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Abstract: This manuscript explores the problem of deploying sensors in networks to detect intru-
sions as effectively as possible. In water distribution networks, intrusions can cause a spread of
contaminants over the whole network; we are searching for locations for where to install sensors
in order to detect intrusion contaminations as early as possible. Monitoring epidemics can also be
modelled into this framework. Given a network of interactions between people, we want to identify
which “small” set of people to monitor in order to enable early outbreak detection. In the domain
of the Web, bloggers publish posts and refer to other bloggers using hyperlinks. Sensors are a set
of blogs that catch links to most of the stories that propagate over the blogosphere. In the sensor
placement problem, we have to manage a trade-off between different objectives. To solve the resulting
multi-objective optimization problem, we use a multi-objective evolutionary algorithm based on the
Tchebycheff scalarization (MOEA/D). The key contribution of this paper is to interpret the weight
vectors in the scalarization as probability measures. This allows us to use the Wasserstein distance
to drive their selection instead of the Euclidean distance. This approach results not only in a new
algorithm (MOEA/D/W) with better computational results than standard MOEA/D but also in a
new design approach that can be generalized to other evolutionary algorithms.

Keywords: intrusion detection; optimal sensor placement; water distribution network; multi-objective
optimization; evolutionary algorithm; Wasserstein distance

MSC: 90C29, 90C26

1. Introduction
1.1. Motivations

In the current manuscript, we explore the general problem of detecting outbreaks
in networks, where we are given, or obtain through simulation, a representation of a
dynamic process propagating over the network, and we want to select a set of nodes
at which to deploy sensors in order to monitor the propagation process and detect the
outbreak/intrusion as early and effectively as possible.

In water distribution networks (WDNs), accidental or malicious intrusions can cause
contaminants to spread over the network: the decision we face is the selection of locations
of sensors to detect these contaminations as quickly as possible. Epidemic scenarios also fit
into this setting: given a network of interacting people, our problem is to choose a small set
of people whose surveillance enables the early detection of any disease outbreak, when
very few people are already infected [1,2]. In the domain of Web, bloggers publish posts
and use hyperlinks to other content on the web: we want to select a set of blogs to links to
most of the stories that propagate over the blogosphere [3,4]. In outbreak detection, there
are different criteria one may want to optimize. The main is the time to detect a cascade or
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the spreading of contaminated water; another could be to minimize the population affected
by the outbreak.

In this paper, we focus on the problem of optimal sensor placement (OSP) for con-
taminant detection in WDNs, which is a major concern for citizens and governments alike.
Indeed, the WDN is the most vulnerable module in a water supply and distribution system
due to the large number of unprotected access points. An effective placement of sensors is a
key element in a contamination warning system, both for budgetary and technical reasons,
which constrain the number of sensors and their locations. The sensor placement is also a
critical element in the detection and localization of water leaks, which in turn impact the
quantity of lost water and energy consumption in network operations. There are several
objectives making sensor placement a multi-objective problem (MOP). In MOPs, there is
not a unique solution but a set of solutions, each representing a trade-off between different
objectives, which is expressed by the notion of dominance. The solution representing the
optimal (non-dominated) trade-offs is the Pareto set, whose image in the objective space is
the Pareto front.

In the present paper, we describe a mixed integer programming formulation for
sensor placement in WDNs that incorporates the dynamics of contamination events from
simulation models and is represented as a time series of contaminant concentrations. These
time series are used to estimate the detection time at different sensors and the volume of
contaminated water.

Even for cheap objective functions, locating the complete Pareto set may not be possi-
ble: the OSP problem is NP-hard, requiring efficient approximate methods, as evolutionary
algorithms, to generate a good approximation of the Pareto set. The authors believe that
considering only the average value of the objective function over all the scenarios does
not correctly capture the “risk” elements of the placement. Therefore, we propose using
the standard deviation of the objective function as a companion objective. The evaluation
of the objective functions is expensive due to the simulation of multiple contamination
events. Simulating the contaminant propagation allows us to compute both the average
minimum detection time related to the placement of sensors and its standard deviation.
Two more objectives considered in the current paper are the amount of water consumed
before detection and its standard deviation.

Among the heuristics to solve multi-objective optimization problems, evolutionary
algorithms have shown particular versatility and efficiency. There are two main strategies
in the design of multi-objective evolutionary algorithms (MOEAs): (i) Pareto-based evolv-
ing populations of possible solutions, comparing and ranking them according to Pareto
dominance [5]; (ii) decomposition-based [6], whose basic idea is to decompose MOPs,
through aggregating functions, into several single objective problems and optimize them
simultaneously in a collaborative manner. Since the optimal solution of each subproblem
is proved to be Pareto optimal, the collection of optimal solutions obtained by varying
the aggregation parameters can be considered a good approximation of the Pareto set.
The key problem in many-objective problems (i.e., with more than two objectives) is that
the number of incomparable solutions dominates the population, reducing the selection
pressure and leading to poor convergence to the Pareto front. It is also more difficult to
preserve diversity in the solution set.

