Given the Frölicher-Nijenhuis bicomplex ( d , d L ) associated with a ( 1 , 1 ) -tensor field L with vanishing Nijenhuis torsion, we define a multi-parameter family of bi-flat structures ( ∇ , e , ∘ , ∇ ∗ , ∗ , E ) . This result is obtained by combining the construction of integrable hierarchies of hydrodynamic type starting from Frölicher-Nijenhuis bicomplexes with the construction of flat F-manifold structures from integrable systems of hydrodynamic type. By construction L is the operator of multiplication by the Euler vector field E and the number of parameters coincides with the number of Jordan blocks appearing in its Jordan normal form. We call these structures Lauricella bi-flat structures since in the n-dimensional semisimple case ( n − 1 ) flat coordinates of ∇ are Lauricella functions. The ( 1 , 1 ) -tensor fields defining the corresponding integrable hierarchies have a similar block diagonal structure.

Lorenzoni, P., Perletti, S. (2023). Integrable hierarchies, Frölicher-Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds. NONLINEARITY, 36(12), 6925-6990 [10.1088/1361-6544/ad05dc].

Integrable hierarchies, Frölicher-Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds

Lorenzoni, P
;
Perletti, S
2023

Abstract

Given the Frölicher-Nijenhuis bicomplex ( d , d L ) associated with a ( 1 , 1 ) -tensor field L with vanishing Nijenhuis torsion, we define a multi-parameter family of bi-flat structures ( ∇ , e , ∘ , ∇ ∗ , ∗ , E ) . This result is obtained by combining the construction of integrable hierarchies of hydrodynamic type starting from Frölicher-Nijenhuis bicomplexes with the construction of flat F-manifold structures from integrable systems of hydrodynamic type. By construction L is the operator of multiplication by the Euler vector field E and the number of parameters coincides with the number of Jordan blocks appearing in its Jordan normal form. We call these structures Lauricella bi-flat structures since in the n-dimensional semisimple case ( n − 1 ) flat coordinates of ∇ are Lauricella functions. The ( 1 , 1 ) -tensor fields defining the corresponding integrable hierarchies have a similar block diagonal structure.
Articolo in rivista - Articolo scientifico
37K10; 37K25; 53D45; Euler-Poisson-Darboux system; flat F-manifolds; integrable systems; Jordan blocks; Lauricella functions;
English
2023
36
12
6925
6990
open
Lorenzoni, P., Perletti, S. (2023). Integrable hierarchies, Frölicher-Nijenhuis bicomplexes and Lauricella bi-flat F-manifolds. NONLINEARITY, 36(12), 6925-6990 [10.1088/1361-6544/ad05dc].
File in questo prodotto:
File Dimensione Formato  
Lorenzoni-2023-Nonlinearity-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 836.58 kB
Formato Adobe PDF
836.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/453441
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact