) → lim
𝑛
𝐴𝑝+4𝑟𝑛,𝑞+2𝑟𝑛(MH∧𝑟𝑛 ) → 0.

The isomorphisms, for 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0} (see (2.2.5))

(−) ∪ (𝔬𝑛 )
∪𝑟 ∶ 𝐴∗,∗(Gr(𝑛,nt)×𝑆𝑟)

∼
A→ 𝐴∗,∗(Th(𝑛,nt)∧𝑟)

(which are graded of degree (4𝑟𝑛, 2𝑟𝑛)) are compatible with the morphisms (6.3.2.a) and (6.3.2.b),
which in view of (5.3.7.ii) and (6.2.2) yields a commutative diagram

Under the identifications given in (5.3.3) and (5.3.6), by (5.3.7.iii), the upper horizontal arrow is a
morphism of𝐴∗,∗(𝑆)-algebrasmapping𝑝𝑗 to𝑝𝑗 , as well as𝑝′𝑗 to𝑝

′
𝑗
when 𝑟 = 2, hence is surjective.

Since the vertical arrows are bijective, it follows that the lower horizontal arrow is surjective. This
implies that the lim1-term vanishes in the above exact sequence, concluding the proof. □
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Theorem 6.3.11. Let 𝐴 ∈ SH(𝑆) be an 𝜂-periodic commutative ring spectrum. The procedure
described in (6.3.9) yields a bijection between the set of morphisms of ring spectraMH → 𝐴 in SH(𝑆)
and the set of hyperbolic orientations of 𝐴.

Proof. Assume that𝐴 carries a hyperbolic orientation 𝐸 ↦ 𝔬𝐴
𝐸
. Then for each 𝑛, the family 𝔬𝐴

𝑛
∈

𝐴4𝑛,2𝑛(Th(𝑛,nt))where 𝑡 runs over ℕ ⧵ {0}, lifts to a unique element 𝜎𝑛 ∈ 𝐴4𝑛,2𝑛(MH𝑛) by (6.2.2).
Since the vector bundle 𝑛+1 restricts to 𝑛 ⊕ 1 along the morphism 𝛾𝑛,𝑡 ∶ Gr(𝑛, 𝑛𝑡) → Gr(𝑛 +

1, 𝑛(𝑡 + 1)) of (6.3.2.a), it follows that the morphism 𝜏𝑛,𝑡 of (6.3.2.b) verifies

𝜏∗𝑛,𝑡(𝔬
𝐴
𝑛+1

)
(6.3.1)
= (sw∗

𝑛,1
)−1◦𝛾∗𝑛,𝑡(𝔬

𝐴
𝑛+1

)
(2.2.2.𝑖𝑖)
= (sw∗

𝑛,1
)−1(𝔬𝐴

𝑛⊕1
)
(2.2.2.𝑣)
= 𝔬𝐴

𝑛
∪ 𝔬𝐴1 ,

which equals Σ4,2𝔬𝐴
𝑛

by (2.2.2.iv) and (1.12.a). Taking the limit over 𝑡, we deduce that 𝜎𝑛+1 ∈
𝐴4(𝑛+1),2(𝑛+1)(MH𝑛+1)maps to𝜎𝑛 ∈ 𝐴4𝑛,2𝑛(MH𝑛)under the pullback along (6.3.2.c). Therefore, by
(6.3.10), we obtain a well-defined element 𝜑 ∈ 𝐴0,0(MH), in other words a morphism 𝜑∶ MH →
𝐴 in SH(𝑆). To verify that𝜑 is indeed amorphismof ring spectra, we investigate the commutativity
of the diagrams in SH(𝑆)

(6.3.11.a)

Observe that, by construction of 𝜑, for 𝑛 ∈ ℕ the element 𝔬𝐴
𝑛

is the composite

Th(𝑛, 𝑛𝑡)
𝜆𝑛,𝑡
AAA→ MH𝑛

𝜌𝑛
AA→ MH

𝜑
A→ 𝐴. (6.3.11.b)