The algorithm proposed in this paper, MOEA/D/W, is built upon the Pymoo imple-
mentation of the MOEA/D algorithm. MOEA/D decomposes the multi-objective into
single-objective problems associated with an aggregation weight vector. The scalarized
problems are solved with a single-objective algorithm, and the set of their solutions repre-
sents an approximation of the Pareto Set (Front). There are two basic design decisions: the
scalarizing function (linear or Tchebycheff are the most common, but others are possible)
and the choice of aggregation vectors. The key contribution of this paper is to interpret the
weight vectors as probability measures and, in particular, as points in the unit simplex since
they are always positive, and they all sum to one. This allows us to use the Wasserstein
distance between the weight vectors instead of the Euclidean distance.
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The Wasserstein distance, also known as the optimal transport distance, is a math-
ematically principled method to align probability distributions. Originated by a paper
by Monge [7], it received its linear programming formulation in Kantorovich [8]. A com-
plete mathematical formulation is presented in [9], while [10] offers a complete review
of the recent theoretical and computational advances. Notably, it has found applications
in machine learning from shape analysis to image interpolation, domain adaptation [11],
parameter estimation in simulation models [12], structured data on graphs [13], active
learning [14] and adversarial networks [15]. The optimal transport distance has many
important properties.

The key research question addressed in the present paper is whether the computational
efficiency of a MOEA/D algorithm can be improved using Wasserstein-enabled operators
and whether this improvement increases with the number of objectives.

1.2. Contributions

• The contributions of this paper are listed below.
• A risk-aware optimal sensor placement model.
• A many-objective optimization formalization of the optimal sensor placement problem,

where the objectives are the mean and the standard deviation of the detection time
over a set of simulated contamination events along with the amount of contaminated
water consumed before detection and its variance.

• The representation of the weights in the decomposition as discrete probability distri-
butions whose distance is computed by the Wasserstein distance.

• The formulation of a Wasserstein enabled selection of the weight parameters in the
scalarization.

• A set of computational results, for standard benchmark problems and a real-world
application, which demonstrates that MOEA/D/W has a significant performance
improvement over MOEA/D.

1.3. Organization of the Paper

Section 2 provides a short presentation of related works. Section 3 introduces the
Wasserstein distance. Section 4 analyzes the optimal sensors’ placement problem and
the evaluation of the objective functions. Section 5 describes the proposed algorithm
MOEA/D/W. Section 6 presents the setting of computational experiments and their results.
Section 7 contains concluding remarks.

2. Related Works

In the previous section, we briefly introduced the issue of sensor placements, multi-
objective evolutionary algorithms, and the Wasserstein distance; here, we provide a more
specific analysis of related works.

A closely related paper is [16]. Its novelty was to consider optimal sensor placement
as a simulation optimization problem and sensor placements as a discrete probability
distribution, which are specifically considered as histograms. The algorithm proposed,
MOEA/WST, is based on the Pareto sampling strategy and built on NSGA-II. The selection
of the parents for the next generation was performed on the basis of the Wasserstein
distance.

The novelty of the current paper over the previous one (Ponti et al., 2021) is given by
several factors:

• The number of objectives has been augmented from 2 (mean detection time and its
standard deviation) to 4, including the mean amount of water consumed and its
standard deviation.

• While the paper [16] was focused on the Pareto sampling strategy of non-dominated
sorting, the current paper is based on decomposition, which is usually held to be
higher performing for many-objective problems.



Mathematics 2023, 11, 2342 4 of 14

• This has required a new strategy to map the MOEA/D algorithm into the Wasserstein
base MOEA/D/W.

• The set of test functions has been substantially augmented including DTLZ2.

Significant papers are: [17], where a regret-based scalarization function based on the
Tchebysheff distance in the NSGA-II framework is introduced for the optimal sensor place-
ment; [18], which considers jointly both leak localization and sensor placement; and [19],
whose approach is risk based. Another Pareto-based approach is proposed in [20], where
the inclusion of individuals in the approximate Pareto set is decided according to their
contribution to the improvement of the hypervolume.

Another related paper to ours is [21], in which the objectives are the number of sensors
and the risk of contamination. The algorithm NSGA-II is used to solve the multi-objective
problem. These papers show several advantages of MOEAs for solving the multi-objective
optimal sensor placement problem. A drawback of MOEAs is their relatively low sample
efficiency, which might become a problem given the size of real-world optimal sensor
placement problems. A solution proposed in the literature to mitigate this problem is the
development of problem-specific operators. In [22,23], a population-based algorithm is
endowed with problem-specific recombination and repair operators, while in [24], new
crossover operators and mutation probabilities based on the hypervolume improvement
are proposed. The issue of comparing and evaluating solution sets provided by different
algorithms has been extensively analyzed in [25]. Another approach integrates with EAs
probabilistic models given by Gaussian processes. The first contributions along this research
line are ParEGO [26] and MOEA/D with Gaussian processes [27] and, more recently, [28].

The contribution of this paper can be seen as a proposal of a general problem-agnostic
approach to improving the efficiency of MOEAs embedding part of the optimization process
in a space of distributions. Even if the sensor placement problem has been mostly addressed
by EAs, methods from mathematical programming have also been considered [29,30].

