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Abstract

In this paper, by means of the Fenchel duality, we introduce a dual problem asso-
ciated to an equilibrium problem that turns out to be an equilibrium problem itself in
the dual space. We present conditions which entail the solvability of the primal and
dual problem. Moreover, we introduce the notion of robust and optimistic solution for
parametric equilibrium problems, and we show that the solutions of the dual of the ro-
bust problem coincide with the optimistic solutions of the dual parametric equilibrium
problem.
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1 Introduction

It is well known that an equilibrium problem, (EP) for short, is defined as follows:

find x ∈ K such that F (x, y) ≥ 0 for all y ∈ K (EP)

where X is a Euclidean space, F : X×X → R is a bifunction, and K is a non empty convex
subset of X. Despite these problems are often studied in a more general setting like, for
instance, real locally convex Hausdorff topological vector spaces, in this paper we will focus
on the finite-dimensional setting. Furthermore, the bifunction F can be taken with values
within (−∞,+∞], like in [1].

In the seminal paper [9] Blum and Oettli pointed out that equilibrium problems include
as special cases optimization problems, variational inequalities, complementarity problems,
fixed point problems and Nash equilibria. For this reason in recent years many works on
equilibrium problems were interested in extending results of these particular instances to
the more general and unifying setting of equilibrium problems.

One of the most interesting topic in optimization is certainly duality.
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Duality for equilibrium problems was initially studied by introducing the so called Minty
equilibrium problem (MEP), a natural counterpart of the Minty variational inequality (see
for instance [16]):

find x ∈ K such that F (y, x) ≤ 0 for all y ∈ K (MEP)

Anyway, this approach is not able to recover any of the well known dual problems in case
of optimization. For this reason, inspired by duality for convex optimization, some authors
proposed a dual problem associated to an equilibrium problem (see [8] and [17]). In [17]
the authors build, via Fenchel conjugation, a dual problem to (EP) that is an optimization
problem involving a gap function. On the other hand, the approach proposed by Bigi et
al. in [8] is inspired by the known relationship between subdifferentials of a function and
its conjugate, and is applied to the so-called diagonal subdifferential of a bifunction. This
approach recovers, in particular, the duality approach for variational inequalities developed
by Mosco [18]. Lalitha, in [14], pointed out that both dual problems are indeed equivalent
under mild conditions.

The main drawback of the formulations in [8] and [17] is that the dual problem is not an
equilibrium problem itself. To fill this gap, in this paper we propose a dual formulation of an
equilibrium problem associated to a saddle function, which is again an equilibrium problem
in the framework of the dual space. Observing that the solvability of (EP) is equivalent to
the minimization of a gap function associated to (EP), the dual equilibrium problem arises
naturally as the Fenchel dual of the minimization problem. We present conditions which
entail the solvability of both the primal and the dual equilibrium problems.

Our approach recovers the special case of dual Fenchel optimization problems.
In the second part of the paper, we introduce the notion of robust and optimistic solu-

tion for parametric equilibrium problems starting from the well known notions in case of
optimization problems (see for instance [5]). By means of our formulation of duality, we
are able to show that the solutions of the dual of the robust problem coincide with the
optimistic solutions of the dual parametric equilibrium problem, thereby extending a well
known result in case of optimization.

The paper is organized as follows: in Section 2 we recall some preliminary notions and
results. In Section 3 we present the dual equilibrium problem (DEP) for saddle functions.
In Section 4 we study the solution set of (EP) and (DEP) and in Section 5 we address
the special case of minimization problems. Finally, in Section 6 we deal with robust and
optimistic equilibrium problems.

2 Preliminaries

In this section we recall some preliminaries on Fenchel conjugation, bifunctions and equi-
librium problems.

Let X be a Euclidean space and denote by X∗ its dual (even if they are isomorphic, we
prefer to distinguish them for the sake of clarity in the forthcoming notations). Given a
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function f : X → (−∞,+∞] the Fenchel conjugate f∗ : X∗ → [−∞,+∞] is defined as

f∗(x∗) = sup
x∈X

(⟨x∗, x⟩ − f(x)),

where ⟨·, ·⟩ denotes the usual scalar product. For any function f , the conjugate f∗ is always
a lower semicontinuous and convex function. If f is proper, i.e. f(x′) < +∞ for some
x′ ∈ X, then f∗ never takes the value −∞. Moreover, if f is bounded from below, then
f∗(0) < +∞ and therefore f∗ is proper.

