In this thesis we present a strategy to study QCD non-perturbatively on the lattice at very high temperatures. This strategy combines step-scaling techniques with a non-perturbative definition in a finite volume of the strong coupling constant to renormalize the theory. As a first application we compute the hadronic screening spectrum in presence of three massless quarks at 12 values of the temperatures, ranging from $T\sim 1$ GeV up to $\sim 160$ GeV. Monte Carlo simulations have been carried out on lattices with large spatial extensions in order to keep finite volume effects under control and, for each temperature, three or four values of the lattice spacings have been simulated so as to be able to perform the continuum limit extrapolation with confidence with a few permille accuracy. Chiral symmetry restoration has been observed both in the mesonic and in the baryonic sector. In the first case its manifestation results in the degeneracy of the vector and the axial vector channels and of the pseudoscalar and the scalar ones. In contrast, in the baryonic sector, chiral symmetry restoration manifests itself through the degeneracy between the positive and the negative parity partners. Those results are found to be in agreement with Ward-Takahashi identities obtained in presence of chiral symmetry. The precision of our results allowed us to scrutinize in detail the temperature dependence induced by interactions. On one hand, in the mesonic sector the bulk of the masses is given by the tree-level value $2\pi T$ with a few percent positive deviation. The mass splitting between the vector and the pseudoscalar masses turns out to be $O(g^4)$ in the entire range of temperatures explored and it is clearly visible up to the highest temperatures, a fact which cannot be explained by the 1-loop order perturbative result. On the other hand, the exploration of the baryonic sector has been feasible thanks to the fact that at sufficiently high temperature no depletion of the signal-to-noise ratio occurs. The corresponding masses show at most a $8\%$ positive deviation with respect to the free theory value $3\pi T$. Their behaviour, however, cannot be explained by the 1-loop order correction, since other contributions are needed in order to explain the non-trivial dynamics of these masses both at high and low temperatures.
In questa tesi presentiamo una strategia per studiare la QCD in modo non perturbativo su reticolo a temperature molto elevate. Questa strategia combina tecniche di step-scaling con una definizione non perturbativa in un volume finito della costante di accoppiamento forte per rinormalizzare la teoria. Come prima applicazione, calcoliamo lo spettro di screening hadronico in presenza di tre quark privi di massa a 12 valori di temperatura, tra $T\sim 1$ GeV a circa $\sim 160$ GeV. Le simulazioni Monte Carlo sono state fatte su reticoli con grandi estensioni spaziali al fine di mantenere sotto controllo gli effetti del volume finito e, per ciascuna temperatura, sono stati simulati tre o quattro valori di passi reticolari in modo da poter eseguire l'estrapolazione al limite del continuo con una precisione del permille. È stata osservata la restaurazione della simmetria chirale sia nel settore mesonico che in quello barionico. Nel primo caso, la sua manifestazione si traduce nella degenerazione dei canali vettoriali e assiali e dei canali pseudoscalari e scalari. Al contrario, nel settore barionico, la restaurazione della simmetria chirale si manifesta attraverso la degenerazione tra i partner di parità positiva e negativa. Questi risultati sono stati trovati in accordo con alcune identità di Ward-Takahashi ottenute in presenza di simmetria chirale. La precisione dei nostri risultati ci ha permesso di esaminare in dettaglio la dipendenza dalla temperatura indotta dalle interazioni. Da un lato, nel settore mesonico, il valore delle masse è dominato dal valore al tree-level $2\pi T$ con una leggera deviazione positiva del qualche percento. Lo splitting di massa tra le masse vettoriale e pseudoscalare si rivela essere $O(g^4)$ in tutto il range di temperature esplorato ed è chiaramente visibile fino alle temperature più elevate, fatto che non può essere spiegato dal risultato perturbativo a 1-loop. D'altro canto, lo studio del settore barionico è stata possibile grazie al fatto che a temperature sufficientemente alte non si verifica alcuna diminuzione del rapporto segnale-rumore. Le relative masse mostrano al massimo una deviazione positiva dell'8% rispetto al valore teorico del caso libero $3\pi T$. Tuttavia, il loro comportamento non può essere spiegato dalla correzione a 1-loop, poiché sono necessari ulteriori contributi per spiegare la dinamica non banale di queste masse sia a temperature elevate che basse.
(2024). Non-perturbative thermal QCD at all temperatures: the case of hadronic screening masses. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2024).
Non-perturbative thermal QCD at all temperatures: the case of hadronic screening masses
LAUDICINA, DAVIDE
2024
Abstract
In this thesis we present a strategy to study QCD non-perturbatively on the lattice at very high temperatures. This strategy combines step-scaling techniques with a non-perturbative definition in a finite volume of the strong coupling constant to renormalize the theory. As a first application we compute the hadronic screening spectrum in presence of three massless quarks at 12 values of the temperatures, ranging from $T\sim 1$ GeV up to $\sim 160$ GeV. Monte Carlo simulations have been carried out on lattices with large spatial extensions in order to keep finite volume effects under control and, for each temperature, three or four values of the lattice spacings have been simulated so as to be able to perform the continuum limit extrapolation with confidence with a few permille accuracy. Chiral symmetry restoration has been observed both in the mesonic and in the baryonic sector. In the first case its manifestation results in the degeneracy of the vector and the axial vector channels and of the pseudoscalar and the scalar ones. In contrast, in the baryonic sector, chiral symmetry restoration manifests itself through the degeneracy between the positive and the negative parity partners. Those results are found to be in agreement with Ward-Takahashi identities obtained in presence of chiral symmetry. The precision of our results allowed us to scrutinize in detail the temperature dependence induced by interactions. On one hand, in the mesonic sector the bulk of the masses is given by the tree-level value $2\pi T$ with a few percent positive deviation. The mass splitting between the vector and the pseudoscalar masses turns out to be $O(g^4)$ in the entire range of temperatures explored and it is clearly visible up to the highest temperatures, a fact which cannot be explained by the 1-loop order perturbative result. On the other hand, the exploration of the baryonic sector has been feasible thanks to the fact that at sufficiently high temperature no depletion of the signal-to-noise ratio occurs. The corresponding masses show at most a $8\%$ positive deviation with respect to the free theory value $3\pi T$. Their behaviour, however, cannot be explained by the 1-loop order correction, since other contributions are needed in order to explain the non-trivial dynamics of these masses both at high and low temperatures.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_777799.pdf
accesso aperto
Descrizione: Non-perturbative thermal QCD at all temperatures: the case of hadronic screening masses
Tipologia di allegato:
Doctoral thesis
Dimensione
4.28 MB
Formato
Adobe PDF
|
4.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.