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Abstract

Given the Frolicher-Nijenhuis bicomplex (d, dy) associated with a (1, 1)-tensor
field L with vanishing Nijenhuis torsion, we define a multi-parameter family
of bi-flat structures (V,e,o,V* x E). This result is obtained by combining
the construction of integrable hierarchies of hydrodynamic type starting from
Frolicher-Nijenhuis bicomplexes with the construction of flat F-manifold struc-
tures from integrable systems of hydrodynamic type. By construction L is the
operator of multiplication by the Euler vector field E and the number of para-
meters coincides with the number of Jordan blocks appearing in its Jordan
normal form. We call these structures Lauricella bi-flat structures since in the
n-dimensional semisimple case (n— 1) flat coordinates of V are Lauricella
functions. The (1, 1)-tensor fields defining the corresponding integrable hier-
archies have a similar block diagonal structure.
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1. Introduction

Given a tensor field L of type (1, 1) on a manifold M with vanishing Nijenhuis torsion it is pos-
sible to define a bi-differential complex (d,d;,2(M)) called the Frolicher—Nijenhuis bicom-
plex on the Grasmann algebra (M) of differential forms on M (see [10]). Such complex plays
an important role in the theory of integrable systems, in both finite [25] and infinite dimensional
case [19]. More in general, in recent years there has been a growing interest in applications
of Nijenhuis geometry to integrable systems of hydrodynamic type (see [7] and references
therein).

The present paper is devoted to the study of the relations between the Frolicher—Nijenhuis
bicomplex and the theory of bi-flat F-manifolds. In particular, using these relations we con-
struct a class of regular bi-flat F-manifolds for any choice of the Jordan normal form of the
operator of multiplication by the Euler vector field.

Flat F-manifolds are Dubrovin—Frobenius manifolds ‘without metric’: all the axioms
involving explicitly the invariant metric (and not just the associated Levi-Civita connection)
are dropped. Bi-flat F-manifolds are manifolds equipped with two different flat structures sat-
isfying suitable compatibility conditions. They can be equivalently defined as homogeneous
flat F-manifolds, i.e. flat F-manifolds equipped with a linear Euler vector field. Many results
in the theory of Dubrovin-Frobenius manifolds, ranging from relations with reflection groups
and Painlevé transcendents to relations with enumerative geometry and integrable systems,
can be generalized to (bi-)flat F-manifolds.

For the purposes of the present paper it will be crucial the relation between flat F-manifolds
and dispersionless integrable systems: given a flat F-manifold, it is possible to define an
integrable hierarchy of quasilinear systems of first order evolutionary PDEs called the prin-
cipal hierarchy [22]. On the other hand it has been proved in [19] that also starting from the
Frolicher—Nijenhuis bicomplex it is possible to construct an integrable hierachy of quasilinear
systems of PDEs

4, = (Vo (0))j18].

The tensor fields V,, which define this hierarchy are polynomials in L
Ve=L"+apl" ' +aiL" 4 +a,1

and the coefficients of these polynomials are obtained recursively from @y by means of
a generalized Lenard—Magri chain. Moreover it has been proved in [21] that, in the case
L =diag(u',...,u") and ag = >, £4u*, the above hierarchy can be identified with the principal
hierarchy of a special kind of bi-flat F-manifolds related to the theory of Lauricella functions
[17] and Lauricella connections [18].
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Given n real numbers in the interval (0,1), (g1,...,&,) :=¢, the Lauricella function of
weight £ at the point u := (u',...,u") € C"\ H = Ujgicj<a{u € C"lu’ = W'} is defined by

j/unu::j/”(ul——C)El“.(u"——C)E"dC.

Here +, is an oriented piecewise differentiable arc such that the end points of +, lie in
{ul ,-..,u"} (but such that 7, does not meet this set elsewhere) and a determination of the
multivalued differential 7, is fixed. Let d; be the oriented piecewise differentiable arc con-
necting #*~! with u* and denote by L¢ the (n— 1)-dimensional vector space generated by
f 5, s k=2,...,n. Any f € L;, satisfies the following conditions (see [18] for details):

(1) e(f) =0, wheree =3/ _, %‘
(2) f is homogeneous of degree 1 — zl’_’zl g

(3) f satisfies the system of differential equations

(uiiuj) >’f o ﬁ

- - =&j - — &
oudw 7 ou ow'’

1<i<j<n (1.1)

The Euler—Poisson—Darboux system (1.1) can be rewritten in the form
dd;f = dag N\ df. (1.2)

By definition, the flat coordinates of the connection V of the associated bi-flat F-manifold
are the solutions of the Euler-Poisson-Darboux system (1.1) satisfying the condition (1). The
homegeneity condition (2) selects n — 1 flat coordinates that are Lauricella functions, the
remaining flat coordinate being the function ay.

The aim of this paper is to extend the construction of [21] in the non-semisimple regular
case that is much less studied in the literature. The extension is based on two main facts:

(1) The construction of integrable hierarchies of hydrodynamic type starting from a (1,1)-
tensor field L with vanishing Nijenhuis torsion does not require that L is diagonalizable.

(2) In the theory of bi-flat F-manifolds there is a natural tensor field with vanishing Nijenhuis
torsion: it is the operator of multiplication by the Euler vector field. Moreover in the regular
case there are special coordinates found by David and Hertling in [9] where the unit vector
field, the Euler vector field and the product have a canonical form.

The above facts suggest to proceed in the following way:

e Following [19] for each David-Hertling canonical form of L and for a suitable choice of the
function ap we can construct integrable hierarchies of hydrodynamic type. Assuming that
ap is a weighted sum of the traces of the blocks appearing in the David—Hertling canonical
form of Eo, the freedom reduces to a choice of r parameters (the weights) where r is the
number of the blocks. This choice reduces to the usual one in the semisimple case.

e Then, following [23] we can impose that the flows of this hierarchy are symmetries of the
principal hierarchy associated with a bi-flat F-manifold.

The main result of the paper is that, for any choice of Jordan block structure of the operator
of multiplication by the Euler vector field and for any choice of the weights corresponding to
each Jordan block, there is a unique associated bi-flat structure. Following [6] we call bi-flat
structures obtained in this way Lauricella bi-flat structures.
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The paper is organized as follows: in section 2 we recall the main facts about the the-
ory of integrable systems of hydrodynamic type, in section 3 we recall the definition of (bi)-
flat F-manifolds and the associated principal hierarchy, in section 4 we recall the construc-
tion of integrable systems of hydrodynamic type by means of Frolicher—Nijenhuis bicomplex
and in section 5 we recall the definition of Lauricella bi-flat F-manifolds in the semisimple
case. Section 6 is devoted to describe non-semisimple regular Lauricella bi-flat F-manifolds in
dimensions 2,3,4,5. This section plays an important role since it suggests a strategy to prove
the main result of the paper, first in the case of a single Jordan block of arbitrary size (section 7)
and finally in the general regular case (section 8). Even if the results of section 7 follow from
the general theorem proved in section 8, we have decided to keep it since it contains the essen-
tial ideas of the general proof without the extra non-trivial difficulties due to the high number
of subcases that one has to consider in the case of an arbitrary number of Jordan blocks. In
section 9 we study the dual structure of a Lauricella bi-flat F-manifold, in section 10 we show
that the generalized Lenard-Magri chains associated with the operator of multiplication by the
Euler vector field define symmetries of the principal hierarchy and in the last section we draw
some conclusions.

2. Integrable systems of hydrodynamic type

Integrable diagonal systems of hydrodynamic type
r=v(rr i=1,...n. 2.1)

X

have been studied by Tsarev in [30]. Assuming v’ # 1/ Tsarev proved that all the information
about the integrability of such systems is contained in the n(n — 1) functions

i o' L
The system is integrable iff these functions satisfy the conditions
OV o'
aj(kkv')_ak< i ) Vi#j# ki (2.3)
Ve — ! W —

Systems satisfying the condition (2.3) are called semi-Hamiltonian systems or rich systems.
They possess infinitely many symmetries (depending on n functions of a single variable)

r=wi(r)r.  i=1,..,n (2.4)
obtained solving the linear system

(“)jwi = Fij (w7 — wi) (2.5)
and infinitely many densities of conservation laws obtained solving the linear system

Oi0jh —Thoh—Th0h =0, i #j. (2.6)

Tsarev’integrability condition is the compatibility of the systems (2.5) and (2.6).
Let us consider now a general system of hydrodynamic type

1= Vi(u)d, i=1,...,n. 2.7

X

Assuming that at each point the (1, 1)-tensor field V has pairwise distict eigenvalues, the diag-
onalizability of the system is equivalent to the vanishing of the Haantjes tensor of V [11] and
the semi-Hamiltonian condition (2.3) is equivalent to the vanishing of a tensor field, called the
semi-Hamiltonian tensor [28]. The diagonalizing coordinates (r',...,7") are called Riemann
invariants and the diagonal entries of the (1, 1)-tensor field V in such coordinates are called
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characteristic velocities of the system. Given a semi-Hamiltonian system and n functional

independent solutions (h!,...,h") of the system (2.6) we have
n = 0K, i=1,...n (2.8)
for some functions K'(r!,...,7"),i = 1,...,n. In other words the system can be written as a

system of conservation laws. It turns out that also the converse statement is true. A system of
conservation laws admitting Riemann invariants is semi-Hamiltonian. In this way, following
Sevennec, one can equivalently define semi-Hamiltonian systems as systems of hydrodynamic
type that can be written both in the diagonal and in the conservative forms (2.1) and (2.8) (we
refer for details to [29]).

The main equations of Tsarev’s theory can be also formulated in terms of a family of tor-
sionless connections.

Definition 2.1. Given a (1,1)-tensor field V, a torsionless connection V satisfying
dyV=0 (2.9)
will be called a Tsarev’s connection associated with V.

Here dv V is the exterior covariant derivative of the (1,1)-tensor field V:

Tsarev’s connections are not uniquely defined: in the Riemann invariants (7', ...,7") where
V = diag(v!,...,v") the above condition is equivalent to F]’:k = 0 for pairwise distinct indices
and to (2.2). Moreover I'; =TI due to the vanishing of the torsion. All the remaining
Christoffel symbols I'}; and I';; are free. To prove this fact we have to spell out the condition

(dv V);k =9V + anjVZl - 8kV]i‘ - Fink‘/]m =0
in the Riemann invariants. If all indices are distinct we obtain
(dy V) =Ti; (F =) =0

and as a consequence, taking into account that the characteristic velocities are pairwise distinct,
we obtain I'y; = 0 for i 7 j # k # i. If i=k (or i =) we get

(dv V);i =o' +T5 (v —v) =0.

Theorem 2.2. A diagonalizable system of hydrodynamic type with pairwise distinct charac-
teristic velocities is semi-Hamiltonian iff the Tsarev’s connections associated with V satisfy
the condition dva = 0 for any (1, 1)-tensor field W commuting with V.

Proof. By straightforward computation we get

1
[dZV WL‘,‘]( = Rzl‘jn WZ + le'kn Wzn + Rllcin VV?&

where R is the Riemann tensor of V:
Ry =0y — ol + TjI'y — DT

Js&til T st gl
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In the Riemann invariants the set of matrices W are diagonal and the condition
d% W = 0 reads

l p—

[d5 W] = Rigw" + Rigw' + Rigw! =0

forany (w!,...,w"). Due to arbitrariness of W this is equivalent to Rfj = 0 for pairwise distinct
indices i,j, k. If at least two of the three indices i,j,k are equal the condition is automatically
satisfied since R]Z.ik = —Rfjk. Thus assuming the indices i,j,k pairwise distinct we need to con-
sider the case [ =i (the cases [ = j and [ = k are equivalent). Due to arbitrariness of W we obtain

the conditions
i i
ki = 0, ijk — 0

The second condition, also known as Darboux-Tsarev system, reads

OTf +ThTh — TR, —ThTL =0, Vij#k#i (2.10)
while the first condition reads

Oy =0y,  ViZj#k#i (2.11)
Clearly (2.11) follows from (2.10). Remarkably, if the functions Fj] are given by (2.2) both
conditions (2.3) and (2.10) are equivalent to (2.11) due to the identity [30]

i k k k
k k Tk ki _ ki Y TV Ov v

O

The Sevennec’s result can be formulated as follows.

Theorem 2.3. Let V be a (1,1)-tensor field with distinct eigenvalues and with vanishing
Haantjies tensor, then V defines a semi-Hamiltonian system iff among the associated Tsarev’s
connections there is a flat connection.

Proof. Assume that V is a flat Tsarev’s connection. In flat coordinates the condition dy'V =0
reads 0, Vi = 0;V} which implies that in flat coordinates (locally) we have Vi = §;X' and thus

V’Juﬂc = 0,X'. Since Riemann invariants exist by hypothesis the Sevennec’s result implies that
the system defined by V is semi-Hamiltonian.

Assume now that V defines a semihamiltonian system then due to Sevennec’s result there
exist coordinates (u',...,u") where Vit = 9,X'. This implies &, Vi = 9;V;. Define V in the
coordinates (u',...,u") as Ty = 0. Then the condition 9V} = 9V} can be written as dy V = 0.
In other words V is a flat Tsarev’s connection. O

The symmetries
wh=Wiw)u, i=1,...n (2.13)

of the system (2.7) are defined by (1, 1)-tensor fields W(u) commuting with V and satisfying
the condition

dvyW=0. (2.14)
The full hierarchy is thus defined by the solutions of the system (2.14).
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3. F-manifolds and integrable hierarchies

3.1 Flat and bi-flat F-manifolds
F-manifolds have been introduced by Hertling and Manin in [12].

Definition 3.1. An F-manifold is a triple (M, o, e), where M is a manifold, o is a commutative
associative bilinear product on the module of (local) vector fields, satisfying the following
identity:

[XoY,WoZ]—[XoY,Z|loW—[XoY,WoZ—Xo[Y,ZoW|+Xo[Y,Z]o W
+Xo[Y,W]oZ—Yo[X,ZoW]+Yo[X,Z]oW+ Yo [X,W]oZ=0, 3.1

for all local vector fields X, Y, W,Z, where [X,Y] is the Lie bracket, and e is a distinguished
vector field on M such that e o X = X for all local vector fields X.

In this paper we will consider F-manifolds equipped with some additional structures.

Definition 3.2 ([26]). A flat F-manifold (M, 0,V e) is an F-manifold M equipped with a con-
nection V related to the product o and to the unit vector field e by the following axioms:

e Axiom 1 (the connection and the product). The one parameter family of connections
V—Xo

is flat and torsionless for any .
e Axiom 2 (the connection and the vector field). The vector field e is covariantly constant:
Ve =0.

Bi-flat F-manifolds are manifolds equipped with two ‘compatible’ flat structures. They are
defined in the following way.

Definition 3.3 ([5]). A bi-flat F-manifold (M,V,V*,o0,% e E) is a manifold M equipped with
a pair of connections V and V*, a pair of products o and * on the tangent spaces 7,,M and a
pair of vector fields e and E s.t.:

e (V,0,e) defines a flat structure on M.
e (V* x,F) defines a flat structure on M.
e The two structures are related by the following conditions

XxY:= (Eo)_lXoY, [e,E] = e, Liego = o, (dy — dy~) (Xo) =0,

where X and Y are arbitrary vector fields and at a generic point the operator Eo is assumed
to be invertible.

Notice that not all the axioms are independent. For instance the compatibility between the
dual connection and the dual product follows from the other axioms [6]. Notice the dual con-
nection is defined only at the points where the operator Eo is invertible. At these points the
condition

(dy —dy-)(Xo) =0 VX (3.2)
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is equivalent to the condition

(dv 7dv*)(x*) =0 vX. (33)
This implies

I =T} — ¢/ V.E" (3.4)
Moreover the flatness of the dual connection follows from the linearity of the Euler vector field

(see theorem 4.4 in [3] for the semisimple case and lemmas 4.2 and 4.3 in [15] for the general
case).

Remark 3.4. The manifolds in the above definitions are real or complex manifolds. In the first
case all the geometric data are supposed to be smooth. In the latter case TM is intended as the
holomorphic tangent bundle and all the geometric data are supposed to be holomorphic.

Dubrovin-Frobenius manifolds are bi-flat F-manifolds equipped with a metric 7 compatible
with the connection V and with the product o:

! /
va]ij = 07 NitCrj = MkiCjj-

Many results in the theory of Dubrovin—Frobenius manifolds admit a natural generalization
in this more general setting. We mention: the relation with reflection groups [3, 14, 15], the
relation with (generalization of) cohomological field theories and (generalization of) Givental
group action [ 1], the relation with dispersionless and dispersive integrable hierarchies [2, 8, 22]
and the relation with Painlevé transcendents [5, 6, 13, 14, 21]. We point out that this relation
survives also in the regular three-dimensional non-semisimple cases leading to a correspond-
ence with solutions of the full family of Painlevé IV and V depending on the number of Jordan
blocks appearing in the Jordan form of the operator of multiplication by the Euler vector field,
while in the case of Dubrovin-Frobenius manifolds the same cases are parametrized by ele-
mentary functions [24].

