By means of the Fenchel duality, we introduce a dual problem associated to an equilibrium problem that turns out to be an equilibrium problem itself in the dual space. We present conditions which entail the solvability of the primal and dual problem. Moreover, we introduce the notion of robust and optimistic solution for parametric equilibrium problems, and we show that the solutions of the dual of the robust problem coincide with the optimistic solutions of the dual parametric equilibrium problem.

Bianchi, M., Pini, R. (2023). A Note on Fenchel Duality for Equilibrium Problems. MINIMAX THEORY AND ITS APPLICATIONS, 8(2), 409-422.

A Note on Fenchel Duality for Equilibrium Problems

Rita Pini
2023

Abstract

By means of the Fenchel duality, we introduce a dual problem associated to an equilibrium problem that turns out to be an equilibrium problem itself in the dual space. We present conditions which entail the solvability of the primal and dual problem. Moreover, we introduce the notion of robust and optimistic solution for parametric equilibrium problems, and we show that the solutions of the dual of the robust problem coincide with the optimistic solutions of the dual parametric equilibrium problem.
Articolo in rivista - Articolo scientifico
Convex analysis; duality; equilibrium problems; Fenchel conjugation; robust solutions;
English
2023
8
2
409
422
partially_open
Bianchi, M., Pini, R. (2023). A Note on Fenchel Duality for Equilibrium Problems. MINIMAX THEORY AND ITS APPLICATIONS, 8(2), 409-422.
File in questo prodotto:
File Dimensione Formato  
Bianchi-2023-Minimax Theory Appl-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 125.72 kB
Formato Adobe PDF
125.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bianchi-2023-Minimax Theory Appl-AAM.pdf

accesso aperto

Descrizione: Post-print
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Creative Commons
Dimensione 302.82 kB
Formato Adobe PDF
302.82 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/443318
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact