This manuscript explores the problem of deploying sensors in networks to detect intrusions as effectively as possible. In water distribution networks, intrusions can cause a spread of contaminants over the whole network; we are searching for locations for where to install sensors in order to detect intrusion contaminations as early as possible. Monitoring epidemics can also be modelled into this framework. Given a network of interactions between people, we want to identify which “small” set of people to monitor in order to enable early outbreak detection. In the domain of the Web, bloggers publish posts and refer to other bloggers using hyperlinks. Sensors are a set of blogs that catch links to most of the stories that propagate over the blogosphere. In the sensor placement problem, we have to manage a trade-off between different objectives. To solve the resulting multi-objective optimization problem, we use a multi-objective evolutionary algorithm based on the Tchebycheff scalarization (MOEA/D). The key contribution of this paper is to interpret the weight vectors in the scalarization as probability measures. This allows us to use the Wasserstein distance to drive their selection instead of the Euclidean distance. This approach results not only in a new algorithm (MOEA/D/W) with better computational results than standard MOEA/D but also in a new design approach that can be generalized to other evolutionary algorithms.
Ponti, A., Candelieri, A., Giordani, I., Archetti, F. (2023). Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms. MATHEMATICS, 11(10) [10.3390/math11102342].
Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms
Andrea Ponti
Primo
;Antonio CandelieriSecondo
;Ilaria GiordaniPenultimo
;Francesco ArchettiUltimo
2023
Abstract
This manuscript explores the problem of deploying sensors in networks to detect intrusions as effectively as possible. In water distribution networks, intrusions can cause a spread of contaminants over the whole network; we are searching for locations for where to install sensors in order to detect intrusion contaminations as early as possible. Monitoring epidemics can also be modelled into this framework. Given a network of interactions between people, we want to identify which “small” set of people to monitor in order to enable early outbreak detection. In the domain of the Web, bloggers publish posts and refer to other bloggers using hyperlinks. Sensors are a set of blogs that catch links to most of the stories that propagate over the blogosphere. In the sensor placement problem, we have to manage a trade-off between different objectives. To solve the resulting multi-objective optimization problem, we use a multi-objective evolutionary algorithm based on the Tchebycheff scalarization (MOEA/D). The key contribution of this paper is to interpret the weight vectors in the scalarization as probability measures. This allows us to use the Wasserstein distance to drive their selection instead of the Euclidean distance. This approach results not only in a new algorithm (MOEA/D/W) with better computational results than standard MOEA/D but also in a new design approach that can be generalized to other evolutionary algorithms.File | Dimensione | Formato | |
---|---|---|---|
10281-416236_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.