3.2. The principal hierarchy

Given a (bi)-flat F-manifold one can define an integrable hierarchy starting from solutions of
the equation (2.14) (in this case V is given). Looking for solutions of the form W = Xo we
obtain the condition

(VzX)oY=(VyX)oZ (3.5)
for all pairs (Y, Z) of vector fields, that is, in local coordinates,

o ViX" = ¢, V,X" . (3.6)
The above condition can be also written

dy (Xo) = 0. (3.7)

Let us define now the vector fields X, ; as follows: the vector fields X(, _;) are covariantly
constant with respect to V, while the others are obtained through the recurrence relation:

vX(p,l+1) :X(p,l) O. (38)
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It is easy to check (see [22] for details) that they are solutions of the system (3.5). As a con-
sequence the corresponding flows

i _ i vk i .
Wiy = Cij(p,z) X9 i=1,..,n

commute and define an integrable hierarchy called the principal hierarchy.

4. Frélicher-Nijenhuis bicomplex and integrable systems
Let L be a tensor field of type (1, 1) with vanishing Nijenhuis torsion. This means that for any
pair of vector fields X and Y we have

[LX,LY)— L [X,LY] — L [LX,Y]+ L* [X,Y] = 0. 4.1)

Following [19] we recall now a construction of integrable hierarchies starting from the
Frolicher—Nijenhuis bicomplex (d,dy,2(M)) . The differential d is the usual de Rham dif-
ferential while the differential d; is defined as

(drw) (Xos .-, Xi) = zk:(—l)i (LX) (w (XOXXk))
i=0

+ Y ) ([Xl-J(j]L,Xo,...,X,-, . X,Xk> 7

0<i <j<k

where w € Q%(M) and
[Xiaxf}L = [LXH)(]] + [XlaL)(]] 7L[Xla)(]] .

For L=1 the vector field [X;,X;|; reduces to the commutator [X;,X;] and the differential
dL to d.

The fact that 2 = 0 is equivalent to the vanishing of the Nijenhuis torsion, The differentials
d and d;, anticommute and thus the pair (d,d;,) defines a bidifferential complex. In [19] (see
also [20]) it has been proved that given any solution of the equation

ddLao =0 (42)

and the corresponding sequence of functions a;,ay,as, ... defined recursively by
dak+1 = dLak — akdao

the tensor fields of type (1,1) defined by
Vip1 = Vil — ayd,
starting from the identity /, that is
Vo=1
Vi=L—apl
Vo =L* —agL— ayl,

define an integrable hierarchy of hydrodynamic type. Remarkably this construction does not
require that L is diagonalizable.
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4.1. Examples

4.1.1. Generalized e-system.  The system of hydrodynamic type

i i n e I
u, u' =y ek 9, 0 u,
uy 0 =Y et 0 u?
= . _ ) . . (4.3)
n k
uf 0 e 0 w'—=3% e |u}

has been obtained in [27] as finite component reduction of an infinite hydrodynamic chain. It
can be written as w,, = (L — apl)u, with ag =, _, gxu* and

w0 ... 0
0 ¥ ... 0

L=,. . - 4.4
o ... 0 u

For specific values of the constants ¢; it provides well-known examples of integrable systems
of hydrodynamic type. The above hierarchy is related to the principal hierarchy associated
with Lauricella bi-flat F-manifolds [21, 23].

4.1.2. Kodama-Konopelchenko system.  The system of hydrodynamic type [16]

u}l ' 10 ... 0 ul
uy, 0 ' 1 ... 0 u?
=0 o ] 4.5)
! 0 0 u' 1| [ur!
up, 0 0 0 o uly
can be written as u;, = (L — apl)u, with ag = —u' and
0 1 0 0
0 0 1 0
L: '..
0 0O 0 1
0 0O 0 O

Clearly L has vanishing Nijenhuis torsion and dd;ay = 0. Applying the first step of the recurs-
ive procedure we have

8](11 = —(108](10 = —ul
82611 = Blao — a082a0 =-1
63(11 =0

élqal =0.
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This implies (up to an inessential constant) a; = —u? — % Therefore the first commuting
flow u, = (L? — apL — a;I)u, is given by
- e -
. MZ + ( 2) ul 1 0 |
utz (M1)2 ux
u,22 0 u + 5 u' 0 u?
= : : : (4.6)
! 0 0 P+ ()’ ul !
I/t;lz 2 (u1)2 M;l
L 0 ce 0 0 M2 + 2 ]

The higher flows can be obtained in a similar way. The system (4.5) is related to the theory of
confluent Lauricella functions (see [16] for details).

5. From integrable hierarchies to Lauricella bi-flat F-manifolds

Let (o,e,E) be an F-manifold with Euler vector field. Using Hertling—Manin condition and
the properties of the Euler vector field it is easy to check that the operator Eo has vanishing
Nijenhuis torsion (see for instance [4]). Among Tsarev connections of the associated integrable
system we consider those satisfying the additional conditions (in [23] they are called natural
connections):
Vie' =0, Vi = Vi, Vij.kl=1,...,n.

In the next two subsections we will show that for special choices of the function a, the natural
connections defined in this way are flat. Moreover it is possible to define a second compatible
flat structure.

5.1 Semisimple Lauricella bi-flat structure

Let us recall the following theorem of [21] (see also [20, 23] for the special case €] = e, =

c = Ep).
Theorem 5.1. For any choice of €1, €5, ... €, there exists a unique semisimple bi-flat structure
(V,V*,0,%,e,E) with canonical coordinates {u',...,u"} such that L = Eo and

dv (L—aol) :0, (51)

1 . . . . . .
where ag =Y, _, exu¥. Moreover, in canonical coordinates this structure is given by

e = znzak, E= Zn:ukak,
k=1 k=1

S o
=8 =0, Vidk
120, TE=0, VidjtkAi

Uj= -1y Tj=-2U§  i#]
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i_ & wi_ & i
U7 i — i’ U oy’ J
!
. . . u .. 1
I [ *i *1
Fii__E Lo, Fii__E =L ==
- “ U u
I#i I#i

5.2. Non-semisimple Lauricella bi-flat F-manifolds

In this paper we consider a generalization of Lauricella bi-flat structures to the non-semisimple
regular case. We will use this important result of [9] about the existence of non-semisimple
canonical coordinates.

Definition 5.2 ([9]). An F-manifold with Euler vector field (M, o,¢,E) is called regular if for
each p € M the endomorphism L, := E,o : T,M — T,M has exactly one Jordan block for each
distinct eigenvalue.

Theorem 5.3 ([9]). Let (M, 0,e,E) be a regular F-manifold of dimension greater or equal to 2
with an Euler vector field E. Furthermore assume that locally around a point p € M, the Jordan

canonical form of the operator L has n Jordan blocks my, . . .,m, with distinct eigenvalues. Then
there exists locally around p a distinguished system of coordinates {u', ..., u™ " +"} such
that
0 0 0 0
€= gl T gumrt T ggmrmrt T G am A1 (5.2)
-y 9
p— Si
E= Z; W (5.3)
s—
= Ot )1s Bhl=mi e m L my Ay A+ my (5.4)
cﬁj =0, otherwise. (5.5
We start from the integrable hierarchy associated with the tensor field L = Eo and with
ag = Z?:l &;Tr(L;). By definition L contains n blocks Li,...,L, of dimension my,...,m,
respectively. Each block has the form
uks! 0 ... 0
Wk okt 0
L= 1| . ) ) ) (5.6)
uk:’”k uk;2 u’;’l
where uf! = ™+ +m—1+! The case m) = ... = m, = 1 corresponds to the usual generalized
e-system. In the next section we will prove that for any choice of €1,¢,,...,6, and my,...,m,

and up to n =15 there exists a unique bi-flat F-structure such that dv (L — aol) = 0. In section 7
we will consider the case n = 1 and m arbitrary and in the section 8 we will show that for any
choice of €1, ¢5,...,¢, there exists a unique regular bi-flat structure such that L = Eo and

dv (L — aol) =0. (57)

Remark 5.4. By straightforward computation one gets

(dv (L — a01> )jlk 8,-a0 = L}Vi (dao)k — L;.{v,' (dao)j .
Therefore the condition (5.7) implies

LV (dag), — Ly Vi (dag); = 0.
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6. Bi-flat Lauricella structures in dimension 2,3,4,5

In this section we provide a complete classification of non-semisimple bi-flat F-manifold struc-
tures in 2,3,4 and 5 dimensions.

6.1. 2-dimensional case

6.1.1. 2 x 2 Jordan block.

1

w 0 0

L= L{z Ml}, =5 6.1)
The non-vanishing Christoffel symbol of V is I'5, = —%.

6.2. 3-dimensional case

6.2.1. 3 x 3 Jordan block.

ul! 0 0
L=|u*> u' 0], e= R, ap =3equ'. (6.2)
o ol Ou

The non-vanishing Christoffel symbols F;k (up to exchange of j with k) are

3¢ 3euP
2 _ 3 o_ I |
5 =Tyn= T2 I3 = W
6.2.2. 2 x2+1 x 1 Jordan blocks.
w0 0 o
L=|u* u' 0], e=-7+773; ap = 2eu’ + 3. (6.3)
0 0 u3 Bul ou’

The non-vanishing Christoffel symbols Fj’:k (up to exchange of j with k) are

2e €
2 1~ _ 2 _ 1 _ 1 _ 2 3
I3 = —ﬁvrm =In=-T,=-T3=-I)= 2
281 €3u2
3 _ 3 _ 13 _ 2 _ 2 _ 12 _
Fll *F33 - F]3 ul _u37Fl] F33 Fl3 (ul _u3)2'
6.3. Four-dimensional case
6.3.1. 4 x 4 Jordan block.
w0 0 0
2 1
U u 0 O
L=|p 2w ol ¢=g @=d4au. (6.4)
o o

The non-vanishing Christoffel symbols F}k (up to exchange of j with k) are

de i . dey (u2u4 — (u3)2>

451
,P =
w)? (w2)’

2 13 14 _14 _
F227F237F337F2477

34
M27P22*F23*
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6.3.2. 3 x3+1 x 1 Jordan blocks.

u! 0 0 0
w ou' 00 0 0
L=|p w2 w ol a0t ap = 3eu' + equ. (6.5)
0 0 0 ut
The non-vanishing Christoffel symbols Fj‘:k (up to exchange of j with k) are
2
3¢, equ® &4 (u?)
2, =r=-—013=r=-T3,= — :
22 23 20 44 14 (ul — u4)2 (! — u4)3
381
FTl = Ffm = _F?4 = ul —
2
Eql
F?z = _Fgél = —F%4 = F%I = Fzzm =T
(! —ut)

3 3 12 _ _pl _pl __pl o E4
y=-Thp=-Th=-T=Ty=-"Tyu=~—7,
ul —u
3
3 _3811/{ &
22 — 2 1 4°
2y —u

6.3.3. 2 x 2+ 2 x 2 Jordan blocks.

ul! 0 0 0
w? ut 00 0 0 { 3
L= 0 0 ol e—wﬁ-w, ap=2e1u +2e3u°. (6.6)

w

W3
0 0 u* u

The non-vanishing Christoffel symbols F}k (up to exchange of j with k) are

2¢; 2¢e3 2¢e3
13, = - I = A Piy=-Th=-T}=-T;= T
281
F?l :F§4 :F§3 = *P?s = *Féllzt = W
2e3u? 2eu
F%1 :P§3:_F%3:mar?1 :ngz_l—‘%:m-
6.3.4. 2x2+1x1+1 x1Jordan blocks.
' 0 0 0
2 1
u u 0 0 0 0 0 1 3 4
L= 0 0 &£ 0l e_ﬁ+W+W’ ag=2c1u +e3u” +equ”. (6.7)
0O 0 0 u

The non-vanishing Christoffel symbols F;k (up to exchange of j with k) are

281 &3 E4
2, =—"rh=rh=-rh=—2_T1l,=1=-rT},=—"—
2 201 23 BT T 24 “= e
€4 4 &3 3 3 —281
y=-Th=——"Th=——"7Th=-T} =
34 4= 3 4 WA 13 =0 _ 3
-2

4 _ €1 1 _ 2 _ ol 1 12 2 2
'y = u47F11 =11 =13+, Iy =155+ Ty,

ul —
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2 2 ezl 2 2 Eaql
]'—\33* F13* (ul— 3 271_‘44* ]'—\14* (ul—u4)27
21 €4 2e €3
3 _ 4
5= w —ud o —ut’ Vi = u —ut W —ut
6.4. 5-dimensional case
6.4.1. 5 x 5 Jordan block.
w0 0 0 0
W w0 0 0 9
L=|u® > u' 0 0], e=5 ap = 5equ’. (6.8)
o Wk oW o0 u
wout !

The non-vanishing Christoffel symbols F}k (up to exchange of j with k) are

2 713 14 14 15 S5
F22_1—‘23_1_‘33_F24_F25_1_‘34__

3 14 1S 1S
1_‘22_I‘23_F24_F33_

5€1M3

)

4 _ S
1_\22_1—‘23_

561
u?’

5¢; (

uu —

2.4

(«)?)

5
1_‘22_

(u2)*
6.4.2. 4 x 4+1 x 1 Jordan blocks.
w0 0 0 0
W ul 0 0 0
L=\ u* u 0 0],
w o o w0

[

0 0 0 0 u

e

5¢; ((u2)2u5 —2utudut + (u3)3>

0 o
T oul  oud’

)

(u?)’

ap=4e1u' +esi’. (6.9)

The non-vanishing Christoffel symbols F;k (up to exchange of j with k) are

2 3 14 _ 4 4%l

Iy =15 =0 =I5 = *4;,
s

Ne=D3.=I3.=1%.=—2_

15 25 35 5T T8

1 2 _pl 3 _pd 4 €5
Iss=Tn =Ty =Iy=Ty=Iy=-7"—=,

u! —u
42’:‘1

I}, =T}=-T}=—-=

11 55 15~ T 5

2 12 _ 13 _ 14 _ 2 3 4 4 _
1_‘ll - F55 - 1_‘12 - 1—‘13 - _F15 - _FZS - _FSS - _FSS -

F?l = ng = F?z = _F?s = _ng

461143 Es

3 _ 14 _
F22_1—‘23_

(u2)2 Tul s
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€5 (uz)3  2esu’ esu’

W =) =) (=)’

2
o 4e <u2u4 — () ) esu?

4 _ 14 _ 4 _
I111 _FSS__FIS_

(u2)’ (u' —15)°
6.4.3. 3 x 3+ 2 x 2 Jordan blocks.
k' 0 0 0 0
W w0 0 0 P 5
L= | u* u (1 0|, e= it o ap = 3eu' + 2e4u’. (6.10)
0 0 0 ut o0
0 0 0 w u*

The non-vanishing Christoffel symbols F}k (up to exchange of j with k) are

2¢e
1 _ 12 _ 713 _ 1 _ 1 _ 2 3 _ 4
Py=Tnu=Iy=-I'1=-Ty=-T=-T5;= 4 4’

u' —u

2u’e 3e
2 2 13 _ 2 3 _ 4 2 13 _ 1
M =Ty=Ih,=-Ty=-Ty= T a2 27F22—F23 =5
(u! —u*) u
3

IS :7254 3 :351u B 2e4
55 WS’ 22 (u2)2 W —

ulu3 — (M2)2 — M3M4)

3 3 3 264(
Iy =Ty=-Tyu=

3 b
(u' —u)
I T4 — I — 5. —T5. — el
n=ta="1lu="1lis=1s5= 7 47
u' —u
5 5 5 3”56]
Oy =Ty =-T = P
(u! —u*)

6.4.4. 3x3+1x1+1x1dJordan blocks.

u! 0 0 0 0
2 1
u3 uz 01 00 9 9 9 1 4 5
L= |u u u O O 5 8_?—%%-’-857 00:3511/{ +€4M +€5M. (61])
0 0 0 u* 0 o
0 0 0 0
The non-vanishing Christoffel symbols F}k (up to exchange of j with k) are
361 €4
F%,% = F%z = T2 F}4 = 1%4 = F§4 = _F4114 = ul A
1 _ 2 3 1 &5 4 4 &5
s =155 =135 = —T'55 = D Iys =I5 = P
5 _ 5t 4 a4 3a s s 3e
Tay=-Ts=r—sTui="Tu=g—2li=-Tis=7—02:
2 2
Eql EslU
I} =0, = +

(=t (=)

6941



Nonlinearity 36 (2023) 6925 P Lorenzoni and S Perletti

2 2 3
Iy =-T=-I%=

() ) () o))