On the other hand, by definition of the hyperbolic orientation of MH (in (6.3.8)) and in view of
(6.2.3.iii), the composite (6.3.11.b) is 𝜑∗(𝔬MH𝑛

). In view of (6.1.6) and (6.1.4), it follows that

𝜑∗(𝔬
MH
𝐸 ) = 𝔬𝐴𝐸 for any vector bundle 𝐸 → 𝑋 with 𝑋 ∈ Sm𝑆 . (6.3.11.c)

Taking 𝐸 = 1 and 𝑋 = 𝑆, and using the normalisation axiom (2.2.2.iv) forMH and 𝐴, we deduce
the commutativity of the triangle in (6.3.11.a).
Applying (6.3.10) and (6.2.2), and in view of the commutative diagram (6.3.6.c), the commuta-

tivity of the square in (6.3.11.a) boils down to the commutativity in SH(𝑆) of the following square
(using the identification (6.3.7)), for each 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0},

(6.3.11.d)

The composites in the square (6.3.11.d) may be viewed as elements of

𝐴8𝑛,4𝑛(Th(𝑛,nt) ∧ Th(𝑛,nt)) = 𝐴0,0(𝑃; 𝑝∗1𝑛 ⊕ 𝑝
∗
1𝑛 ⊕ 𝑝

∗
2𝑛 ⊕ 𝑝

∗
2𝑛),
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where 𝑝1, 𝑝2 ∶ 𝑃 = Gr(𝑛, 𝑛𝑡) ×𝑆 Gr(𝑛, 𝑛𝑡) → Gr(𝑛, 𝑛𝑡) are the projections. Then, in (6.3.11.d), the
top horizontal map followed by the right vertical one is (see (6.3.3.a))

(sw∗
𝑝∗
1
𝑛,𝑝

∗
2
𝑛
)−1◦𝜇∗𝑛,𝑛,𝑡(𝔬

𝐴
2𝑛
)
(6.3.1)
= (sw∗

𝑝∗
1
𝑛,𝑝

∗
2
𝑛
)−1(𝔬𝐴

𝑝∗
1
𝑛⊕𝑝

∗
2
𝑛
)
(2.2.2.v)
= 𝑝∗1𝔬

𝐴
𝑛
∪ 𝑝∗2𝔬

𝐴
𝑛
,

which coincides with, writing 𝑌 = Th(𝑛, 𝑛𝑡) and using the notation of (1.12),

𝑌 ∧ 𝑌
Δ𝑃
AA→ 𝑌 ∧ 𝑌 ∧ 𝑌 ∧ 𝑌

𝑝1∧𝑝2
AAAAAA→ 𝑌 ∧ 𝑌

𝔬𝐴
𝑛
∧𝔬𝐴

𝑛
AAAAAAAA→ Σ4𝑛,2𝑛𝐴 ∧ Σ4𝑛,2𝑛𝐴

Σ8𝑛,4𝑛𝜇𝐴
AAAAAAAA→ Σ8𝑛,4𝑛𝐴.

Since (𝑝1 ∧ 𝑝2)◦Δ𝑃 = id𝑌∧𝑌 , the composite just above coincides with the left vertical map fol-
lowed by the lower horizontal map in the square (6.3.11.d). We have proved that the diagrams
(6.3.11.a) commute, so that 𝜑 is a morphism of ring spectra.
It remains to verify that the above construction is the inverse of the one given in (6.3.9). This fol-

lows from (6.3.11.c), and from the fact that amorphism𝜓∶ MH → 𝐴 in SH(𝑆) is determined by the

composites Th(𝑛,nt)
𝜆𝑛,𝑡
AAA→ MH𝑛

𝜌𝑛
AA→ MH

𝜓
A→ 𝐴, for 𝑛 ∈ ℕ and 𝑡 ∈ ℕ ⧵ {0}, which is a consequence

of (6.2.2) and (6.3.10). □
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