Note that for every x ∈ X, x∗ ∈ X∗,

f(x) + f∗(x∗) ≥ ⟨x∗, x⟩

and the equality holds if and only if x∗ ∈ ∂f(x), where ∂f denote the subdifferential of f
(see Proposition 5.3.1 in [15]).

Given the indicator function of the set K ⊂ X

δK(x) =

{
+∞ if x /∈ K

0 if x ∈ K,

we have that
iK(x∗) = inf

x∈K
⟨x∗, x⟩ = −δ∗K(−x∗).

Proposition 1. (see Proposition 13.41 in [4]). Let {fi}i∈I be a family of proper, lower
semicontinuous and convex functions defined on X, such that supi∈I fi is not identically
+∞. Then (

sup
i∈I

fi

)∗
=

(
inf
i∈I

f∗
i

)⌣

where f⌣ denotes the lower semicontinuous, convex and proper envelope of f.

The Fitzpatrick transform associated to a bifunction F : X ×X → R is the bifunction
φF : X ×X∗ → (−∞,+∞] given by

φF (y, x
∗) = (−F (·, y))∗(x∗) = sup

x∈X
(⟨x∗, x⟩+ F (x, y))

(see [6]). Note that, by construction,

i. if F (x, ·) is convex for every x ∈ X, then φF is lower semicontinuos and convex on
X ×X∗;

ii. if F (·, y) is upper bounded for some y in X, then φF is proper;
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iii. if, for every y ∈ X, the function −F (·, y) is lower semicontinuous and super coercive,
i.e.,

lim
∥x∥→+∞

−F (x, y)

∥x∥
= +∞, (1)

(see Definition 11.10 in [4]), then dom(φF )= X×X∗, i.e. φF is real-valued; in particular,
F (·, y) is upper bounded, for every y ∈ X;

iv. φF (y, x
∗) ≥ ⟨x∗, x⟩+ F (x, y), for all x, y ∈ X.

Given a bifunction F and its Fitzpatrick transform φF , for any nonempty and compact
subset K of X we can define the function

ℓF,K(x∗) = inf
y∈K

φF (y, x
∗).

The following result follows from Propositions 1.7 and 2.5 in [2]:

Proposition 2. Let X,Y be Euclidean spaces, and f : X×Y → (−∞,+∞] be convex and
lower semicontinuous. Let K be a nonempty compact subset of X and assume that there
exists (x, y) ∈ K × Y such that f(x, y) < +∞. Then, the function

ℓ(y) = inf
x∈K

f(x, y)

is proper, convex and lower continuous on Y .

The next properties can be easily proved taking into account the previous result:

a. if F (x, x) = 0 for every x ∈ X, then ℓF,K(x∗) > −∞ for every x∗ ∈ X∗; indeed, by iv.
we have that φF (y, x

∗) ≥ ⟨x∗, y⟩ for all y ∈ X and

ℓF,K(x∗) = inf
y∈K

φF (y, x
∗) ≥ inf

y∈K
⟨x∗, y⟩ = iK(x∗);

b. if F (x, ·) is convex on X for every x ∈ X, and F (·, y) is upper bounded for some y
in K, then by i. and ii. φF is proper, lower semicontinuous and convex on X ×X∗.
Therefore, by Proposition 2 applied to the function φF on the set X×X∗, the function
ℓF,K is proper, lower semicontinuos and convex on X∗.

In the sequel, to entail the solvability of (EP) on a non empty, compact and convex set
K, we will assume that the bifunction F : X ×X → R satisfies the following assumptions
(see Theorem 1 and Remark 3 in [7]):

(C) F (x, x) = 0 for every x ∈ X, F (x, ·) convex for every x ∈ X (and therefore continuous
on X), and F (·, y) is upper semicontinuous for every y ∈ X.

Remark 1. The assumptions in (C) provide also the well known fact that that any solution
of (MEP) is a solution of (EP) (see, for instance, Lemma 3 in [9]).

Finally, note that (MEP) is solvable on a non empty, compact and convex set K, if the
bifunction (x, y) 7→ −F (y, x) satisfies (C).
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3 Primal and dual equilibrium problems for saddle functions

The purpose of our study is to provide a “reasonable” definition of duality for the classical
equilibrium problem. In particular, we would like to highlight the relationships between the
bifunctions involved in the two problems. Our approach will be to look at the equilibrium
problem as a particular optimization problem, and then apply the Fenchel duality theory
to get the dual problem.

From now on we will consider the equilibrium problem (EP) on a nonempty, compact
and convex set K ⊆ X. The solution set of (EP) will be denoted by SEP .

Starting from the problem (EP), we define the gap function g : X → (−∞,+∞] as a
natural extension of the one considered for variational inequalities (see [3]):

g(x) = sup
y∈K

(−F (x, y)).

To justify the name of gap function note that, by assuming F (x, x) = 0 for all x ∈ X, it is
easy to verify that g(x) ≥ 0 for all x ∈ K, and that

SEP = {x ∈ K : g(x) = 0}. (2)

Associated to g, let us consider the following optimization problem, that will be called
primal in the sequel:

p = inf
x∈K

g(x) = inf
x∈X

(g(x) + δK(x)) (P)

Note that, in general, p could be strictly positive, but if g attains its minimum, and p =
minx∈K g(x) = 0, then SEP ̸= ∅. In particular, if (C) holds, (EP) is solvable and therefore
minx∈K g(x) = 0. In this case,

g(x) = max
y∈K

(−F (x, y)),

and g is a real-valued function defined on the whole of X.
Let us now recall the following

Definition 1. (see [19]) A bifunction F : X × X → [−∞,+∞] is said to be a saddle
function if F (x, ·) is convex for every x ∈ X, and F (·, y) is concave for every y ∈ X.

Any bifunction F (x, y) = f(y) − f(x) where f : X → R is convex is an example of a
saddle function. Another example is given by

F (x, y) = ⟨Ax, x⟩+ ⟨By, y⟩ − ⟨(A+B)x, y⟩, (3)

where A is negative semidefinite and B is positive semidefinite. Note that every saddle
function is continuous with respect to each of its variables in the interior of its domain, in
particular on the whole of X if it is real-valued.

If F is a real-valued saddle function, with F (x, x) = 0 for every x ∈ K, the function
g : X → R is convex, and the primal problem (P) is a convex minimization problem with
minimum equal to 0.
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In the next result, through the Fenchel dual of the convex minimization problem (P) we
build in a natural way a bifunction ΦF associated to F and defined in the dual spaceX∗×X∗

to which we can associate, under suitable assumptions on F, an equilibrium problem.

Theorem 1. Let F : X×X → R be a saddle function, such that F (x, x) = 0 for all x ∈ X.
Suppose that there exists y ∈ K such that F (·, y) is upper bounded. Then

0 ≤ sup
x∗∈X∗

inf
y∗∈Y ∗

ΦF (x
∗, y∗),

where ΦF : X∗ ×X∗ → [−∞,+∞] is defined as follows:

ΦF (x
∗, y∗) = (φF (·, x∗))∗(y∗) + iK(x∗)− iK(y∗). (4)

Proof. According to Fenchel (see, for instance, [10], Chapter 4), the dual (D) of the convex
optimization problem (P) is given by

sup
x∗∈X∗

(−g∗(x∗)− δ∗K(−x∗)) (D)

Note that
sup

x∗∈X∗
(−g∗(x∗)− δ∗K(−x∗)) = sup

x∗∈X∗
(iK(x∗)− inf

y∈K
φF (y, x

∗)). (5)

Indeed, taking into account Proposition 1, we have that

g∗(x∗) =

(
sup
y∈K

(−F (·, y))

)∗

(x∗) =

(
inf
y∈K

(−F (·, y))∗
)⌣

(x∗)

=

(
inf
y∈K

φF (y, ·)
)⌣

(x∗) = (ℓF,K(·))⌣(x∗).