2 2

U™Eq 2 2 3 U-es

1 4231—‘5577]?15771—‘25* 1 5720
(u' —u*) (u' —ud)
€4 Es

W —r W s

i, = ,
; (! —ut)’ (u! —u5)’
3 4 (M1M3 — (u2)2 — M3I/l4> 3 3 Es (M1M3 — (M2)2 — MBMS)
Iy =-Tu= (u1 _ u4)3 Iss=—Is = (u‘ _ u5)3 )
3¢ €5 3¢ c4
4 5
e u —u _u4—u5’F557u‘—u5 ut —us’
F3 - 31/!361 _ E4 _ €5
22 (u2)2 W —r W —s
6.4.5. 2x2+2x2+1 x1dJordan blocks.
' 0 0 0 O
W ut 0 0 0 o o o
L=|0 0 « 0 0|, e=a7+25+5= ao=2eu 4230 +esu. (6.12)
4 3 ou o’ Ou
0O 0 u w O
0 0 0 0

The non-vanishing Christoffel symbols F}k (up to exchange of j with k) are

Fl :1_‘2 _ 263 _ Es F3 :F4 _ 26] . Es
11 12 I/ll _ I/t3 Ml 7 MS, 33 34 ul 7 u3 Lt3 — MS’
2e3 €5
-rh=rl,=——2_ 71l =12 =—Tl =—22_
13 33 W3S 25 57 05
2 2 2
Fz _ 2u £3 U-¢es F2 _ F2 _ 2u &3
11— 1 312 1 5127 33— T H13 1 3727
(u! —u?) (u!' —w) (u' —u?)
2
M. — 12— _ "5 :_Zﬂ 4 :_% 2 :£
55 15 (ul_us)za 22 w2’ 44 ut’ 23 ul —u3’
M =13 —_r* :A MBo—74 — 3. — 55
11 13 U= T3 45 5T 55
4 4 4
F4 _ F4 . 25114 F4 N 2u €1 Uues
= 32 BT 32 3_5\2)
(u' —u?) (W' —uw?)” (=)
4
ues 5 5 2e 5 5 2¢e3
=Tt =—"2 1 =-TI)=—" _Th=-TI3%=—72_
55 35 (u3—u5)27 11 5= 1,5 % 3T 350
s 2e1 4 €3
S -
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6.4.6. 2x2+1x1+1x1+1 x1Jordan blocks.

w 0 0 0 0
w u' 0 0 0
L=|0 0 & 0 0f,
0 0 0 u 0
0 0 0 0
0 0 0 0
1 3 4 5
e=—+—+=—+—==,a0=2c1u +e3u’ +equ” +esu’. (6.13)
ou'  Ooud  out ' Ooud’
The non-vanishing Christoffel symbols F;k (up to exchange of j with k) are
Fl _Fz _ &3 _ E4 Es
1 12 w' —ud ul—ut uwl—uS’
€3 1 €4 1 1 €s 1 €4
r,=-rl= rl, = Irs=-rk = rl, =
13 BT T s BTl s u' —ut’
2 53”2 64142 €5u2
T = I SRy 1_,5\2]
(u' —u3) (u' — ut) (u' —uwd)
2 2
Fz N u-es > U &y > Uu-es
13— 20+ 14 - 27+ 15 2
(' — 1) (! —u) (! — 1)
2e; €3 €4 €s
1—\2 _ _ 1'\2 _ 1—\2 _ 1'\2 _
22 u? )+ 23 1 _ u3v 24 ul — u4’ 25 ul MS’
2 2 2
F2 - u-e3 F2 - U-eq F2 Uu-€es T F3 o 261
3= N2 M T 275 . 2T ThT T
(u' — 1) (' —ut) (u' —w) u
F3 o 261 €4 B Es
BT Bt B —us
&4 3 €5
F3 = —F3 = =" F _].—k ==
34 44 u3 47735 55 M3 —us ’
2¢e4 €3
't =-1{,= My=-Ty=——"+
11 14 1 ut )+ 33 34 W — ut )
4 261 g3 Es
Ty = 1 7T 3 4 4 57
u' —u U —u u*—u
Es 5 261
Iy =-T% = 3, =-I3 =
45 55 u4_u5ﬂ 11 15 ul —MS,
€3 5 5 &4
FS _ _FS — T _
33 35 3 __u57 44 45 ut us?
FS . 281 n &3 €4 0
STUW—wS T B - =S

Remark 6.1. Starting from the above formulas and using the definition (5.3) of the Euler vector

field, the definition of the dual product

XY= (Eo) 'XoY

and the formula (3.4) for the dual connection one can reconstruct all the data defining a bi-flat

structure.
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7. The case of a Jordan block of arbitrary size

This section is devoted to the proof of the following Theorem.

Theorem 7.1. For any choice of < there exists a unique non-semisimple regular bi-flat structure
(V,V*,0,%,e,E) with canonical coordinates {u",... u"} such that dv (E o —ayl) = 0, where
Eo has a single Jordan block of size n and ay = cu’.

Let us start with some preliminary observations. Looking at the formulas for the case of a
single Jordan block we observe that in order to pass from the n x n Jordan block with ne; =
e to the (n+ 1) x (n+ 1) Jordan block with (n+ 1)e; = ¢ there is a simple rule. The new
non-vanishing Christoffel symbols are I‘Z-H with i,j # 1 and n — i — j > —3. The Christoffel

symbol F;; !'is given by the formula
1 n—1
Dt =——= whr™ (7.1)
s=1

while the Christoffel symbols F;}“ with 7 and j different from 1 and not simultaneously
equal to 2 can be written in terms of the Christoffel symbols associated with the n x n
Jordan block:

VAR o (7.2)

i—1,j

provided that i — 1 # 1 or j — 1 # 1 (all the Christoffel symbols with i or j equal to 1 van-
ish). Notice that from the above definition it follows immediately that all the non-vanishing
Christoffel symbols can be obtained recursively starting from '3, = — 5. Indeed applying the
relation (7.2) i +j — 4 times we obtain

AR (7.3)
and more in general (the above property holds for all )
DE=T0 " ifk—i—j>-2,ij#1 (7.4)
k . . .
;=0 ifk—i—j< -2 (7.5)

71. Technical lemmas
Using the above remarks one can easily prove by induction the following lemmas.

Lemma7.2. The Christoffel symbols Fg associated with the n X n Jordan block, defined recurs-
ively as explained above starting from the 2 x 2 Jordan block satisfy the following identity:

ory, ar{;fl
ol ou-1’

Proof. It is sufficient to prove the lemma in the case i =j = 2. Indeed, if Fffi vanishes it is

[>2. (7.6)

easy to check that also Fg‘l vanishes. If Ff; does not vanish then there exists 2 < h<n—+1
satisfying i +j — k = 4 — h. Moreover 1"5- =T%, and 1—\5—1 = ng_l. For h =2 we have to prove
that

ori,  ori,
oul — Oul-V’

1>2. (7.7)
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The Lh.s. vanishes since I'3, depends only on «* while the r.h.s vanishes since I'}, = 0. For
h > 2 we have to prove that

orh,  ory!

oul  oul-1’
For h =3 it s true. Assume that it is true for a given 4 > 3. Then using (7.1) and the inductive
hypothesis we get

h h h—1 he
oy _ Z oy, o £ lrh—l+3 _ 1 oy’ £ lrh71+3
o~ a2 ol w22 Oul—1 w2
h—2

o, 5 s sr2 L orhy 2 1—6% 143
814’—1: ZP u TZ Oul—1 - uz;F22

[>2. (7.8)

thus
ht1 h—2
o3y _ ors, _ 5% Zrh S anz y! _(i?rh—urs
ou oul—! )2 Oul—1 22
5 =2
_ 1 h—s r+2 h—s v+2
T ) ZF
s=1

O

Lemma 7.3. The Christoffel symbols I’g associated with the n x n Jordan block, defined
recursively as explained above starting from the 2 X 2 Jordan block satisfy the following
identities:

Z o _Z k=0, i#j or i=1 or j=1 (7.9)

Z Py _Z =—e, i=j#1 (7.10)

Proof. Fori=1 or j=1 the first identity is trivially satisfied since all the summands vanish.
Thus we can assume both indices different from 1. For i =j = 2 the only term surviving in
the sum is I'5,u? and the result follows from the definition of I'3,. For j =2 and i # 2 the result
follows from the formula (7.1). Indeed, we can rewrite the identity

1 i—2
_ 24-si—s
=—— E u T
22 u2 22
s=1

as
i
s
E u 2“,*0.

s=2

Taking into account that for s > i I',, = 0 and I';; = 0 we have

Zn: u'Th, =0.
s=1
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The cases i > 2 and j > 2 can be reduced to the above cases using the identity F‘ = Fj’ } & For
instance, if i = applying (i — 2)-times this identity we reduce to the case i = ] =2.

Lemma 7.4. The connection V associated with the n x n Jordan block satisfies the condition
ViE =(1-¢)6} +eee. (7.11)
Proof. Since V,E' = 5’ + F’ku the result follows from the previous lemma. O

Lemma 7.5. The component of E~! are defined recursively by
—1\! m+l 1+ m+l s
E = ) g (.12
Proof. By definition E~! o E = e. In canonical coordinates we obtain
(E )lJrl k k 61

In the one component case we obtain (E~')!=-L. In the (n+1)-component case
we obtain

—~
o
|
~—
—_
—_—

EY T+ (BN P+t (B =0,

The first n equations coincide with the equations for the n-component case. O

Lemma 7.6. The dual connection V* is defined by

Tk =Th 4 (e — 1) (B TP e (£7) ot6!o) (7.13)
where it is understood that (E~")*==1T2 =0 ifk —i—j < —1.
Proof. From (3.4) and (7.11) it follows that

F*k F"—c*’((l—e)é,—l—aee):Fg (1—¢) *k—ac*lék

By definition

m

=g () = )

Substituting in Ffjk we get the result. O

el =it (E7")" =011 1644 (E71)

Using the above lemmas we can prove theorem 7.1. The proof can be divided in the fol-
lowing steps

(1) Flatness of V and Ve =0

(2) Compatibility of V and o.

(3) Linearity of the Euler vector field.
(4) Uniqueness.
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72. Flatness of V

We already know that the connection V is flat for n =2,3,4,5. We need to prove that if the
connection V associated with the n x n Jordan block is flat, that is
O}y — 0Ty — > (Tl —Tyly) =0, dijhk=1,...n (7.14)
=1
then also the connection associated with the (n+ 1) x (n+ 1) Jordan block is flat:

n+1
Ry = 0Ly — Oy — Z (FZlF/lcj - F;clrﬁzj) =0, Lj,hk=1,...,n+1 (7.15)
I=1
Since Fj’n 41 =0ifi# n+1 we need only to check the case i =n+ 1. We have three inter-
esting subcases: h >2,k>2,j>2, h=2k>2,j>2and h=j =2, k> 2. In the first case
using the lemma and the definition of the Christoffel symbols we have (notice that Fl-zj =0ifi
or j are greater than 2)

n

Ry = 0Ty = 0 Ty = Y (3T = T3 ' Ty)

=3
n

_ n—1 n—1 n—1 I—1 n—1 -1

= akflrhfl,j - ahflrkfu - § : (Fhfl,lflrkfu - kal,lflrhfllj)
=3
n

_ n—1 n—1 n—1 1 n—1 1

- kalrhfl,j - ahflrkflxj - E (Phﬂ,zrkq‘; - kal,lrhflxj>
=1

=R A

h—1,k—1,j°

The quantity RZ:L,#I ; vanishes by hypothesis if j = 1,...,n. For j = n+ 1 it vanishes since

each term in the sum contains a Christoffel symbol of the form I'{ . | with r <n+ 1. In the
second case we have

n+1
n+1 _ n+1 n+1 n+1p1 n+111
Rij *8kF2j *‘92ij *Z(Fzz ij*sz sz')
=3

n+1
_ n n n I—1 n )
- 8/(—1F2j - 82Fk—1,/ - E (F2,l—lrk—lJ - k—l,lFZj)
=3

n

= 8k—lrgj - 82FZ—1J - Z (ngri—u - FZ—l,zFlzj) = Rg,k—u =0.
=1

Finally in the last case we have

n+1 n+1
nt+1 _ n+1 n+1 n+111 n+111
Ry = 8krzz - 62Fk2 - Z Fzz Lo+ Zrkl I
=3 =2
n+1 n
_ n n n I—1 n 1
= 011, — 82Fk71,2 - ZFZ,ZfIFk—l,Z + Zrkfl,lrn
=3 =2

n n
— n n n ! n | _ pn _
= 8k711122 - aZkal,Z - E I12111k71,2 + E 1_‘kfl,erZ - R2,k71,2 =0.
=1 =1

The condition Ve = 0 is equivalent to I'}; = 0.
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73. Compatibility of V and o

In canonical coordinates this means that
k k—it1 _ Tk k—I41
Do =Ty =0, -1

Let us prove this condition by induction. We already know that it is satisfied up to n =35. Let
us suppose that it is satisfied for a given n. We have to prove that
+1 +2—i _ pn+l +2-1

F?—&-j—l,l o FZ‘ = Fl;—&-j—l,i o FZ )
where it is understood that Ff] =0ifi,jor k are greater than n+ 1. If i=1 or /=1 the above
condition is trivially satisfied. If i,/ # 1 we have I'-L =T} (ifi4j > n+ 1 both sides
vanish). If j =1 the remaining condition is trivially satisfied. If also j # 1 the remaining cond-
iton is satisfied since Iy~ =T L and T2~ =T 71| - (if i+ 1> n+ 2 both Christoffel
symbols vanish).

74. Linearity of the Euler vector field

We need to prove VVE = 0. In local coordinates we have:
V\V,E* =T} V,E' — T} V,E'
=T ((1—¢) 8 +eeel) =T} (1 —¢) 6 +ee'e’) =0.
The flatness of V* and the additional properties follows from the linearity of E (here we are

using the already mentioned result of [15] which holds true also in the non-semisimple setting)
and from the definition of V* and x.

75. dy(Eo—aol) =0

It is easy to prove by induction that the Christoffel symbols obtained using conditions (7.1)
and (7.2) satisfy the condition dv (L — aol) = 0 with L = Eo. Indeed, let us denote by V/,
the tensor field V in the n-dimensional case. For n=2 the condition (dv ,, V(z))g =0 is sat-
isfied. Let us assume that the Christoffel symbols F;k, 1 <i,j,k <n of the connection V)
associated with the n x n block obtained applying the formulas (7.1) and (7.2) satisfy the
condition (dv V(,,))g- = 0. We have to show the Christoffel symbols associated with the
(n+1) x (n+ 1) Jordan block obtained applying the formulas (7.1) and (7.2) satisfy the con-
dition (dv,, ., V(,,+]))§- = 0. Let us consider the case where 1 <i,j <nandk=n+1:

" aw+1 | 6Vn+1 | n+1 . n+1 "
n _ J n—+ i n—+ _ n n

@V, Virrn) s = —— + TV Ty = T VY T L
I=j I=i

i ou' ow

For i or j equal to 1 it is immediate to check that the above expression vanishes. For i and j
different from 1 we have (replacing [ with k =/ —j + 1 in the first sum and [ withk =1—i+ 1
in the second sum)

n+1 n+1 3+n—i 34n—j

n+1 n+1 _ n+5—i—1 I—j+1 n+5—j—1 |—i+1 __
> orptvi= ST vE= Y T > TP =0,
= I=i I=j+1 I=it+1
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The proof in the remaining cases 1 <i,j,k<n, 1 <i,k<n,j=n+land1<i<nk=j=
n—+ 1 is straightforward.

76. Uniqueness
The connection V is uniquely determined by the conditions
Vie' = dje' + F;,el =0

oV VA
dyV) = —L 4Thyl - 250
(doV)y = Zr + Vi =5,
where V = L — apl. Indeed, in the case of a single Jordan block in David—Hertling coordinates
the (1, 1)-tensor field V has the form

iV =0.

duy 0 o ... 0
w du; 0 ... 0
V= : . ] ) S (7.16)
Wt W duyy O
u" oW W duy

where d = 1 — €. We have that :

- The vanishing of (dyV);, ,_, defines uniquely T,

- Using the previous condition the vanishing of (dy V)£172,n defines uniquely I L

- More in general using the previous conditions the vanishing of (dv V)};’n defines uniquely
P;chl,n' )

- Similarly the vanishing of (dv V);_Ln_]
(dv V)i, defines uniquely T, ;.

defines uniquely 1"51_17”_1 and the vanishing of

i
n—jn—j

1
n—j—1l,n—j
(dvV) ;;7n_ ; defines uniquely ri +1,1—; taking into account all the previous conditions starting
from j =n — 1,k = n. In this way get all the Christoffel symbols apart from I'{; = I'}; which
vanish due to the condition Ve = 0. This means that the connection constructed above is unique
and thus coincide with the connection obtained using conditions (7.1) and (7.2).

In general, the vanishing of (dv V) defines uniquely I' and the vanishing of

Remark 7.7. Alternatively one could also prove uniqueness observing that using the properties
of V and the condition dy (E o —apl) = 0 one obtains conditions (7.1) and (7.2).

8. The case of an arbitrary number of Jordan blocks

Theorem 7.1 can be extended to the general case where the operator L = E o has a block diag-
onal form.

Theorem 8.1. For any choice of €1,...,&, there exists a unique regular bi-flat structure
(V,V*,0,%,e,E) with canonical coordinates {u",... u"} such that dv (E o —agl) = 0, where
r is the number of the Jordan blocks (of sizes my,...,m,) of Eo and, set my = 0,

r r
ap = E Meequ(®) = E M Equ™ Tt Fma—i
a=1

a=1
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In order to prove this theorem, the crucial Lemmas 6.2—6.6 must be suitably extended too
and some new preliminary results must be taken into account.

Let (M,o0,e,E) be a regular F-manifold of dimension n > 2 with an Euler vector field E.
Around a point p € M, let the canonical form of the operator L = Eo have r Jordan blocks
Ly,...,L, of sizes my,...,m, with distinct eigenvalues. Let us define ag = >, _, €4 Tr(Ls).
Our final goal is to prove that for any choice of €, . . ., &, there exists a unique regular bi-flat F-
structure with non-semisimple canonical coordinates such that L = Eo and dy (L — agI) = 0.

Any set of coordinates u',...,u" for M can be re-labelled by means of the following nota-
tion: for each a € {2,...,r} and for eachj € {1,...,m,} we write

j(oz):m1+---+ma_1+j (8.1)

(for a =1 we set j(a) =j) so that 1#(®) denotes the j-th coordinate associated to the a-th
Jordan block. From now on, we will write u' when seeing the coordinate as running from 1
to the dimension of the manifold and we will write #/(*) when in need to highlight the Jordan
block to which the coordinate refers. According to this notation, 9; and ;) will denote the
partial derivative with respect to «' and u/(*) respectively.

Let us recall that in these coordinates we have

.c’f(g)j(ﬁ):(sgégéfﬂfl for any «,B,y€{l,...,r}, i€{l,....my}, j€{l,....mg},

ke{l,...,my}.

Remark 8.2. Due to regularity condition we are implicitly assuming that u*(®) £ 0 and u'(®) £
u' B if o £ .

8.1. The Christoffel symbols

The following proposition plays the role of conditions (7.1) and (7.2) in the case of a single
block of arbitrary size.

Proposition 8.3. Let o, (3, v be pairwise distinct. Then there exists a unique torsionless con-
nection V satisfying the following conditions:

1. For each value of i,j,k

k(v)
Litaricp) =0 (8.2)
2. Forevery j,k wheni > 2
ko)
Lit)ite) =0 8.3)
and wheni=1
0 if k<j,
Ka) kD) _ ) ooty if k=J,
P =Hiane) - =) (k—j—s42)(a) e
@ Z;Z D@ @) i s
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3. Foreachk wheni+j>3

o)
Litsyie) =0 (8.5)

and wheni =j =1

Ko)  _ k(e
Dione = ~Tig)i- (8.6)

4. The Christoffel symbols Ff'{((zj))j(a) are defined by the following formulas

2(a) __Maéa
D la(@) =~ @) 8.7)
and
0 if k<J,
= e if k=j
k(a) k() (@) —y1(@) ,
r = oH#a
l(a)J Z 1(o)j(e)
oH#a —J+ s s ) )
g Z ul(@) 1) u‘(" Z F(kagl aJSZ)( )u( ) if k> j,
o#q
(8.8)
and (fork > 3)
k(a
k(o) _ pk=2)(a) _ y2(e) rUt2(a) _ pila) (k=1) ()
Fz(a)Z(oz) = Fl(oc)l(a) Fz(a)z(a) w2(o) a) 12: ( 2(a)2(a) ](a)l(a)) u )
(8.9

and (fori,j > 2)

i(a)i() = { plk—i=itd@) e (8.10)

k(a) 0 fhk—i—j<=3,
iFhk—i—j>—2.

2(@)2(e)
Proof. The above formulas uniquely determine the expressions for all of the Christoffel sym-
bols. By (8.2) all of those Christoffel symbols whose indices correspond to pairwise distinct
Jordan blocks vanish. One therefore only needs expressions for the ones whose indices corres-

pond to at most two different Jordan blocks. Let us first explain how to construct Christoffel
symbols whose indices correspond to two distinct Jordan blocks, which we label by « and .

By (8.4) we determine I (( ; 8)i(a) for k < j and starting from these functions we determine the
Christoffel symbols

k() . B
{Fl(g)j(a) |J - 17-~~ama;k— 17"'am(x}-
By (8.3) we determine

ko)  _
Litg)it) =0

fori > 2 foreachj k= 1,...,m,. By (8.5) we determine

ko)
Vi) =0
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when i+j > 3 foreachk=1,...,m,. By (8.6) we determine

Ko)  _ pk(a)
Disne = T

for each k=1,...,m,. Let us now explain how to construct Christoffel symbols whose
indices correspond to a single Jordan block, which we label by a. By (8.7) we determine

r 5032 ()" By (8.8), for each j,k=1,...,m, we determine Flizgj(a By (8.9), for each k > 3

we can determine recursively I'; k) (since the formula for T4l involves the Christoffel
Y1232 2(e)2(e)

()

symbols {Fl(a)l(a) |t=1,...,k—2} that we already know from above and {I'y ), 7=

2,...,k—1}). By (8.10), for each i,j > 2 and for each k = 1,...,m, we determine l“l((a))](a) in
terms of the Christoffel symbols {F |t ..,mq } that we know from above. O

Example 8.4. The above proposition allows to recover all the formulas in section 6. For
instance, let us reconstruct the Christoffel symbols in the five-dimensional case of 3 x 3 4
2 x 2 Jordan blocks by means of the above formulas. In this case we have

ul:ul(l) u _u2(l) u _u3(l) u _ul(2) u _u2(2).

By (8.4) we get

264
Fl4 = ul ut - ]'—%4 - F34
351
Fél‘4:7u1_u4 :F?S
1 254
2 _ 1.2 2 3
Fl4 - ul 4Fl4 (I/tl . u4)2 I‘24
1 264 2
F:];4 = m (F%4M2 +F}4M3) = m ((uz) I/l I/l + u3u4)
361
s, — TS = — 5
14 T 14U (u1 7144)2“
Iis=0
Fl4 =0= Fl4 = F%4
Fls =0= Fés = F%s
By (8.3) we get
s =0 forik=1,2,3

I5=T5=0  forjk=4,5.
By (8.5) we get

ng =0= Fzs = F§3 = ng = ng = F:SB
1—‘55 =0= 1—‘55 = ng-
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By (8.6) and (8.8) we get

F%z = _F%él =0
264
2 2
F12 - _F24 - _ul ot
264
R e
iy =—T% (! — u4)2’4
I'h=-T3=0
F?z = *1?4 =0
Fis = _F§4 =0
F%% = _Fgél =0
2
F?S = 7Fg4 = 7141 64}44
Félt3 = _F§4 =0
F?3 = _1—‘24 =0
I‘}‘S = _F}S =0
Fzzts = _F%s =0
Fis = _F?S =0
i =-Tis=0
361
5 5
F45 - 71—‘15 - wl — ot
254
1 _ 1 _
Ij]l - 471114 - AAVMI —
2
D= Th=
(u' —ut)
2
F?l = —F?4 c4 ((uz) —u'i? —|—u3u4)
(! —ut)’
3e
4 _ 4 _ 1
1—‘ll __F14_ wl — ot
35]
S —_T5 — w5
11 14 (ul — u4)2
2¢e
1 _ 1 _ 4
F44 - _F14 - w — A
284
2, =-1%= u?
44 14 (ul — u4)2
264
F?M = F?4 (ul — u4)3 ((MZ) —ur+ u3u4)
3e
4 _ 4 _ 1
I—‘44 - _F14 - Wl —
361
ry,=-r,= w.
44 14 (! —u4)2
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By (8.7) we get

351
Po=—"
254
s
By (8.9) we get
3 2ey 3¢
Mmool 2 __ 3
2 = 1ins ! + (u2)2“

By (8.10) we get

F%z =0= F;3 = rés = F§3 = 1%3 = F§3
361

2

FZS_FZZ__u

4
I'ss =0.
We obtained the same expressions as the ones exemplified is section 6.

Remark 8.5. All the Christoffel symbols can be obatained from the functions Fzga;Z(a)

—Zefe and T (ag 1(a) = wwr ey (With B # a). The last functions appear only in the case of
multiple Jordan blocks and are at the origin of the additional difficulties one meets in the proof
of the general case. However, exactly as in the case of a single block, increasing the size of a

block m, =N — my = N+ 1 and rescaling the corresponding weight £, — ¥ “ €4 does not

affect the definition of the Christoffels symbols I (( ))j(T) for the original range of the indices.

Remark 8.6. It is easy to observe that ay is a flat coordinate for V, namely V (dag) = 0.

Remark 8.7. It is likewise easy to check that dd;ag = 0.

8.2. Technical lemmas

The results of this subsection follow from the above expressions for the Christoffel symbols
and play a crucial role in the proof of the main theorem. We omit the details.

Lemma 8.8. For every choice of o, 3, 7, § € {1,...,r} we have

k() (k=1)(7)
8F1 (2)j(B) ar’(a )i(B) (8 11)
0ul® 9ul=n©) :
forallke{2,....my} and 1€ {3,...,ms}. Moreover, if B # o=y = 0 then (8.11) holds for
=2 as well.

Lemma8.9. Foreacha, S €{1,...,r},ic{l,...,m},j€{1,...,mg} we have

0 ifid]
i) 08 3 mozo+ (108 mazs ifi=j=1
ZFI(B),( =¢ 7 oo P (8.12)
—0g Z]stT ifi=j#1.
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Lemma 8.10. Foreach o, B € {1,...,r}, i€ {l,....my}, j€{l,...,mg} we have

0 ifi#j
vj(B)Ei(a) _ 5? 1— U;(]masa) + (1 *5?) mgeg ifi=j=1 (8.13)
53 1—2m757> ifimj1.
T=1

Lemma 8.11. Foreacha € {1,...,r} andl € {3,...,m, — 1}, we have

3(a -1
All@) . F2(a) (“()uz(a) _u(l+1)(a)) _ Z (F(s+2)(a) 8@ ) u=stD(@) _ ¢
s=2

2(a)2() \ y2(a) 2()2(c) 1(a)l(a)
(8.14)
Lemma 8.12. For each a,o € {1,....r} witha # o andl € {1,...,m, — 2}, we have
(+2)(@) (o) _
D1(0) ( N frl(c;)l(a)) ~0. (8.15)
Lemma 8.13. Given o,B,e € {l,....r} witha##ec¢F#aands€{l,...,m, — 1},
Y—H( ) (s+1) () pL(B) (s+1) () p1(e)
s—1+2)( o s+1)(a 1(B s+1) (o 1(e
Zrue)l(a Ll + D1t Tione + Tioite T =0 616

Lemma 8.14. Given o, 3 € {1,...,r} witha # B and s € {0,...,m, —2}3, we have

s+1
() _ (s—1H4) (@) _ a(s—2)(a) pel(e) 2a)  a(42)(a)
Cs ~—Z<Fz<a>z<a> I o)1(a) )Fl(ﬁ)l(a)+F2<a>2<a)rl<5>1(a>

(s+1) () 1 1(B) _
+F1(5)1(a)rl(a)1(ﬁ) =0. (8.17)

We have all the ingredients to prove theorem 8.1. The proof is divided in the following
steps:

(1) Ve=0.

(2) dv (EO —aol) =0.

(3) Compeatibility between V and o.
(4) Linearity of the Euler vector field.
(5) Flatness of V.

(6) Uniqueness.

8.3. Ve=0

The condition Ve =0 is equivalent to the request that for every «,8 € {1,...,r} and i €
{L,...oma},j€{1,...,mg}

3 The summation is intended to be non-zero when s > 1.
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()
ZF B = (8.18)

This condition is Venﬁed by the Christoffel symbols defined above.

8.4. dv (EO 780/) =0
Let us consider now the condition
dy (L—agl) =0 (8.19)
forL=Eo.Foreacho,8,y=1,...,randi =1,...,mq,j =1,...,mg,k=1,...,m, we have
(dv (L= a0 D))}, ) = Ois) (L — a0 D)) = Okt (L — a0 )1(5)
i(e) 1(6) i(e) 1(5)
+ Ty (L —aol )kw = Dious) (L= aoD)js)
—5”‘%5’ L 50 0impe ) —050%6, T + 05 0im. e 0

—k
+ZZ e Dot T
=1 I=1
rooms

i(a)
=222 it osu
=1 =1

= 650imye,0; — 65 0ympepd; +ZI‘]’EZ w=FD ()
I=k

i L=+ ()
Zrk(wz(m !

as

. O(Sa(n) —§n Zuv(n) 5a+b 1 517 5(1 Zmafa ()

s=1 a=1

(L— aol)zg )) LZ(

foreachn,p=1,...,randa=1,...,m,, b=1,...,mg. Therefore (8.19) amounts to

5551”/‘75“/51{ 5a5km5835 —I-ZI%; 1o ul—FD ZF;((("‘)I WD) 0 (8.20)
I=k

foreach o, 8,y=1,...,randi =1,...,mq,j =1,...,mg, k=1,...,m,. We split the proof
in the following cases:

l.a=pg=v a#fB=y
2. =3 # ~ (this also covers a = v # 3) 4. o, 3, are pairwise distinct.

Case 1: o = 8 = ~. Condition (8.20) becomes

icl I—k+1 I—j+1)(a
Maea (90 — +ZF/(a>z(a> (e Zrk(a)l(a) e =0 8.21)
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which is trivially satisfied if j = k = 1 due to the symmetry between the indices j, k. If both j
and k are greater or equal than 2, the left hand side term of (8.21) reads

Cmi(e) (k1 i(@) o (=jt+1)(a)
Sk Zrk(an(a) -
1=k
810)1 L & (i )(a)
(z— H+4) () (I—k+1 i—k—I+4)(a) (1—j+1
Z R A R A

I=j

which vanishes by changing the variables in the two summations. Let us then consider the case
where j =1 and k > 2 (this covers the case where j > 2 and k=1 as well). The left hand side
term of (8.21) reads

: o pi@) (k] i)
_6Ilcma€a+zrl(a)l(a)u( o) Zrk(a Y(a) ¥ ()

i—k+2
((88 ]8)) Simaca +Zrt(a u(l—k-i—l)(a) _le(a L@ Z Fk(a et )
8.8 )a) i—k+2 o)
(i— l+1 ), (I=k+1 a) k +4) (o piC

8‘1
( I=k+1

which trivially vanishes if i < k and which vanishes by means of (8.7) if i = k. Let us then fix
i >k. (8.22) becomes

i i—k+2
(=11 (@) (1=k+1) (o) _ (i—k=l+4)(a) i(a)
Z Fl(a)l(a) Z FZ(a)Z(oz)
I=k+1 =2

i—k+1 i—k+2

(i—k=s+2)(a) s(a) _ (i—k—I+4) () 1( )
- Z 1—‘l(oz ) () ut® Z FZ(a)Z(a) “
=2

i—k+1
_ (i—k—144)(a) (i—k=142) () \ (o) _ p2(c) (i—k+2)(a)
= Z (Fz(a)z(a) Tl )” Do lay(ay

_ r&+2(a) _ ps(e) (i—k—s+2)(a) _ 12(e) (i—k+2)(a)
= Z 2a2(e) ~ Li(a (a))” L)t

(8.14) _(F3((1) @)

. 3(a)
2(a)2(a) l(a)l(oz))u(likJrl)(a) - FZ(Q) -

(i—k+1) () (89) 0
2(a)2(e) uz(a) - v

Case 2: o = 3 # ~. Condition (8.20) becomes

5m7575k+zr () pU=kD () _ Zp (z—1+1)(a):0
1=k
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that, by means of (8.3) and (8.4), is

5 | Olmaey + TNt ng'(ﬁ(‘(igco (=) ) =0 (823)

which is trivially satisfied for k > 2. Let us then fix k= 1. If i <j then (8.23) is satisfied by
means of (8.4). If i = then the left hand side of (8.23) reads

1(a) 1 () 1(a) 84
Mgy + 1@ 7 = D =0,

If i > j then the left hand side of (8.23) reads

1-\(1—]+1) (’) 1(7) 721-\(1 l+1)(a) I—j+1)(c)

1(a)1(7) 1(y)1(a)
(i—j+D(e) (1(a) _ (i— l+1)(a) u(=i+D (@)
i) ( ) Z it
I=j+1
i—j+1 8.4)
_ pli—itD(a) PRIC) s12) (o) PRICHRS
ey (' ") Z VR PAS =0

Case 3: a # = . Condition (8.20) becomes

mg mg
ZF y—k+1(B) _ Zrt(a WD) — (8.24)
I=j

where, by means of (8.5), the two sums survive only if j = k = 1 (and with the only [ = 1 term),
in which case they mutually cancel out.
Case 4: o # 5 # v # «. Condition (8.20) is trivially satisfied by means of (8.2).

8.5. Compatibility between V and o
We are now going to prove that

I(e) _ I(e)
Vite) i) = Vil8) Cilak(y)

which is equivalent to

(O o) o) 1 o) o)
Litas) ey ~ Litahk) Git8)s(o) = Li)s(o) Citarkn) ~ Li(a)k(r) Citos(o)
and
I(e) (I=j+1)(B) se I(e) (I—i+1) (o) ce
Lite)(i+5-18)987 ~ Vitanty) 98 = Ui ira-1y (%7 ~ Ljgauey)  Oa (8.25)

forall «, 3, 7, € € {1,...,r} and any suitable choice of the indices i, j, k, I. The possible cases
are the following ones:

l.La=pf=vy=¢ 4 a=v=e¢#p T a=v#p=c¢
2Q.a=F=v#€¢ S5 fB=v=e¢#a 8S.a=c#*f=7
.a=pf=€e¢#y 6.a=0#v=€¢ 9. otherwise
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Case 1: a = § = = €. (8.25) becomes

() (I +1)(a) _ () i) (@)
Lite)Gat-1)(e) ~ Fitarta) = Lita)itt-1)(a) ~ Ljak(a) (8.26)

If i =1 (or equivalently j = 1) then this is

(o) =+ 1)(@) _ pi(a) (o)
D@ rr-160) ~ Tiak@ = Ljtae) ~ Ditalka)

where both the left and the right-hand sides vanish, as

() () () (818) () (D))
DieyGtk—ne) ~ Dk = = ;(ﬂ(a)mkl)(a) (o)) )
(84) (1) (a) _ (Hﬂ)(a))_
= ; (Fl(o)km) Do ) =0

If k=1 then (8.26) reads

() (—41)(@) _ plla)  a(i—it1)(a)
Liteyitay ~Tita)i@) = Litayita) = Lita)1(a)

that holds true, as

U=+ () (8.18) Z U=+ () 84 _Z pU=i=+2)(a)

i(a)1(a) i(a)1(0) 1(a)1(o)
oFa oFa
(84) (I—i+1) () (B:18) (I—it+1)(a)
= ;Fj(a)l(o) = i@ -

If all of 7, j and k are greater or equal then 2 then, by (8.10) and (8.26) reads

(l—imj=k+5)(a) _ p(l—i—jmk+5) (@) _ p(i—imj—k45)(a) _ p(l—i—j—k+5) ()
L)) L)) =D a)2(a) L))

which is trivially verified.
Case 2: a = § =y # €. (8.25) becomes

o) ()
Lita)Gra=1)(e) = Vi) irh—1)(@)

which is true by means of (8.5) and (8.6).
Case 3: a = 3 = € # . (8.25) becomes

_pU=iD(@) _ _pl-i+(@
k() T i(a)k(r)

which is true by means of (8.3) and (8.4).
Case 4: o =y = € # 3. (8.25) becomes

_ () =it (@)
0=Ti(s)irh-1)(@) ~ Li(o)k(e)

which is true by means of (8.3) and (8.4).
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Case 5: f =y =€ # «. (8.25) becomes

18) I—41)(B) _
Litayirk—1y(8) ~Litar(sy =0

which is true by means of (8.3) and (8.4).
Case 6: o = 3 # v = €. (8.25) becomes 0 = 0.
Case 7: a =y # 3 = €. (8.25) becomes

I—H41)(B) _ 1i(B)
i@ = Litg)itr-1)(a)

which is true by means of (8.3)—(8.6).
Case 8: a = ¢ # 3 = 7. (8.25) becomes
I(c) (I=i+1)(e)
Tty +e-ne) = ~Ligws)
which is true by means of (8.3)—(8.6).

Case 9: at least three among «, 3, 7, € are pairwise distinct. (8.25) becomes trivially 0 = 0.
This proves compatibility between V and o.

8.6. Linearity of the Euler vector field

We are now going to show that V, V* are flat connections. We know that if we take the flatness
of V as already verified and assume VVE = 0, then we deduce that (V,V*,0,%,e,E) define
a bi-flat structure on M. It is then enough for us to only prove the flatness of V and to verify
the condition VVE = 0.

Let us start by proving VVE = 0. We have

l(o’)

k() _ k k() (o
Vi) Vig) B = 0y Vieg) B + T3 oy Vi N = T30 )

k
i(a)l(o) Vie )E( "

where, by means of (8.13), V ﬁ)Ek("f) is constant and Vj(B)E’("), V,(U)E"(V) vanish respect-
ively whenever [ #£j, | k. Thus

k ™) j
Vit Vig) B = T30, Vi B =T Vi) B, (8.27)

The possible cases are:

La=3=v B.a=vy#p
2oa=B+~ 4B=v%a S;a#B#Ey#a

Casel:a=5=1.

k k a) i(o k(O')
Vi) Vi) E ™ = z( )i(o )Vj(a)E]( = l(a Yi(a) Vk (@)
k( ) j k(o
mamw(vmng(”—vmmE())
k(a (o
+Z< oyt Vi@ BT =TT Vi B )) (8.28)
ocH#a
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Ifj = k=1 then

Vit Vi B0 =iy (Vua)E = Vi@ )El(a))

+ 27&: ( z(a 1(0_ Vl(a E 1(o) _ Ft((a)) (a)vl(g)El(a)>

which vanishes by (8.3) and (8.5) if i >> 2 and by (8.2), (8.4), (8.13) and (8.18) if i = 1. If both
j and k are greater or equal then 2 then (8.28) vanishes by (8.13). If j=1 and k > 2 then (8.28)
vanishes by (8.13) and (8.18). If j > 2 and k=1 then (8.28) becomes

o) (8:13) i) (o)
vi(a)vj(ﬁ)E ™ = Fz (@)j(a maaa Z Fl (a)j(@) MgEqs
oFa
which is
k) a) 1(o) (8.18)
vi(a)vj(B)E ™ = F masa Z I—‘l(oz )j(ex) mq& (8_2) 0
oc#a '
if i=1 and
Vi) Vi B = -1l S 2
i(e) Vj(B) - l(a ](a maaa i(o)j(e) mq& (870)
o#a
(as1—i—j<1-2-2=-3)ifi>2
Case2: a=[#1.
k(~y k( ) i(o
vl v Ji(a) E t((’yy)j(a)vf(a)Ej( ) i( a)j(a)vk(U)E
(8:2) k() o ie) () k() ()
i) Vit B = T Vi B + Fz(a»(wv @F
k(o)
Loy Vi B = 37 T o) Vrto B, (8.29)
oFa,y

If j > 2 and k > 2 then it vanishes by (8.13). If j = k =1 then (8.29) becomes

(v) B18)  ~1(v) (e
Vita) Vit E o2 iy Vi B + T, L Vi B

« 1(v)
+ Z Fi(a)l(o—)v1<a)E K
oFa,y
1(7) 1(7) 1(7) 1(7) (o) 1(7)
+F,-(Z)1(W>V1<a>E K +Fi((z)1(w)vl(7)E '+ Z Fi(a)l(a)vl(U)E K
oFa,y
(8.13) \1(5) 1(a) 1(a)
= D MEry + Dy Magat D Ty o) Maa
oFo,y

+ D Liioy Moo

oFa,y
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which vanishes by (8.3) and (8.4) both if i >2 and if i=1. If j=1 and k > 2 then (8.29)
vanishes by (8.2), (8.13) and (8.18). If j > 2 and k=1 then (8.29) vanishes by (8.4), (8.5),
(8.8) and (8.10).

Case 3: o =y # f.

Vit Vi) B *Ff((f)),(g)v.f(ﬂ)E"( 7~ ,<a j(g)vkw)E *
T Vi B - a)J(B)Vk o B
+ it Vi B =Tl ) Vi )
+ 3T Vi B, (8.30)
Py

If both j > 2 and k > 2 then it vanishes by (8.13). If j = k = 1 then (8.30) becomes

_ pl(a) «a
Vi) Vi B =T oy Vi MY = Ty sy Ve B

t(a
I(e) 1(8 (8 ) ,
+Fi(a)1(,8 Vl(ﬁ)E( )-T i(a)l(ﬁ)vl(ﬁ)E( )
() 1(o
+ Z Fl((x ](a’) )E( )
ofa,fB

which trivially vanishes if i > 2 (by (8.3), (8.4) and (8.8)) and is

(v) 813) 1(a) 1(a)
Vi(a)vj(ﬁ)EJm ®.18) Pl(g)l(a)mﬁgﬁ Z Pl(g)l(a)mﬁaﬁ l(a)l(B) ngeg
o#a, oHa

o#B oFa,B

(@)
SRS ITE) (1_2’"05”) Ty mses + D Tigayi() mass

_ _pla 1(8) (8.4)
= —Li(g)i(a)Maa =iy (g mses =0

ifi=1.1f j=1 and k > 2 then (8.30) becomes

(5.0 ke ke -
Vit Vi) B U= =T gy mses = D T ™28 ~ Tiihica (1 - me&)
=1

o#a,f
K@)
e | 1= 2o moea | + D2 T macs
078 oFa,
(@)
Fl(anw)( mﬂgﬁ*zmﬁ Zmaag)_o
078

Ifj > 2 and k =1 then (8.30) vanishes by (8.3), (8.4) and (8.13).
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Cased: =~ #a.

Vit Vi B =14

l(a)j(a)vj(ﬁ)Ey(g)

t(a Vk(U)E Ko
(82) [, @) k() K5
Lty Vi B = F‘(ammvk(a)E )
+T¥O) 7 B — VB, 831
i(@)j(B) ¥ i(B) k(B) .

l a)J

If both j > 2 and k > 2 then it vanishes by (8.13). If j = k = 1 then (8.31) becomes

. Copk(y) B3 1) ()
Vi Vie T ez L) Mo ~ iy s Maka
1(8) rl® 8.4
+ Fi(a)l(ﬁ) Z Moo 1(a)1 1— ZmO'EO' =
o#B o#B

If j=1 and k > 2 then (8.31) becomes

8.13
Vi) Vi B VT 5y | moes + ‘_vagv—”zmﬂf =0
-

Ifj > 2 and k=1 then (8.31) vanishes by (8.3), (8.4) and (8.13).
CaseS5:a# [ #v#a.

k() - k) 8:2) k() (o

Vi) Vi) E ) = Fl(a),( )vj(ﬁ)EJ( ) t(a Vk((,)E " Fi(;l)j(a)vj(ﬂ)E]( )
k() )

Fii Vit BV =T 5 Vi B + T ) Vi B

(8.32)

If both j > 2 and k > 2 then it vanishes by (8.13). If j = k = 1 then (8.32) becomes

(8.13) 1(7)

k('y _ _ pl(e)
Vi) Vi) E 18y (82) o)1) MBER Litayi(s) Mata

1(B) 1(7) (8.4)
_Fi(a)l(ﬂ)mﬁgﬂ+Fi(;)l(7)m555 ="0.

If j=1and k > 2 then (8.32) vanishes by (8.13).If j > 2 and k = 1 then (8.32) vanishes by (8.3)
and (8.13). This proves that VVE = 0.

8.7 Flatness of V

We are now left with proving the flatness of V, i.e. R =0. By the symmetries of

i(a) _ i(e) i(a)
Ritonnies) = Loy ~ OnoLiys)
rooMe o o
+z:1121:( 7o) h(e)J(/i) Fh(e)l(o)rk('y)j(ﬁ)> (8.33)
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the cases to be considered are the following ones:

l.L.a=f=v=¢ S a=0#y=¢ 9.8=v¢{a,e},a#e
2.@2527#6 604:77&/8:6 10.’}/:€¢{Oé,ﬁ},a7éﬁ
Ba=y=e#pB T.a=0¢{y,e},v#e 11.a,8,v and € are pairwise distinct.

4.=y=c#a Ba=7¢{B BFe

Case 1: a = § =~y = €. Our goal is to prove that

i(e) i(e)
Ry = Ok ity — O Ditayia)

,(a) a) i(a) ()
+ Z ( ko)i(@) Vh(a)i(a) ~ Fh(a)/(aFk(a)j(a))

l(a i) (o)
+ZZ< woio) Thiita) ~ Doy Toay <a>> (8.34)

o#a =1

vanishes. Let us first note that for each integer N > 2 it is possible to recover part of the
Christoffel symbols for the case where m, = N+ 1 starting from the ones for the case where
mq = N. More precisely, let us denote by (I'"*')}; the Christoffel symbols in the case where
mey, =N+ 1 and by (T'Y )fj the Christoffel symbols in the case where m, = N, where the sizes
m, of the remaining blocks o # « are the same and where the constant €, has been replaced
by % Ea-
k(B) k(B)

" iowirr = i (8.35)
for any possible choice of the indices in the right hand side (see remark 8.5). In the wake of this
property, we will proceed by induction over m,,. Let us first consider the case* where m,, = 2,

so that the indices i, j, k and & run from 1 to 2. In particular, since R (( )) k(a)ji(a) automatically
vanishes when k = h, the only relevant cases are the one where k= 1, 1 =2 and the one where
k=2, h=1. By using the symmetries of R, we only consider the case where k=1 and h =2,
hence obtaining

(o) a) (@)
Ry it = D16 Doy — 02 a>rl<a)1<a)+2( i) Do)

_ i) z(a l(a) i) (o)
D D16 a>> ; ; < H)i(o) L 2(e)j(a) Fz(a)l(rr)Fl(a)j(a))
(8.36)

where both Fl(( )) i) and Fz(( )) i) survive only for /=1 by (8.3). This yields

i(a) o) @) pll@) i) i)
Ry aniter = Do Doty = P2 (gt Dl Dot ~ Do Dy

(o) 2@ i) p2e)
a2 2@ ~ Loz @i

1(a) l(o’) i(a) 1(o)
+ Z( 1(e)1(0) 2<a>.i(a>_FZ(a)l(wrl(a)j(a))' (8.37)
oFa

4 _ i(c)
The case where mq = 1 is trivial, as k = h = 1 directly implies Rh(aﬂ(a)](a)
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Ifi=1 we get

R it = O Taieier — @i + Tt Do ~ Féﬁiil(a)ﬂﬁz;((,)
+ T e T2t ~ Dot Do +Z¢:F}§3 ST

that becomes

Raenerier = D@l aita) ~ Q2T + D@ 201 (e frééiil(a)FiEZL(a)

() 2(a) () ()
+ T (20 20e)1(0) ~ Taay2(e) L1 a)l(a)+z¢:rl(a)l(a a)l(a)

10) 1(c) (8 4) m0€0
OFQ

whenj = 1 and R\ = 0by (8.5), (8.8) and (8.10) when j = 2. If i = 2 then (8.37) reads
2(a)1(a)2(a)

2a) _ 2a) i)
Ryeaniter = Do D2t = P2 ey + Dot Dot
—F 2(er) Fl(a) +T 2(ar) T 2(ar)
2 1)L 1(a)jt@) T 112600 2()j(o)
2a) o) 2@ ple) ) ple)
~ LoDy T Z( 1(e)1(0)  2(a)j(o) F2<a>1<a>rl<a)j<a))

that becomes

2(a) (8.5)(8-8) 2(a) 2(a)
R2(a)l(a)1(a) (8.18) l(a)Fz(a)l(a) a(a)rl(a)l(a)

(a) 2(a) (o)
+ Z ( a)2(a a)l(a) +F2(o¢)1(a)rl(a)1(a)>

o#a
E:::; 1) igzgl(a) 9 (Oé)rlga;ua)
3 (255 s P T )
(8.15) < O T2, ) + Do T2, (a))
o#a
= [%; [(ul(aTgE;(a))z ) 1u1(”) ul(ar)nog;(g)} =0

(8.4)
5),(8.10) masa MoEo B
8) (8.18) (e ( ) ;62 @) ( (@) — yl(o )) =0
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when j = 2. Therefore we proved that (8.34) vanishes when m, = 2. Given an integer N > 2,
let us now suppose that (8.34) vanishes for m, = N and show it vanishes for m, = N+ 1 as
well. In other words, we are supposing that

RV = Oy T

i(a)
h(a)k(a)j(c) 8h(a)F

k(e)j(e)

l l(a) i(a) ()
+ Z( ko)i(@) L h(a)i(a) Fh<a>z<a>rk<a>j<a>)

l l((r i(a) (o)
+ ZZ( ko)i(o) L n(@)i(a) Fh<a>z<a>rk<a>xa>> 0 (8.38)

oF#a l=1

h(a )ie)

for every i, j, k, h € {1,...,m,} for each m, < N and we want to prove that

N1 (@) ri(e)
(R )h(a)k((y)j(a ' ak O‘)Fh(a )i(e) ah(a k(a)j(er)

N+1

z l(oc i(a) ()
+Z( it Thiaiia) Fh(a)l(a)rkm)j(a))
rite) i) pe) ) _
+ ;;( Koio) TR Fh<a>l<a>rk<a>j<a>> =0 (8.39)

for every i, j, k, h€ {1,...,N+ 1} for m, = N+ 1. Notice that due to the property (8.35)
and replacing ¢, with N;I € We can use in both cases the same notation for the Christoffel

symbols. Let us start by considering the case where i < N and observe that

i(e) _ ,
T i@ =0 We{l,...,N+1} (8.40)

asi—j—(N+1)<N—2—-N-—1=-3forj>2 (we recall (8.10)) and

i(a) (8.18) i(a) 8.4)
Doty = ;F o)<N+1>(a> =0
OFQ

(< N<N+1)forj=1.1If all of j, k, h are less or equal than N then
(@) S (pi@) pi@
N1 z « «a
(R )h(a)k(a)}(a ak(a)F a), ah(a)rk(a Vi) JFZ( k(a)l( a)Fh(a)j(a)

i(a) l (a) t(a 1(0
Fh(a)l(a) k(@)j(a) ) ZZ( k(a)i(o) h (a)j(e)

oc#a l=1
(@) pi(o)
- Fh(a)l(o—)Fk(a)j(a))

where in the first summation only the terms for / < N survive, as both I‘l((a))(N +1)(a) and

F;,((O(t,?) (N+1)(a) vanish due to (8.40). This yields
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N
N1 (@) . i(ar) i(ar) i() ()
R harari@) = %@ Tiaa) ~ o Digasa) + Z (Fk(a)l(a)rh(a)j(a)

i(ar) l (a) t(a l(a
eyl a)z(a) ZZ( ko)i(o) L h(a)i(a)

o#a l=1
e (o) Nvi(a) (8.38)
Fh(a)l(aﬁ(a»(a)) (R hark(yia) = O

Ifk,h<Nandj =N+ 1 then

N1 (@) (8.40) — ( i() (o) _ qi(a) (o) )
R ey — ;; Lyt L ey v+1)@) = Fngayico) Lty v 1y(@) ) -

This vanishes by (8.5). If k, j < N and A = N+ 1 (due to the symmetries of R, this covers the
case where A, j < N and k = N+ 1 as well) then

N1y () (8.40)
R e ek = —Owsn@Tiy)
i) i) i) ()
+ gZ( Ko)i(o) L (V1) (@)i(o) ‘F<N+1>(a>z(o)rk(a>j<a>>'
o#o =1
This yields
N1y i) (3.4) (o)
(R )(N+1)(a)k(a)j(a) ({5) a(N—i—l)(a)Fk(a)j(a)

that becomes
N1 (@) _ i(o) .
(R )<N+1><a>k<a>1<a> = —Ow+n@ ka1 =0

i(a (8 18) i(a a o s(a
(I‘k((a))l(a) = Z Fk((a)l( , only depends on {u'(®) —u'(?) |0 # a} and {w®) |2 <5 <

i—k+1} by (8.4), thus 1tdoesnotdependonu(N“)(o‘) asi—k+1<N—-1+1=N<N+1)
when j =1,
N1y (@) _ i() .
(B vy @i apiter = ~O0n@Ti(aya) =0

(analogously) when k=1 and

(RN+l)i(a) . 5(N+1 Q)F (( ) - O

(V1) (@)k(a)j(a) — k(a)j(e)

when both j and k are greater or equal than 2, as’

5 Without loss of generality we assume i —j — k > —2, as Fl((zgj () = 0 automatically when i —j — k < —3.
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i) (B10 plij-kt4)(@) ) pli—j—kt2)(@) _ p2(e) ul=i=k ) (@)
k(a)j(a) 2(a)2(a) 1(a)1(e) 2(a)2(a) w2 (@)

i—j—k+1
1 )

_ (+2) () () (i—j—k+4—1) ()
1) ; (Caeyzte) ~ Fian(a) ™

does not depend on u(N+tH(e) (F Jl(kﬁz)(a) only depends on {u'(®) —u4'(®)|s # a} and
{w@)2<s<i—j—k+2} by (8.8) where i —j —k+2<N—-2-2+2=N—-2<N+1,

Fzgzgz(a) only depends on u*(®) i —j—k+4 < N—2—2+4+4=N<N+1andforevery 1 <

I<i—j—k+1wehave i—j—k+4—I<i—j—k+4<N+1 and F(](JS);(?) Fll(((’;))l(a)
only depends on quantities that correspond to lower indices so it does not depend on u(N+1)(@)
afortiori). If k= h = N+ 1 then (RN *! )z(a) = 0 for every value of j due to the symmet-

h(e)k(a)i(a) —
riesof R. If k <nandj = h =N+ 1 (due to the symmetries of R, this covers the case where

h<Nandj =k=N+1 as well) then

N+11 () (8 40) 1(04) l(a
(R (k1) (o)) (v 1)) ;;( Ke)l() L (V1) (@) 41 (@)

i(a) (o)
- F<N+1)(a>l<a>rk<a>(zv+1><a>> :

This vanishes by (8.5). We have therefore proved (8.39) under the assumption that i < N. Let
us now fix i = N+ 1. We have

N1y (VD () rW+D(e) (N+1) () (V+1) () (@)
(R ) 8]‘(@ h(a)j(e) ah Q)F k(a)j(e) + Z <Fk(a)l (ax) Fh(a)j(a)

h(a)k(a)i(a)
(N+1) () l(a (N+1)(@) pl(o)
~ Ditayite) T a>> ; [Zl (Tkm (o) Lnia)ia)

(N1 () (o)
Do) Fk(a)j(a))

where in the last summation only survive the terms for / =1 by (8.3), yielding

(RN+1)(N+1)(04 . 8k(a F( A

(N+1) ()
h()k(e)j(a) = O Uy

)J k(e)j(e)

N+1
[OV41)(@) plla) (N1)(@) (o)
+Z( wtaitay Tiojca) ~ Titaitay T (a>z<a)>

(V1)) 1 () (N 1)(e) 1 (0)
+§<Fk<a (o) L i(a)jt@) ~ Loy 1(o) V(o <a>>' (8.41)

We distinguish between the following subcases:

a. both k and h are greater or equal than 3
b. k=1, h > 3 (this covers h=1, k > 3 as well)
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c. k=2, 2 3 (this covers h=2, k > 3 as well)
d. k=1, h=2 (this covers h=1, k=2 as well)

observing that (RV*! )}(fg[:)}()(fj;;(a) = 0 automatically whenever k = h.

Subcase a: both k and / are greater or equal than 3. We have

N1\ (V1) (o) (8.11) Na) N(a)
(R )h(a)k(a)](a) (8.4).(8.10) 8(k*1)(a)rh(a)j(oz) 8(h*1)(a)rk(a)j(a)

N+1
N(a () N(a) ()
+—§£I ( (k=1 (@)l(e) L h(@)i(a) ~ IYh—lxa>xa>I¥<a»<a)>

V(e (o) _ pN(a) 1(0)
+§(kmmﬂmw>%nwm%md' (8.42)

Ifj <N—1weget

N+1) (@) (8.10)
N+1 N(a) N(e)
(R )h(a)k(aw) 1)@ T 1) @) (4 1)(0) ~ Q=0T @1 (@) (1) (@)

N+1
V) I(a) N(a) a)
+Z< ke @it Tt @+ @ ~ T @i e 1><a)</+1)<a>>

N(a) 1(e) N(a) 1(o)
+Z< (k=D (@)1 =1 (@) (1) () F(h—l)(a)1(a)F<k—1><a><.z‘+1><a>>

oHa
(8.10) N(a) N(e) (N+1) ()
- (RN)(h—l)(a)(k—l)(a)(ﬂrl)(a)+F(k D@1 (@)1 5= 1)(@)(+1) (@)

_ N PO+D () (8 38)
(h=D)(@)N+1) (@)™ (k=D)() (j+1) () (g 40)

If j=N then (8.42) vanishes by (8.5), (8.10) and (8.40). If j = N+ 1 then (8.42) vanishes
by (8.5), (8.40).

Subcase b: k=1, h > 3. We have

(RN“) N+ (8.11) ) —8 e N+1 F(N+1)(a)rl(a)
W) l(ajia) L@ (i=D(@)j(e) T Th=D@) T 1(a)j(a) E ey Lh()jca)
' I=1

N1
(N1 (o) pol(e0) (N1 (@) 1l (o) (N1 () ol (o)
Zrhw oy Tieiar + 2 (F i(o) L) ~ Lhia)1(o) Fl(a»(a))

oFa
V@ pl @) 1(o)
+Z( 1(e)1(o) L (h=1)(@)i() P(h—l)(a)l(cr)Pl(a)j(a))
oHa
o N(oc) l(cr) _ N(a) 1(o)
Z( 1) 1)L (-1 (i) F(Iz—1><a>1<a>rl<a>j<a>>
oHa
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where added and subtracted the quantity > (FIIV((;)I (o) I‘é }(li)l J(@)i(e)
oH#a

Ve o)

(h (@)1(0) l(a)j(a)) and where the terms

N(a) N(ax)
81(a)r(h—])(a)j(a)’ - a(hfl)(a)rl(a)j(a)’

N+1
N+1)(o<) (o) (8.10) N(o) N() l(a
Zrua o) Dnteie) (g Z 2F1<a>(171><a> Dt Zrua )L (1) @)y

N
- (N+1) (@) () (8.10) N(c) i)
Zrhm)z(a) i) (55, ZFM D) @)

and
N(a) (o) _ M) 1(o)
g (F1<a>1<a>r<h71><a>j<a> F(hfn(a)l(a)lﬂl(a)j(a))
combine to form (RN)(hai)(a)l(a)j(a), which® vanishes by (8.38). Thus

N+1y (V1) (a) (8.4) (8.5) _ N(a) 1(o) N(a) (o) .
Ryt 510 (.9 2 ( Fon@i@Ti@ie +o- 1><a>1<a>rl<a>j(a>)—0'

Subcase ¢: k=2, h > 3. We have

N+ (@) (8.10) (8.8) N N N+1 [
RN+1) A T (a) ) — O T (CX)' 1'\( + )(a)l'\ (@)
( he)2e)i(@)  (.11) 2() % (h=1)(a)j(a) (h=1) () 2(a)j(a) + ; 2(a)l(a) ~ h(@)j(e)

N+

_ (N4 1) (e) al( @) (N+1) (@) 12l () (V1) (a) 21 (o)
Zrhm)t(a) Caeite) T 2 (Fzm)l(a) Fh(a);(a) Lhy oy Pataica
=1

N———

oo
N(a) 1 (o) N(o) (o)
+Z( 2(0)1(0) L (h=1)(@)j(a0) F(h—l)(a)l(a>F2<a)j<a>>
oFa
_ N(a) 1 (o) _ N 1(o)
Z( 2yt () L (=1 (@)t F(h—l)(a>1<a>rz<a)j(a>)
oFa

where we added and subtracted the quantity ) (Flzv((s))l (U)Fb(li)l)(a)/(a) —
o#a ’

) 1(o)

(h— l)(a)l(o)FZ(a)j(a)> and where the terms

6 This only holds for j < N. Still, for j = N+ 1 each of these addends vanishes by itself, by means of (8.5), (8.10)
and (8.40).
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N(a) V@
a(a)r(h 1) ()j()’ 8(;, 1)(a 2(a)j(e)’

N+1
(N+1) () -l(e@) 8‘1 N(a) ([ 1) () N(a) [(a)
ZFZ(a i) L h(a)ia Zrzmm D) =1 (@)je) Zrzm i) L (1) (@)

(N+1)(a) plla) 810)(88) N(a) rhe)
Zrhm)z(a) 2a)j(a Zrm (@it 2(@)ia)

and

No) (o) @) (o)
g (Fz<a>1<a)r<h71>(a)j<a> F(hfn(a)l(a)Fz(a)j(a))

. N(a . . N+1)(«
f:omblne to form (RY) (h(—i)(a)2(o<)j(a)’ which” vanishes by (8.38). Thus (RV*! )2(:)2)((@i(a) van-
ishes by (8.5), (8.8) and (8.10).

Subcase d: k=1, h=2. We have

N+1
N1\ (VD) () (N+1) () N+1) a) (N+1)( l(a)
R syt = Pl agayiioy = P2t iayiay + Z(F Ha)i(e) L2(a)j(a)

(N1 (@) pal() (N1 (@)l (0) (N1 (@)l (o)
L) Fl(a»(a)) +y (Fua) (o) Pa(a)ite) ~ Ta()i(o) Fl(a»(a))'

oH#x
(8.43)
Ifj > 3 we get
N+1
(N+1)(a)
1 (8.10) N() N+ (a) pl(a)
(RN )z(ama)j(a) (8.8) O a0 (j-1)(e) aZ(MF a)(/ ) Zrl(aﬂ(a) F2<a i)

N+1
(N1 (@) (@) N1 (@) a1 (0) (N+1) (@) ol (o)
=2 Datater Tl + ; (F 1(o) Lata)jte) ~Ta(@yio) i /(a))
=1 oHFa

N(oc) l (o) () 1(o)
+Z< 1(e)1(0) L 2(a) (= 1)) F2<a>1<n>rl<a>o—1><a>)

oo
_Z N(oc) 1 (o) -r N(a) Fl(a)
I(a)1(o) 2(00(1 () 2(a) (o)™ 1) (j—1)()
oFa

where we added and subtracted the quantity > (FIIV((S))](U)I‘;EZ; G-1)(a) ~
oFa J

N(a) 1(o)
Fz(Q)I(U)Fl(a)UI)(a)> and where the terms

7 This only holds for j < N. Still, for j = N+ 1 each of these addends vanishes by itself, by means of (8.5), (8.10)
and (8.40).
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AT N(e)

N(a)
2 (-1 ~ P2

H(a)(j=1)(a)’
N1 N+1

(N+1) (o) pl() (8 10) N(e) (I-1)(a
ZFl(a)l(a) 2 (53 4 Fl(a)<z—1)<a>F2(a)<; H(e) = ZFl(a)l(a) 2D

S v @) (@ (10 S @ (-1)() -
N+1)(a la N(a — 1 a
_era 0 Tia) gy ~ 2 2w @i i) = IZ]F (T

and

; (TS T RS Yo T PRy
combine to form (RV )12\/((5))1 ()(j—1)(a)» Which vanishes by (8.38). Thus (R¥*! )(j(v;r)ll)((aa)) (o) VAN~
ishes by (8.5), (8.8) and (8.10). If j = 2 then (8.43) becomes

(RN+1)2,;11)($ (@) 3l(a)F( a)z a) 82(04)F§]2,$12)(S())

N+1
N+D(@)plle) — pO+D(@)pl@)
+IZ] (F i) Ta@2(0) = Taaia) Fl(“ﬂ(a))

(V1) () pl (o) _ (VD (@) pl(o)
+> (Fua (o) Tateata) = Paganiton Licare <a>>
oH#a
where in the first summation only the terms for / > 2 survive, as F;Ezgz(a) =0 by (8.10) and

T 2~ Py r}ﬁj e = 0. This yields

N1\ (N+1) () (8.5) (N+1) (o) a)
(R )2(a)1(a) 2(e) (5.18) 1(O‘)F2(a)2(a ‘92(a>r1(a)1( )

B (N—=1+2)(a) 1l() (N=143) (a0) -l (@)
Z:IZ;F (o)1() F 2(a)2(e Zrz(aﬂ (@) FI(D‘) 2(e)

where the last two sums cancel out by (8.18). Thus

N+1\ VD (@) (N—1)(a) (N+1) (@) (N—1)() ()
(R - ) 2(a)1(a)2(e) 81(‘3‘ |:Fl(a)l(a) + (FZ(a)Z(a) 1_\l(oz)l(oc ):| 62(‘1 a)l(a)

where we added and subtract the quantity 1"( 1(a )11)((03) and where

N(a) (8.18) N( (8.11) (N=1)(a) (8:18) (N=1)(e)
a2(oc)F1(§)1(a) - *Z aZ(a)Fu:ua Z al(a)rua 1(5) 8l(a)r1(a) (07)
oH#q oH#q
This implies

N1y (N+D () (N+1) (o) (N=1)(e)\ _
(R )z(an(a) 2(a) = Jia) ( 2(a)2(e) 1ﬂl(a)l(a)>_o
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because

POUHie) | pv @) (9 _p  uD)
2(a)2(a) 1(a)l(e) 2(a)2(cx) uZ(a)

(l+2)(a) () (N—I+1) (@)
uz(a)Z( o) = i)

does not depend on u'(®) (it only depends on {u'(") |0 # a} and {u*(®) |2 < s <N}). Ifj=1
then (8.43) becomes

N+1)(« a «@ « a
(RN+1)( e 81 a)le(v;r)l)(a) () Fil(v;L)ll(a))‘FZ( 11(\];2((1) 12((03)1(01)

2(@)1(@) ()
(N+1) () pl(@) N+1)(Oé) 1(o)
F 2(a)l(e) Fl(a () > ;1—‘2(& o) F 1(a)1(e)

where

(N+1)(a) (8:8) N(a)
al(a)rz(an(;) - 31(a)rl(§)1(a)

and
(N+1)() (8.18) (N+1)(a) (8:11) N(a) (8.18) R
82(a)rl(a)l(; ZGZ(a)Fuo)uaa Zal(a)rl(:)l(a al(a s)l(a)
oH#a o#a
mutually cancel out. This yields

N

(1 @)

+1 (8:10)  (N+1)(a) () N(a) ()

(" )2(a)1(a)1(&) o ~Dearttor Tt + 2 Ti@ie i
=1

(N=14+3)(a) () N@)  pl(e)
Zrzm)zo» i@ = 2 Do i)
oFa

(8.8) 1(a) Ne)  pl(e)
Fl(a)l Q)Fl(a)l(a +Pl(o¢)l(a) 1(a) () +Zrl(a M(a) l(a 1(e)

N
(N—143) () () 2 (N+1)( N(@)  pl(e)
= T Tl ~ Doz Tiie — 2 T i)
=2 oFa
(8 18) u
M) N—H3) (@ pll@) p2@) (VA (@)
(8 2) Z (Fl(a)l(a) FZ(a)Z(a) )Fl(a)](a) FZ(Q)Z(Q)FI(Q)I(Q)
1=
N(a) 1(0) (8 18) [ N(a) 1 (o) 2(a) (N+1)(a)
+ Y T @i > Mo imie + T Do
oFa oFa

N
(N=143)(a) _ (N—E1)(a)y (a)
+Z Dotz ~ Litayia) )F1<a>1<a>] 0
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because for each o # «

N
N(e) 1(o) 2(a) (N+1) () (N—1+3)(a) (N=i+1)(a) | pl(a)
Fl(oc)l(a)rl(oz)l(cf) + FZ(a)Z(a)Fl(a)l(a) + ZZZ (FZ(Q)Z(Q) - 111(01)1(0() ) I—‘l(o’)l(oz)

can be rewritten, due to (8.4), (8.7) and (8.9) as

3(a)
VD) p2e) (e )
ul@) — i@ _uua) Z { 2(a)2(e) (,,,zm) o

_ 5+2)(a IS (I—s+1)(a) | (8:14)
Z( 2(a)2(ex) l(a)l((x))u ] =0.