Moreover, from the assumptions on F, condition b. in Section 2 implies that (ℓF,K(·))⌣(x∗) =
ℓF,K(x∗), and hence

g∗(x∗) = ℓF,K(x∗). (6)

Let us now consider, for every x∗ ∈ X∗, the addend in (5)

inf
y∈K

φF (y, x
∗) = inf

y∈X
(φF (y, x

∗) + δK(y)).

By the Fenchel Weak Duality Theorem (see Theorem 4.4.2 in [10]) we have that

inf
y∈X

(φF (y, x
∗) + δK(y)) ≥ sup

y∗∈X∗
(−(φF (·, x∗))∗(y∗) + iK(y∗)). (7)

Therefore, we get that

iK(x∗)− inf
y∈K

φF (y, x
∗) ≤ iK(x∗)− sup

y∗∈X∗
(−(φF (·, x∗))∗(y∗) + iK(y∗))

= inf
y∗∈X∗

((φF (·, x∗))∗(y∗) + iK(x∗)− iK(y∗))

= inf
y∗∈X∗

ΦF (x
∗, y∗) (8)
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and consequently

sup
x∗∈X∗

(iK(x∗)− inf
y∈K

φF (y, x
∗)) ≤ sup

x∗∈X∗
inf

y∗∈X∗
ΦF (x

∗, y∗). (9)

Now, under the assumptions on F, the domain of g is the whole of X, and the Fenchel
Strong Duality Theorem (see Theorem 4.4.3 in [10]) gives

0 = inf
x∈X

(g(x) + δK(x)) = sup
x∗∈X∗

(−g∗(x∗)− δ∗K(−x∗)).

Taking (9) into account, the assertion follows.

Under the more restrictive condition of super coercivity of F given in (1), we can easily
obtain the following:

Corollary 1. Let F : X×X → R be a saddle function, such that F (x, x) = 0 for all x ∈ X,
and suppose that the function −F (·, y) is super coercive for every y ∈ X. Then

0 = inf
x∈X

(g(x) + δK(x)) = sup
x∗∈X∗

inf
y∗∈X∗

ΦF (x
∗, y∗). (10)

Proof. Under the super coercivity assumption, the domain of φF is given by X ×X∗, and
therefore in (7) the Fenchel Strong Duality Theorem can be applied and (8) becomes

iK(x∗)− inf
y∈K

φF (y, x
∗) = inf

y∗∈X∗
ΦF (x

∗, y∗). (11)

Let us highlight some properties of the bifunction ΦF defined in (4).

Proposition 3. Let us consider the bifunction ΦF : X∗ ×X∗ → [−∞,+∞];

i. if F (x, ·) is convex for every x ∈ X, then ΦF (·, ·) is a saddle function;

ii. if −F (·, y) is lower semicontinuous and super coercive for every y ∈ X, then

ΦF (x
∗, y∗) > −∞, ∀(x∗, y∗) ∈ X∗ ×X∗;

iii. under the assumptions of Corollary 1, infy∗∈X∗ ΦF (x
∗, y∗) ≤ 0 for every x∗ ∈ X∗. In

particular, ΦF (x
∗, ·) is proper for all x∗ ∈ X∗.

Proof. i. From the assumptions, φF is convex and, therefore,

(φF (·, x∗))∗(y∗) = sup
y∈X

(⟨y∗, y⟩ − φF (y, x
∗))

is concave on X∗ for every y∗ ∈ X∗. Since iK is concave, ΦF (·, y∗) is concave, too. The
convexity of ΦF (x

∗, ·) is trivial.
ii. The assumptions imply that φF is real-valued, and thus ΦF (x

∗, y∗) > −∞ for every
(x∗, y∗) ∈ X∗ ×X∗.
iii. It is an easy consequence of (10).
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If we consider a bifunction F such that −F (·, y) is super coercive and lower semicontin-
uous for every y ∈ X, then ΦF takes values within (−∞,+∞]. We can then consider the
following equilibrium problem in the dual space X∗, that will be denoted as dual equilibrium
problem (DEP): find x∗ ∈ X∗ such that

ΦF (x
∗, y∗) ≥ 0, ∀y∗ ∈ X∗ (DEP)

Remark 2. Under the assumptions of Corollary 1, the function

γ(x∗) = − inf
y∗∈X∗

ΦF (x
∗, y∗) = sup

y∗∈X∗
(−ΦF (x

∗, y∗))

is a gap function for the dual equilibrium problem. Indeed, by iii. in Proposition 3, γ(x∗) ≥ 0
for all x∗ ∈ X∗. In addition, it is easy to verify that

γ(x∗) = 0 ⇐⇒ x∗ is a solution of (DEP).