Case 2: a = § =7y # €. Our goal is to prove that

i(a) i()
Ry kaita) = Ok Unioyie) ~ Onto Tk
: ri) i) o)
+ZZ< k(o)l(o) h(e)](a) Fh(e)l(U)Fk(a)j(a)> (8.44)

o=1 I=1

vanishes. Let us first consider the case where 4 > 2. We have

i(a) (8.3) i i) i(a) (o)
R rity = @) = Ohce) k(a)/(a)+ZZ( ki) L (eia) Fh(e)l(o)rk(a)/’(a))
o=1I[1=1

where Fk(( )) () Only depends on {us(“) |1<s<my} and {u'(?) |0 # a} (thus it does not

depend on u"(©) as h > 2, that is Ol ) = 0). This yields

(@)
k(a)

l(a i(a) (o)
Ry eita Z”Zl( doi(o) T Fh(e)l<o>rk<a)j<a>)

where the terms Fh(( ; (o) and T’ (( ; (o) trivially vanish for o ¢ {«, e} by (8.2). Thus

i(or) i(a)
LA 55) Zrkmme) Wit =0

as T —0 by (8.4) for every [ > h (h =2 implies [ > 2). Let us now fix 7= 1. We have

k(a)i(e) —
(the terms I, o) and (@ trivially vanish for o ¢ {a, €} by (8.2))

1(e)j(e) I(e )1(0)

i(a) i(a) i(a) l l(a)
Ry Oiayite) = Ok Ligoja) ~ D@ Tigasa) + Z( ko)L 1)

i) l(a l(a l(e i(a) I(€)
Fl(e)l(a k(a)j( a)>+z< k(e)l(e)™ 1(e)j(a) I11(6)1(6)Fk(oc)f(cc))
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(8 4) i(o) — l(a l(a)
o5 K@l — AT ia >+Z< it 1))

_ pile) I() i) 1) _ pile 1(e)
F1<e>t<a>rk<a>j<a)> i@ ~Ti@1e ke 8.45)
We distinguish between the following subcases:
a.jz22k=22 cj=1k>22
b.j=k=1 d.j>2k=1.
Subcase a: both j and k are greater or equal than 2. Let us first claim that in this case
@)
k()T e), 81(e)rk(a),(a) =0. (8.46)
Indeed, if i < j then both r"f(ig (o and r;f( >) (« trivially vanish by (8.3) and (8.10) respectively.
If i =j then
(8 4) MmeEe (4—k) ()
ak(a)]'—\] 1(e)j( al(e)l—\;c(oz)j(a) (8 10) a k(a) |:u1(o¢) —yl(e :| 81(5)F 2(a)2(ex)
(8.10)

2() 2 (8.7)
—010 a2y O = O
For i >j (8.46) can be proved by induction over i (starting from the case i =j that we just
handled), using (8.4), (8.8), (8.10), (8.15) and (8.18). Thus (8.45) becomes

Rl(a) (83)i(ri(a) i@ i@ pl@)

i) Pl
(k@) (55) 2 i1ty ~iceca i) F T T

k(a)1(e)™ 1(e)j(ar)
i) pl(e) (8 4) pite)  pla) i(a) I(a)
~Ti@nelkwi@ Z( K@ 1) Fl(e)l(a)rkw)j(a))
which trivially vanishes for i <j. For i > j we have

i(a) 54 v ( (i—k— L) (@) (=1 (@) _ i~ D)(@) p(l k—1+4)(a))
IS i) 2= 226 Lione) ~Tioi@ a2

(i—k—14+4) (o) 7 (I—j+1) (o) (i=14+1) () p(I—k—j+4) () _
- ZFZ(a)Z(a) I‘ll(e)l(a) Zrl(e)l(a I‘l2(oz) 2(a) =0.

Subcase b: j =k = 1. We have
@ @ > ((pite) )
i( i( I(
R, (e)1(a)1(a) — al(a l(a al(e)rua)l(a) ; (Fl(a)l(a)rl(e)l(a)

i(a) l(a) i(a) 1(e) i(a) 1(e)
Fl(e)l((x)rl(a)l(a)> +F (a)l(s)F](e)l(a) F](G)I(G)Fl(a)l(a)

where in the summation only the terms for / < i survive (by (8.4) and (8.8)) and

(8.18) 51( )Fi(a)

i(c)
51(6)Fl 2 1(e)1(a)

1(a)1(c) =00

e)l(oz)
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as F’((S;l(a) only depends on u'(9) and u'(®) by means of the term u'(®) — 4'(¢) Thus
Ri(® (8.18) i ( rit@)  plle) rie) I(a) )
1(6)1(0)1(00 - ; 1(6)1(0) 1(e)l(a) 1(6)1(Q)F1(€)1(Oé)
rile)  pl@ i(a) () (8.4)
- > Z ( 1)) L 1(e)1(a) F1<e>1<a>rl<a>1<a)> =0
ocd{a,e} I=1

Subcase c: j=1, k > 2. We have

i(or) (8.18),(8.3) i(e) i—k+1) () t(a a)
K@) 1(@) (5 47 (5.10) k(@)1 1(a) T 10T e)l(a "’Z( ko)) L 1(e)1(a)

_ i) l(a) i(a) 1(e)
Fl(e)l(a)rk(a)l(a)> + Fk(a)l(e)rl(e)l(a)'

Let us first claim that in this case

(i—k+1)(a) _
8k(a )l(a) +81 Fl(e)l(oz) =0. (8.47)

This condition can be proved by induction over i (starting from the case i =1 where (8.47)

holds by (8.4)), using (8.11). Thus

i(a) CNC (pile) @) pite) i) (@) (o)
Riok(@i(@) =2 (ka)l(a)Fl(e)l(a) Fl(e)l<a>rk(a>l<a>) i@l i@

i—k+2
(810) i(er) l(a i(a) I i(a) 1(€)
(8.8) ; Lot 16100 ZF (e) a)Fk Ot)l(a)+Fk(a)l(e)rl(g)1(a)

which trivially vanishes for i < k by (8.4) and (8.8). For i > k we get

i—k+2

i(a) (8.4) (i—k+1)(a)n1() (i—k—1+4) () - l(e)
Rl(e)k(a)l(a) (8 10) Fl(a)l(a Fl(e)l () + Z F 2(a)2(ex) Fl(e) ()
i—I+1)(a) () (i—k+1) () 11 (€)
—ZF @ ki@ Tliwie i
(@ ple) B (@) i)
i—k+1)(« la k— l+4 «@ la
=L@ T T Z Fz(a @ Lieia
i—k+1

(@) pl=rtD(@) | Pk @) pl©)
- Zz i@k T T
1=

i—k+1
_ (o) (i—k—I+4) () (i—I+1) ()
- IZZ I11(6)1(01) <P2(a)2(o¢) Fk(a)l(oc) >

2(a) (i—k+2) () (i—k+1)(a) n1(€)
Tl e L1
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(8 8) () (i—k—I+4)(a) (i—k—1+2)(a)
Z SIS (Fzm)z(a) BRI )

2(04) (i—k+2) () (i—k+1)(a) n1(€)
ol i@1@)  Tii©e i)

i—k+1
84 (o) (i—k—I+4)() _ (i—k—1+2) ()
(87) 111(6)1(a) (F 2(@)2(«) =1 1(a)1(a) )

1(6) i—k+2

l(a (e) (z k s+3)(oz) s(a)
u2(a)
i—k+1
-3 i (rézaﬁz{;““‘” i)
F}Ef}z) 6)lzk:zr(z k— s+3)(a s(a)
u2(a) )

The vanishing of this quantity can be proved by induction over i (starting from the trivial case
where i = k), using (8.4), (8.7), (8.9) and (8.14).

Subcase d: j > 2, k=1. We have

l(a) (8.3) i(a)

1)) (53 D@ 1(0)@) ~ AT

a)}( )

pi@)  ple) _pite)  pla)
+Z< 1ot T 1)) F1<e>z<a>rl<a>j<a)>

where
i(a) (818 )
ol = Ol 0w~ 2 Dol = @i
oc¢{a,e}
as F'(( ;( , only depends on 1'(©) and 4'(®) by means of the term u'(®) — 4'(9), Thus
i(a) 84) : (i—I4+1)(e) —j+1 (a) (i—4+1) (@) =+ 1) ()
Rin@ie =g 22T i@i@ L@ Zrl(en(a) D~ =0

I=j
Case 3: o« =y = € # (. Our goal is to prove that

() (82) (o) i(a) (i) i)
Rieoworics) = O Thieyics) — Ot Tkeics) IZI(Fk(a)l(a)rh(a)j(ﬂ)

i(0) (o) pie) o) i) [B)
~ Diaicay Vo B)>+ Z( kei(e) L n@yis) ~ Tyes)t k(a)J(B))
(8.48)
vanishes. If j > 2 we get

(o) () pite)  plB) i) pi(e)  (84)
Ry = Lrtan@ln@is) ~ Tayieyricsy = O
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Let us then fix j = 1. We have
i(a) i(a) l I(oz)
Riehucan(s) = Ok Thiyis) ~ i Lo o) Z ( Kai(a) L (a)1(9)

mpg
_pile)  ple) rita) (@) ()
Lo a)l(ﬁ)> Z( Ko TR () Fh(aﬂ(mruan(m)

(8.49)
where, by (8.47),
t(a (t 1+1)(a)
)1 1(0) = ~ @ 1 0)1(0) (8.50)
for every € # o and ¢ > 2. We distinguish between the following subcases:
a. both % and k are greater or equal than 2
b. h=1,k > 2 (this covers h > 2, k=1 as well)
observing that R ((a; K1 (8) = 0 automatically whenever k = h.
Subcase a: both k and / are greater or equal than 2. We have
(@) (83)(8.4) o i) it
i( -9),(6. i(a i(a l «
Riak@n(®) g9 @ Lhan(s) ~ Ol o T Z Lty (s)
i—h+2
- Z Do Tkens)
where
i() (a) (8.4) (i—h+1)( (i—k+1)(a) (8.50)
o) Cheri(8) ~ One)Lhan(s) = e litayis)” — I@li@yics = O
This yields
i—k+2 ) i—h+2 (@)
i(a l o"
Riouani(s) = Z T Tienis) = Z D Doy 5D

which vanishes automatically for i < k and by (8.4) and (8.10) for i > k.
Subcase b: 1=1, k > 2. We have

i(a) (8.3) (8.10) i(a) ()
R1(a)k(a)1(5) @;) k(a)rl(a)l 31(& k(a)1(8)

i—k+2
i(e) i(a) i(or) 1(B)
+ Z T ) ZF Ko D) + T Diiencs)
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i—k+2
(8.4) (8.10) 1i(ar) l(oz) (i—k—144) () -l(@)
(8.8) (8.50) Fk(a) 1(c) 1((1 g+ Z I‘2(04)2(04 Fl(oz)l(ﬂ)

(i=I41) (@) (I—k+1) (o) i) 1(8)
_ZF ot Li@i@d) T ke i)

i—k+2
(8:8) H(i—k+1) (@) pl(a) (i—k—1+4)(a) ()
D@ Fiahe Z Dyt Fi@es)
(i—k 1) (@) 1 (@) HCH( ) () (@) (o) )
i—k+1)( 1« i—k—I14+2)(a « i(a 1
~Tiayite Tiae = 2 D@ Tieie + T T

=2

i—k+1
(8.4) (i—k—1+4)(c) (i—k—1+2)(a) \ l(x) 2(ar) (i—k+2) ()
= ; (F 2e2le)  ~ Li(a)i(e) )FI(Q)I(B)JF DoayatTi@)i(s)

(i—ktD)(e)pl(8)  (8.17)
+ s Litis = O (8.52)

Case 4: 3 = v = ¢ # «. Our goal is to prove that

i(a) o) l(a t(a
R onie) = o) Thiiis — O Ty + Z( RPN i WO

i(a) i i) (B)
— e Thon ﬂ)) Z( o TR Fh(ﬁ)l(ﬁ)rk(ﬁ)j(ﬁ))

vanishes. Without loss of generality, by the symmetries of R, we can set h > k. In particular,
h > 2. We get

i) i(@) (B
Rh(ﬁ)k(ﬁ)f(ﬁ) - ah(ﬁ)rk(ﬁ)/ JrZrk(ﬁ)z &L ni@)is) (8.53)

which vanishes by (8.5) for k > 2. For k=1 (8.53) becomes

Ri(a) (8.18) (8.2)

) i) (@) pl(s)
KBIE) a1 T

1(a)1(B) h(ﬂ)/(,@)
which vanishes by (8.3) and (8.10) for j > 2. For j =1 it reads

18

i(a) i(a) _
R, -T w((s) =9

P
wnene = Il ~Tiwe

as Fi((z))l(ﬂ) does not depend on any of the u"(®)s for & > 2 and (1 < 2 < h)

1 5 (8 18) (8 4)
00 2
o#£B
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Case 5: a = 3 # v = €. Our goal is to prove that
i() (8.2) i(a) < pite) i@
Riitar = O Thiica) v>rk<w (@ Z ( ki) i)

(o) o) I o—ey i(0) I
— Lty Pric a>> + Z( ki nice) = Tneyien Tiy )J(a))
(8.54)

vanishes. Without loss of generality, by the symmetries of R, we can set # > k. In particular,
h>2. We get

i(or) (8-3) i(a) l(’Y)
Ry gg) ~O0 k()i Zrkw (L rice)

where
il , (83) - i(a) () (8.5)
Z oo T (54) 2= L Priey = -
As Fl((a)) () does not depend on any of the u"(")s for h > 2, Rh((i))k(,y)j( )= 0.

Case 6: o« =y # 8 = e. Our goal is to prove that
i(a) 82) rite)  plle)
Ry gy = O a>rh<5>; 8h(B)Fk(a)J + Z ( ko)L m(B)i(8)
i(a) i@ i) i)  U(B)
— e Do /w)) + Z ( ko(8) L n(p)ics) ~ Fh(ﬁ)l(ﬁ)rk(a)j(ﬁ))

i 1(0’)
+ ) ZF ko)) L n(8)i(8) (8.55)
o¢ (o B} I=1

vanishes. For j > 2 (8.55) vanishes by (8.3)—(8.5), (8.10) and (8.18). Let us then fix j = 1. (8.55)
becomes

(o) B i(a) i(a)
Riian(8) = @ Liayis) = ) Va1 (s)

z(a) l () i) ()
+ Z ( Koi(e) L m(B)1(8) ~ Fh(ﬁ)l(a)rk(a)l(ﬁ))
pie) o) i(0)  l(B)
+Z( ko) (8) L h(a)1(8) Fhw)z(ﬁ)Fk(a)l(m)

i l(o’)
+ ZF Ko@) V() 1(8) (8.56)
o¢{a,p} I=1

We distinguish between the following subcases:

ah=2k>2 ch>2k=1
boh=k=1 dh=1k>2.
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Subcase a: both k and / are greater or equal than 2. The vanishing of (8.56) follows from (8.3)—
(8.5) and (8.18).

Subcase b: i = k = 1. The vanishing of (8.56) follows from (8.3)—(8.6), (8.16) and (8.18).
Subcase c: i > 2, k= 1. The argument of subcase a applies here as well.
Subcase d: h =1, k > 2. By (8.3)—(8.5), (8.10), (8.18) and (8.47), we get

i—k+2
i(a) l ()
Rk (s) = Z T T anw ()L a)1(8)

i(ar) 1 (B) i(a) (o)
e i+ 2 T G-
o¢{a,p}
This quantity can be proved to vanish by (8.16)—(8.18) and other conditions from Proposition
2.2.

Case7: a = ¢ {~,e}, v # . By (8.18) and (8.2)—(8.4), R;((:) k(i) = 0 trivially.

Case8: o=~ ¢ {B,¢}, B#e. R'(a Jk(a)ji(p) Vanishes by (8.2)~(8.4) and (8.16).

Case9: 3=~ ¢ {a,e},a#e. R;l(((z)k(ﬁ)](ﬁ) vanishes by (8.2), (8.3), (8.5), (8.6) and (8.16).

Case 10: v = ¢ ¢ {a, B}, a % 6. R;f(j iy, trivially vanishes by (8.2)~(8.5).
Case 11: «, 3, v and ¢ are pairwise distinct. R;((‘gk(v)j( 8) trivially vanishes by (8.2).
This concludes the proof of the flatness of V.

8.8. Uniqueness

In order to prove uniqueness we have to prove that (part of the) conditions (1)—(5) force
V to be of the form given in Proposition 2.2. We have seen that the condition Ve =0 is
equivalent to (8.18). Let , f3, v be pairwise distinct. Using the condition V;cj, = Vcj,

Vi,j,k,l € {1,...,n} after a long but straightforward computation one obtains:
1(B) _ 1B .
O Lia)(j+0)@) = Lt e’

(i) ka = Uifaus) When k—j =1=m

k(o) - .
(iii) F(Z D(@)i(a) = Fl(a) %J () when the lower indices are both different from 1 and not

simultaneously equal to 2;

. k() k1) (@) . .
(iv) Fz(a»(a) L) (1) (a) Whenj# L
(v) T

@) _pk=itD(a),
l((a))/(B) (BB
(vi) Fl(a)j (8) = 0.

The above quantities must be considered non-null when the indices do not exceed the size of
the corresponding block. Using condition (8.20) by straightforward computation one obtains:

F(k*i*j+4)(a) ifk—i—j>—-2
1 rR@ ) 2(a)2(e) - when i,j > 1
i(a)j(a) {0 ifk—i—j< -3 !
2(a) _ MaEa
2. FZ(Q) 2(a) T wr(e)
3.7 —0 when orj>?2

H(a)i(a)
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4. Ff((z))]( 5 =0 whenk<iorj>2

5. Figzgl(ﬂ) 1<£;g€,fl(/3)
(i+h)(a) _ (i+h—s+1)(c) PRI
6. Liayi(s) = ~ @@ ul(m Z Lia)1(8) (@) forh>1
n(a) _ p(=2)(a) 2(a) () (4+2)(«) () n—1)(a
7 Ty a)a(a) = Fl(a)l(a) L5 a)2(a) wcr — <a> Z( )2a) " Li()i(a )) ut=h(e) for
n>38.

Collecting all the conditions above one obtains Christoffel symbols of the form given in
proposition 2.2.

9. The dual structure
In this section we study in more detail the dual structure (V*, %, E) where:

e F is the Euler vector field,
e x is the dual product defined by the formula

X*xY=E 'oXoY

for arbitrary vector fields X and Y,
e V* is the connection defined by the Christoffel symbols

I\*k Fk _ C*lv Ek

Proposition 9.1. For each o € {1,...,r} the components of the inverse of the Euler vector
field E are given by

1

()" = ey k ©.1)
k+1)(a k sHD(@) (s41)(a
(B0 = a); MOy i <k<my—1. (92)
Proof. This can be proved by straightforward computation. O
Remark 9.2. By definition, the dual product * must verify the following relation:
X+xY=E 'oXoY 9.3)

for X, Y arbitrary vector fields. This means that

i.e.

8 The last summation is not to be considered for n = 2, 3.
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Therefore
@) e e aa) e b Rm o pya(e) e b(a)
€ Bk = 212}; Ca(o)b(1) Si(BIK(Y) = ;} (E™)™ oo ok
o,T a a,b=
< opyala) g o o (i=b+1)(a)
= (E) 01 05050 = 0565 > (ET) L
a,b=1 b=1
= 0560 (E~ )ik ), 9.4)

Proposition 9.3. The Christoffel symbols of the dual connection V* are given by

«k(o) k() a (k—=i—j+2) () | ok
T iaien = Ciggyin) — 0805 (E7) | 1= moeq
oH#a

+(1-4%) (1 —ZngT> (1-35) 85, 610/ of =28 9.5)

for every choice of o, B, vye€{1,...,r} and every ke {l,....my}, i€{l,...,mg}, j€
{1,...,m,}.
Proof. The proof follows from (3.4) and lemma 8.10. O

10. Generalized Lenard—Magri chains and the principal hierarchy

The main idea at the origin of the present paper was to identify the integrable hierarchy
obtained applying the construction of [19] starting from a (1, 1)-tensor field L with vanish-
ing Nijenhuis torsion with a set of symmetries of the principal hierarchy associated with a
bi-flat F-manifold, for each of the canonical forms found by David and Hertling in [9] for
L = Eo in the case of regular F-manifolds with Euler vector field. This amounts to require that
all the tensor fields

V() :X(O)OZEO:I
V1 :X(I)O: (E—aoe)o:L—aoI
Vo=Xpo=(EocE—ayE—aje)o=L*—apL—al

Vir1 = Xgenyo =LV —ald = (BT — aoE* —a B ' 4+ — age) o
:LkJrl —a()Lk —a]Lki1 + —akl

defined recursively by
dayy = drax — axday, ap = Zm(ﬁaul(a),

satisfy the condition dy Vy =0 (see (3.7)). Actually, in order to get the connection V, we
needed to impose only the first non-trivial condition

dv (L—aol) =0.
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In this section we will prove that the same condition is satisfied by all tensor fields V;. In other
words, as it is natural to expect, the connection V is associated to the full hierarchy and not to
a single special flow. To prove this fact we will use the commutativity of the associated flows
[19]. According to the results of [22] the commutativity of the flows associated with V, and
V3 can be written as

. ) i ) k
Cis {(Llexm)c)- X]E/B) - (Llexm ) X(a) + Gt [X(a) ] )] }
P . ; k
+cj [(LICX@ ) XI((ﬁ) (Llexw)c)skx(a) + i [X(a): X(p)] } =0.

We have the following lemma.
Lemma 10.1. The commutativity condition can be written as

V: (dy W)j,+ Vi (dy W), + Wi (do V)j, + Wi (dw V)i = 0. (10.1)
where V=X ,)0 and W = Xg)o.

The proof is a straightforward computation.
Using this lemma we can prove the following proposition.

Proposition 10.2. The tensor fields Vg satisfy the condition
dyVg =0, 5=23,4....

Proof. Due to the previous lemma and taking into account that dv V) = 0 we can assume the
validity of the equation

Vi (dg W)j, + V5 (dg W)j, =0, (10.2)
with V=L — apl and W = V for some fixed 5 > 2. We recall that

Va(e) = 85 (w1 gy — S ).

In particular, Vz(a) = 0 whenever a # (. Using these facts it is immediate to check that the

condition (10.2) in David-Hertling canonical coordinates reads:

(o) i) (0) i)
Vit @ Wi+ Vigg) (@9 W) o) =0

Let us study its consequences. We consider the following cases:

l.L.a=p3
2. a # B.

Case 1: o = 3. We fix the index i. In this case we have

We show that (dv W)’((nj)fq)(a) (mah)(a) = 0 by a double procedure of induction, over g and
h. By taking j = m,, we get

0=V,\ % (deW)iD) oy + Viie) (do W),

me (o) ma (cr)s(cv)
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which gives

_ e i) (e) i)
0=V, (@) @YW 1y (arsta) F Vime—1) (@) (99 Wi (a)s(a)
z; (de)l(V) V(ma_l (a) de)l(’Y)

(ma_l)(a)ma(a) (ma—l)(a) ma () (ma —1)(c)
_ u2(a) (d W)l(’Y)

()
Mo (@)ma () (a)ma ()

thus (dvW)W(ﬂ)(a)m (o) =0 for [ =mq — 1 (we already knew it, due to the antisymmetry of
dv W in the lower indices),

(@) i(v) a)
0=V, @M ) st T Viom—2)(@) @5 W)l

me ()
a(a i(7) ma—2)(e) i)
= Vo) oW ) i+ Vone 2o @ W) a2
ma—1)(a) i(v) ol )
ng ~2)(e) @YW (@) o —1)(e) T ‘/<"m —2)<a)(dVW)ma<a>'"a<a>

_ 2(«a) i()
=u" Ay W), (o) ma—1)(@)

thus (dy W)™

() (ma—1)(a) = 0 forl=m, —2 and

(@) ")
0=Vl W)y sty + Vi 1>(a)(de)

20)
me (a me (a)s(ax)

_ ,,(a)(a i(7y) ma—h—1) i(7y)
=V,° @ @YW ayme (o) )+V(m —n—1)( (dVW)ma(a)(mafh 1)(a)

i(v)
+ Z Vym —h—1)(a) (de)ma(a)s(a)

s=mq—h

Mo
(ma—h)(a) i(v) s(a) i(v)
iv(m(yfh («x )(de)ma(a)(mafh)(a)—’_ Zh lv('71‘17h 1)(&)(de)ma(a)x(a)
s=mqo—h+

for [=m, —h—1 (for a given h > 1). This last condition, if we inductively assume that

(Ao W) oy —ry (e = O for each r<h—1, yields (dgW)\\") . =0. We have

just proved that (dVW)( )(a)](a) =0 for every choice of j. We want to prove now that

(dg W)i

(o —q) (i) = = 0 for each choice of j for a given g > 1. We inductively assume that

(dyW) ((m)_r)(a)j(a) = 0 for each choice of j and r < g — 1. By taking | = m,, — g we get
(@) i(v) (@) i(v)
0= Via) @Y W)t —g)(@1s(0) T Vima-a@) @ Witasta

where (dv W)((mz g)(a)s(a) =0 and (dyW). Ea))s( o) =0 foreach s > mq —gq+1 thus

- Mo —q

V@) (dow)i®) (@ ”)
Z e [ATW s+ 20 Vi e AW )

s=j S=Mao—q
Mo —q

Y(a ) Mo — q i(7)
Z Vi) @M i T Voo o) W) )
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Mo —q
_ i@ i) @) (o))
= Vi) @5 W), _g)@)ita) T Zl"}?a (A9 W) e —g) (@500
=+
i) (e )
Mo — q s(a 7
Vo e W) o Z]V (A9 W) e —g) (@)s()
s=j+

which is trivially verified whenever j > m,, — g and gives

0=V 20 ) W) )0 -ap(e)
thus (dv W) (m)_q)(a)(ma —g)(a) = Oforj =mq —g—1and
Mo —4q
= 3 Vi @IWG e
e Mo —4q
= Vor 2 e @5 W) ) cyma—iy(@) Z+1V§mci)—z (e @5 W) gy @1
it

for j =m, —t—1 (given some 7> 1). This last condition, together with the induct-

ive assumption of (dvW)((mz g (@) (ma—r)(a

(dv W) <(mj —g) () (ma 7)((1% )—O This proves that (dy W) (En) —g)(a)i(ay = 0 for each choice of

j and in turn that (dy W)',” (i) = O for each choice of j and L.

)—O for each choice of r<r—1, yields

Case 2: o # . We fix the index i. In this case we have
(o) (o) 1(7) (@) i(v)
0= Vi) (s W3 o) + Vi) @ Wi 0) = Z Vie) @9 Wia)s(a)

mg

v(ﬁ z(v) (1) _ i() v(a i(7)
+ZV1(B) (A9 W)i(ays(s) = (@ = a0) (Ao W)yi3),0) + Z Via) (@9 W)ig) (o)

s=j+1
i i) i)
+ (' —ao) (dy W) + Z 3 ds W)
s=I+1
_ (@) _ 1(8) )i ® (o W)
= (u w!) (Ao W)y ) + Z AT WH ) + Z Vi) @ W)iass)
s=j+1 s=I+1

which is trivially verified when v # «, v # 3 since

i(v) i(v) (o) (v) _ i) (o)
(@ Wiis) = 0 Wiis) + T Wich) — s Wiia) = Tt Wi
where WZE’: )= =0 whenever p # v (because W=V, is a polynomial in L and LZEZ ; =0

whenever 1 # v) and FZEZ 30(7) = 0 whenever u, v and 7 are pairwise distinct. We are then left

to consider the case where 7 = o # 3 (due to the antisymmetry of dv W in the lower indices,
this covers the case v =  # « as well). We have
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_ (@) _ 1(8) i(a)
0= (“ )<de)< B)i(a)

o (oc 1 z ()
D Vi Ay WG o+ Z 5 oW,

s=j+1 s=I+1
where
i(a) l(a) « 1 ()
(dyW)ie)is) = Ot Wiis) + <a)s<ﬂ>W?(B) A Wiie) = Tt Wit
_ i(e) i) )
=T Wity = 9 Wice) = T Doy Wi

trivially vanishes whenever i <j (W () = =0 for i < j because W = Vj is a polynomial in L and

LJ'EZ; = 0 for i <j). We are then left to consider i > j. For i =j we get

— ('@ _ 1B ()
0= (” )(de)( B)i(a)

- ) (o Wy @ (go Wy
+ D Vi) @ WNiG)a) + Z Vigs) [dvW)Qscs)
s=j+1 s=I+1

_ (ul(a) 1(8 )) (dej(a)j(a I Z Vs( dvW}(a) )
s=Il+1

which gives

— (i@ _ 18 Jj(er)
0= (“ >(dVW)’"/3(5)( )

thus (dv W)mﬂgﬁ)](a) =0for/=mg and

mg
(o | (@) (@)
0= (' —u' @) (de Wi i Do Vi @ W
s=mg—h+1

for [ = mg — h (for a given i > 1). This last condition, together with the inductive assumption

of (dvW)ang(mﬁ 1 () = 0 for each choice of r < h—1, yields (dVW)JEa;(mﬁ _ny(py = 0- This
proves (dy W)ngg i(p) = O for every choice of /. We inductively assume that (dyW) ((104(-):[)((;)) =0
for every [ and for every t < p — 1 (for a fixed p > 1). We want to show that (dy W) ((](;1;21(;;) =0

for every [. For i =j+ p we get

_ [, (a) _ 1(B) (j+p) ()
0= (u " )(dvW)( e

S (49) (@) G+9)(e)
+ Zl Vit [@9W)ia3ay + zl: Vi) ds W)
s=j+ s=I+1

where (dy W)l((j;)‘;zgg) =0 for every s > j + 1 by the inductive hypothesis, so

0= (41— oW + 3 Vi oLy
s=Il+1
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which gives

0— (ul(a) _ ulw)) (dvW)f,f}I%(j?c)w

thus (dv W)f;;’g)g?i) =0 for [ = mp and

mg
(e 18 () (@) ®) (p) ()
0= (@ @) (@eW) 0+ D VIS AW
s=mg—h+1

for I = mg — h (for a fixed h > 1). This last condition, together with the inductive assumption

of (dg W)(1 "0, ) = 0 for each choice of r < h— 1, yields (dy W)(, {50, - = 0. This

proves (dy W),((’Jﬁgfﬁ) = 0 for every choice of / and in turn (dv W);Ef;; i(p) = 0 for every choice
of i,jand L.
This concludes the proof of the fact that (10.2) implies dy W = 0 for the choice of V=

Lfaoland W= Vk. O

11. Conclusions

In this paper we have presented a general construction of multiparameter families of regular bi-
flat F-structures (V, V*, 0, %, e, E) starting from a (1, 1)-tensor field L with vanishing Nijenhuis
torsion and a special solution of the equation ddyay = 0.

By construction:

o the tensor field L coincides with the operator of multiplication by the Euler vector field;
o the flows defined by the tensor fields

Vo=eo=1
Vi=(E—ape)o=L—apl
Vy=(EoE—ayE—a,e)o=L*—ayL —ajl,

with ay,ay, ... defined recursively by
day = dpay — arday,
define symmetries of the associated principal hierarchy.

Due to David-Hertling’s result we have assumed L to have block-diagonal form with each
block of the form

W@ 0 .0
ur@) gt 0

Le=| . . - (1L1)
wel@) ) e
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Moreover motivated by the example of semisimple Lauricella structures we have chosen ag as
a weighted sum of the traces of the blocks defining L:

ag = Z eaTr(Ly).
a=1

Our construction works for any number of Jordan blocks and for any choice of the weights ¢,.
Some preliminary computations suggest that this construction could be further generalized
considering an arbitrary linear function ay as starting point:

ap = i i{:‘i(a) ui(o‘).

a=1i=1

Unfortunately in this case the computations become much more involved due to more com-
plicated ‘interaction’ between different blocks and the strategy used in the present paper does
not seem to work anymore.
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