Example 1. In the particular case of the saddle function F given in (3), under the addi-
tional assumption that both A and B are non singular, the Fitzpatrick function φF has the
following expression:

φF (y, x
∗) =

1

2
⟨x∗, Dy⟩+ 1

4
⟨y, Cy⟩ − 1

4
⟨x∗, A−1x∗⟩,

where C = −(A−B)A−1(A−B) is symmetric and positive definite, and D = A−1(A+B).
Therefore

ΦF (x
∗, y∗) = sup

y∈X
(⟨y∗, y⟩ − φF (y, x

∗)) + iK(x∗)− iK(y∗)

= ⟨y∗, C−1y∗⟩+ 1

4
⟨x∗, (A−1 +DTC−1D)x∗⟩ − ⟨x∗, DC−1y∗⟩+

+ iK(x∗)− iK(y∗).

If we take, for instance, K = {x ∈ X : ∥x∥ ≤ 1}, then iK(x∗) = −∥x∗∥, and thus

ΦF (x
∗, y∗) = ⟨y∗, C−1y∗⟩+ 1

4
⟨x∗, (A−1 +DC−1D)x∗⟩ − ⟨x∗, DC−1y∗⟩ − ∥x∗∥+ ∥y∗∥.

4 Solvability of (EP) and (DEP)

Let us denote by SMEP and SDEP the solution sets of (MEP) and (DEP), respectively. If
F : X ×X → R is a saddle function such that F (x, x) = 0, then from Remark 1 applied to
the bifunction G(x, y) = −F (y, x), we easily get that SEP ⊆ SMEP , and therefore for this
class of bifunctions F , the solution sets SEP and SMEP coincide and are nonempty and
convex. In addition, by i. of Proposition 3, ΦF (·, y∗) is concave for all y∗ ∈ X∗ and the set
SDEP is convex.
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Consider the set S defined as follows:

S = {(x, x∗) ∈ K ×X∗ : iK(x∗) = φF (x, x
∗)}.

Note that, if F (x, x) = 0, from a. of Section 2 the function iK − φF is nonpositive on
K × X∗. Moreover, if F (x, ·) is convex and F (·, y) is upper bounded for some y ∈ K,
then iK − φF is concave and upper semicontinuous on K × X∗. Then, in this case, since
S = lev≥0 (iK − φF ), S is a closed and convex set.

In the following result we highlight a relationship between the set S and the solutions
sets SEP and SDEP .

Theorem 2. Let F : X × X → R be a saddle function such that F (x, x) = 0 for every
x ∈ X. If F (·, y) is upper bounded for some y ∈ K, then

∅ ≠ S ⊆ SEP × SDEP .

Proof. Let us first show that S ̸= ∅. By the assumptions, (EP) is solvable; if x ∈ K is a
solution of (EP), we have that g(x) = 0 and p = 0. In particular, since g is convex and
real-valued,

0 ∈ ∂(g + ∂δK)(x) = ∂g(x) + ∂δK(x),

i.e. there exists x∗ such that x∗ ∈ ∂g(x) and ⟨x∗, y − x⟩ ≥ 0 for all y ∈ K, that is
iK(x∗) = ⟨x∗, x⟩. By the equivalence

x∗ ∈ ∂g(x) ⇐⇒ g(x) + g∗(x∗) = ⟨x∗, x⟩,

we get that g∗(x∗) = iK(x∗). Hence, from (6)

iK(x∗)− inf
y∈K

φF (y, x
∗) = 0.

The lower semicontinuity of φF implies the existence of x̂ ∈ K such that infy∈K φF (y, x
∗) =

φF (x̂, x
∗), i.e. (x̂, x∗) ∈ S.

Suppose now that (x, x∗) is a point in S and let us show that x ∈ SEP and x∗ ∈ SDEP .
From the inequality

φF (x, x
∗) ≥ ⟨x∗, x⟩+ F (x, x) ∀x ∈ X,

we get that
−F (x, x) ≥ ⟨x∗, x⟩ − iK(x∗) ≥ 0, ∀x ∈ K,

and therefore F (x, x) ≤ 0, for all x ∈ K, i.e. x ∈ SMEP = SEP .
Moreover, since

0 ≥ iK(x∗)− infy∈KφF (y, x
∗) ≥ iK(x∗)− φF (x, x

∗) = 0,

we get iK(x∗)− infy∈KφF (y, x
∗) = 0; from (8) we have that

inf
y∗∈X∗

ΦF (x
∗, y∗) ≥ 0 ∀y∗ ∈ X∗,

and thus x∗ ∈ SDEP .
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In light of the previous result, the natural question is: are all the pairs in (x, x∗) ∈
SEP × SDEP solutions of the equation

iK(x∗) = φF (x, x
∗) ?

At the moment we have a positive answer only in some particular cases:

• when either the equilibrium problem (EP) or the dual problem (DEP) has a unique
solution

• in the case of the optimization problem.

We discuss first the case when (EP) has a unique solution.

Proposition 4. Under the assumption of Corollary 1, if SEP = {x}, then S = SEP ×SDEP .

Proof. Indeed, take any x∗ ∈ SDEP . From Remark 2 we have that γ(x∗) = 0, i.e.,

inf
y∗∈X∗

ΦF (x
∗, y∗) = 0.

From (11) we have that
iK(x∗)− inf

y∈K
φF (y, x

∗) = 0.

In particular, there exists x̂ ∈ K such that φF (x̂, x
∗) = iK(x∗), i.e., (x̂, x∗) ∈ S. This implies

that x̂ ∈ SEP , and thus x̂ = x.

We address now the case when (DEP) has a unique solution. To this purpose, let us
first prove the following result:

Proposition 5. Let F : X ×X → R be a bifunction such that F (x, x) = 0, and let K ⊆ X
be a nonempty, compact and convex set. Assume that F (·, x) is concave for all x ∈ X.
Then x ∈ SMEP if and only if there exists x∗ ∈ X∗ such that (x, x∗) ∈ S.

Proof. Denote by G : K × X → (−∞,+∞] the bifunction given by given G(x, y) =
−F (y, x) + δK(y), and define the diagonal subdifferential operator GA : K ⇒ X∗ as follows
(see [6]):

GA(x) = {x∗ ∈ X∗ : G(x, y) ≥ ⟨x∗, y − x⟩ for all y ∈ X} = ∂(G(x, ·))(x).

Note that
x ∈ SMEP ⇐⇒ 0 ∈ GA(x) ⇐⇒ 0 ∈ ∂(−F (·, x) + δK(·))(x).

By the assumptions, this is equivalent to the existence of a point x∗ ∈ X∗ such that
x∗ ∈ ∂(−F (·, x))(x) and iK(x∗) = ⟨x∗, x⟩. By the equality

−F (x, x) + (−F (·, x))∗(x∗) = ⟨x∗, x⟩

which holds if and only if x∗ ∈ ∂(−F (·, x))(x), it follows that φF (x, x
∗) = iK(x∗), i.e.

(x, x∗) ∈ S.
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Proposition 6. Under the assumptions of Corollary 1, if SDEP = {x∗}, then S = SEP ×
SDEP .

Proof. Take a point (x, x∗) ∈ SEP×SDEP . Since x ∈ SEP = SMEP , the previous proposition
entails that there exists x∗ ∈ X∗ such that (x, x∗) ∈ S. Thus, from Theorem 2 it follows
that x∗ ∈ SDEP , i.e. x

∗ = x∗.

Let us now consider the case of the minimization problem minx∈K f(x), where f : X →
R, and F (x, y) = f(y)− f(x). Note that F (x, x) = 0, and F is a saddle function in case f
is convex; moreover

g(x) = max
y∈K

(−F (x, y)) = max
y∈K

(f(x)− f(y)) = f(x)−min
y∈K

f(y).

In case f is convex, the primal problem (P), i.e. the minimization of g over K, has optimal
value 0. Standard computations show that

φF (y, x
∗) = f(y) + f∗(x∗), (φF (·, x∗))∗(y∗) = f∗(y∗)− f∗(x∗). (12)

Then
ΦF (x

∗, y∗) = f∗(y∗)− iK(y∗)− (f∗(x∗)− iK(x∗))

and a solution x∗ of the dual equilibrium problem (DEP) is, in this case, a solution of the
optimization problem

min
x∗∈X∗

(f∗(x∗)− iK(x∗)) = − max
x∗∈X∗

(iK(x∗)− f∗(x∗)).

It is worthwhile noting that finding x∗ ∈ X∗ such that ΦF (x∗, y∗) ≥ 0 for all y∗ ∈ X∗

amounts to maximizing the function y∗ 7→ −f∗ (y∗) + iK (y∗) , which is exactly the Fenchel
dual problem of the original optimization problem.

Assuming, in addition, the super coercivity of the function f , from Corollary 1, both
the primal and the dual problems have solutions with the same optimal value equal to 0. In
particular, we have that S = SEP × SDEP . Indeed, the assumptions of the Fenchel Strong
Duality Theorem are satisfied; thus

min
x∈K

f(x) = min
x∈X

(f(x) + δK(x)) = sup
x∗∈X∗

(−f∗(x∗)− δ∗K(−x∗)) = − inf
x∗∈X∗

(f∗(x∗)− iK(x∗)).

In particular the optimal values are equal, i.e.

f(x) = −f∗(x∗) + iK(x∗)

and from (12) we have that φF (x, x
∗) = iK(x∗), that is (x, x∗) ∈ S.

11



5 Robust and optimistic equilibrium problem

The aim of this section is to introduce suitable notions of robust and optimistic solutions
for parametric equilibrium problems, inspired by the well known notions for optimization
problems. This will allow a comparison between the solutions of the dual of the robust
problem and the optimistic solutions of the dual of the parametric problem, thereby getting
a primal worst equals dual best result in line to what is known about optimization problems
(see for instance [5], [13] and the references therein).

In the sequel X,Y will denote Euclidean spaces, K ⊆ X and A ⊆ Y nonempty, compact
and convex sets, and F : X ×X × A → R will be a function fulfilling the following set of
properties:

(C′) F (x, x, a) = 0 for every (x, a) ∈ X ×A, F (·, y, a) is concave for every (y, a) ∈ X ×A,
F (x, ·, ·) is convex and continuous for all x ∈ X.

For each a ∈ A, let us consider the parametric equilibrium problem (EPa): find a point
xa ∈ K such that

F (xa, y, a) ≥ 0 ∀y ∈ K (EPa)

and the function g : X ×A → R, defined as

g(x, a) = sup
y∈K

(−F (x, y, a)).

Thanks to the properties in (C′), we get g(x, a) = maxy∈K(−F (x, y, a)) and g(x, a) ≥ 0
for every (x, a) ∈ K × A. In addition, g(·, a) is convex and lower semicontinuous, for every
a ∈ A and, thanks to Proposition 2, g(x, ·) is concave and upper semicontinuous, for every
x ∈ X.

The equilibrium problem (EPa) is now related to the parametric optimization problem

pa = inf
x∈K

g(x, a) = min
x∈K

g(x, a) = inf
x∈X

(g(x, a) + δK(x)) (Pa)

and (EPa) is solvable if and only if there exists xa ∈ K : g(xa) = 0 = minx∈K g(x).
In order to introduce a suitable notion of robust equilibriun problem, let us remind that

in literature a robust solution of the parametric optimization problem (Pa)a∈A is a point
x ∈ K such that x is a minimizer on K of the function s : X → R given by

s(x) = max
a∈A

g(x, a).

Note that the function s is well defined on the whole X since g(x, ·) is upper semicontinuous
on A for each x ∈ X, and it is non negative everywhere. Moreover, we have that

s(x) = max
a∈A

g(x, a) = max
a∈A

sup
y∈K

(−F (x, y, a))

= sup
y∈K

max
a∈A

(−F (x, y, a)) = sup
y∈K

(−min
a∈A

F (x, y, a)).
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Setting
f(x, y) = min

a∈A
F (x, y, a),

under the assumptions (C′) on F, the function f fulfills the following properties:

i. f(x, x) = 0 for every x ∈ X;

ii. f(·, y) is concave on X for every y ∈ X (and therefore continuous on X);

iii. f(x, ·) is convex on X, for every x ∈ X, by Proposition 2; in particular, it is continuous
on X.

The properties above entail the solvability of the equilibrium problem associated to f on
K and, as in (2), the solution set is the set of points {x ∈ K : s(x) = 0}, i.e. the solutions
of this equilibrium problem are the solutions of the robust minimization problem.

Starting from these considerations, given the family of equilibrium problems (EPa)a∈A,
it seems to be reasonable to define the robust equilibrium problem as the equilibrium problem
associated to the bifunction f. We will denote it by R-(EPa)a∈A.

The optimistic counterpart O -(EPa)a∈A of the (EPa)a∈A can be therefore given by the
equilibrium problem associated to the bifunction supa∈A F (x, y, a).

By using the dual equilibrium problem discussed in Section 3, we are now interested
in highlighting the relationship between the solutions of the dual of R-(EPa)a∈A and the
solutions of O-(DEPa)a∈A, which is the optimistic problem associated to the family of the
dual equilibrium problems (DEPa)a∈A. As we will see in the next result, we are able to
extend to equilibrium problems a well known result that holds in other settings; in [5], for
instance, the result was discussed either for linear programming problems or optimization
problems with respect to the Lagrangian duality.

Theorem 3. Let K ⊆ X and A ⊆ Y be nonempty, compact and convex sets, and let
F : X ×X × A → R satisfy the assumptions (C′). In addition suppose that the function
−F (·, y, a) is super coercive, for every a ∈ A. Then the dual of R-(EPa)a∈A coincides with
O-(DEPa)a∈A.

Proof. For every a ∈ A, set Fa(·, ·) = F (·, ·, a). Let us first note that the optimistic solutions
of (DEPa)a∈A are the solutions of the equilibrium problem associated to the bifunction
supa∈AΦFa , i.e. the points x∗ ∈ X∗ such that

sup
a∈A

ΦFa(x
∗, y∗) ≥ 0, ∀y∗ ∈ X∗.

On the other hand, the dual of R-(EPa)a∈A is associated to the bifunction Φf where, again,
f(x, y) = mina∈A Fa(x, y). By the Sion Minimax Theorem (see [20], Corollary 3.3) we have
that

inf
a∈A

φFa(y, x
∗) = inf

a∈A
sup
x∈X

(⟨x∗, x⟩+ F (x, y, a)) = sup
x∈X

(⟨x∗, x⟩+ inf
a∈A

F (x, y, a)) = φf .
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Hence, starting from

ΦFa(x
∗, y∗) = (φFa(·, x∗))∗(y∗) + iK(x∗)− iK(y∗),

we have that

sup
a∈A

ΦFa(x
∗, y∗) = iK(x∗)− iK(y∗) + sup

a∈A

(
sup
y∈X

(⟨y∗, y⟩ − φFa(y, x
∗))

)
= iK(x∗)− iK(y∗) + sup

y∈X
sup
a∈A

(⟨y∗, y⟩ − φFa(y, x
∗))

= iK(x∗)− iK(y∗) + sup
y∈X

(⟨y∗, y⟩ − inf
a∈A

φFa(y, x
∗))

= iK(x∗)− iK(y∗) + sup
y∈X

(⟨y∗, y⟩ − φf (y, x
∗))

= iK(x∗)− iK(y∗) + (φf (·, x∗))∗(y∗)
= Φf (x

∗, y∗).

Acknowledgement

We would like to thank Juan Enrique Mart́ınez-Legaz for valuable conversations on the
topic of the paper, and to express our gratitude to the referee for his/her careful reading
which improved the presentation of the paper.

References

[1] Alleche, B., On hemicontinuity of bifunctions for solving equilibrium problems, Adv.
Nonlinear Anal. 3 (2014), 69–80

[2] Aubin, J.-P., Optima and Equilibria. An Introduction to Nonlinear Analysis. Second
edition. Graduate Texts in Mathematics, 140. Springer-Verlag, Berlin (1998)
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