A graph variant of the Wasserstein distance is called the Gromow–Wasserstein (GW)
distance, whose use was first advocated in [31]. The issue of graph partitioning and
matching is addressed in [32]. Given two graphs, the optimal transport map associated with
their GW distance provides the correspondence between their nodes and achieves graph
matching. The same approach is proposed in [33] for clustering. Another topic addressed
with optimal transport is learning on graphs. An early paper is [34], where the label
associated with a node is not a scalar but a probability distribution, for instance, the pressure
at a node in a WDN can be seen as a discrete distribution over the 24 h cycle. Pressure values
can be known only where there are sensors. Their measurements need to be propagated
to the entire network. The Wasserstein distance is used to propagate their measurements
to the whole network, generating a distribution-valued map. Another learning context
to learn over graphs is the graphon, which is defined in an infinite dimensional space
and represents arbitrarily sized graphs. Given a set of graphs generated by an underlying
graphon, the GW distance is used in [35] to learn an approximation of the underlying
graphon. The above papers about WST on graphs are considered for completeness, even
if their applications are beyond the scope of the current paper and will be considered in
future activities.

3. The Probability Simplex and the Wasserstein Space

A discrete measure α is defined by a η-dimensional vector a—whose elements are the
so-called weights—and a set of associated locations (i.e., support) x1, . . . , xη ∈ Γ ⊂ Rq:

α =
η

∑
i=1

aiδxi (1)
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with δxi the Dirac function centred at xi. The discrete measure α is a (positive) probability
measure if the vector a belongs to the probability simplex Ση (i.e., it is a probability vector),
which is defined as follows:

Ση =

{
u ∈ Rη

+ :
η

∑
i=1

ui = 1

}
(2)

The Wasserstein (WST) distance between two distributions α(1), α(2) ∈ Ση is the
solution of the following linear program:

W
(

α(1), α(2)
)
= min

γij∈R+
∑

i∈I1, j∈I2

γij d
(

x(1)i , x(2)j

)
(3)

The transport cost between x(1)i and x(2)j , d
(

x(1)i , x(2)j

)
is usually assumed to be the

p-th power of the norm ||x(1)i , x(2)j || (usually the Euclidean distance). Two index sets
I1 = {1, . . . , m1} and I2 are used to define Equations (4) and (5), which represent the in-flow
and out-flow constraint:

∑
i∈I1

γij = a(2)j , ∀j ∈ I2 (4)

∑
j∈I2

γij = a(1)i , ∀i ∈ I1 (5)

where ai and aj are defined in Equation (1). The terms γij are called matching weights

between support points x(1)i and x(2)j or the optimal coupling for α(1) and α(2). Discrete

optimal transport is a linear program and thus can be solved exactly in O
(
n3 log n

)
with

interior point methods. The computation of the Wasserstein distance is the solution of a
minimum cost flow problem on a bi-partite graph in which the support points of α(1) (α(2))
are, respectively, the sources and the sinks, while the weight of edges between sources and
sinks are the transportation costs. In the case of one-dimensional discrete distributions, the
computation of the Wasserstein distance reduces to a simple sorting and the application of
the following closed formula:

Wp

(
α(1), α(2)

)
=

(
1
n

n

∑
i

∣∣∣x(1)∗i − x(2)∗i

∣∣∣p) 1
p

(6)

where x(1)i and x(2)i are the supports of the distributions α(1) and α(2) and x(1)∗i and x(2)∗i
are the sorted samples.

4. Problem Formulation
4.1. Multi-Objective Optimization

The general formulation of the multi-objective optimization problem can be stated as:

min
x∈Ω⊆Rd

F(x) = ( f1(x), . . . , fm(x)) (7)

where multiple objectives have to be simultaneously optimized. It is important to note that
these objectives may be in contrast with each other, meaning that an improvement in one
objective could compromise the others. Consider that two points, x(k), x(h) ∈ Rd, F

(
x(k)

)
,

are said to dominate F
(

x(h)
)

iff fi

(
x(k)

)
≥ fi

(
x(h)

)
∀ i = 1, . . . , m and f j

(
x(k)

)
> f j

(
x(h)

)
for at least an index j = 1, . . . , m. There is not one optimal solution in multi-objective
optimizations; instead, the goal is to find the set of non-dominated solutions, i.e., the Pareto
set. The image of the Pareto set, i.e., the set of all non-dominated objective vectors, is called
the Pareto front. All the points x having the associated F(x) on the Pareto front represent
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the best trade-offs between the conflicting objectives. Figure 1 shows an example of the
Pareto set and the corresponding Pareto front.

Figure 1. An example of Pareto set (left), with the associated Pareto front (right), for two minimization
objectives.

The quality evaluation of Pareto solutions is a non-trivial issue in multi-objective
optimizations. A widely used metric is the hypervolume indicator, which measures the
volume between a non-dominated set and a fixed reference point in the objective space.

4.2. Optimal Sensor Placement

The optimal sensor placement (OSP) problem aims to identify the best position of a
fixed number ns of sensors with the goal to optimize an impact measure. In particular, we
consider the problem of detecting contaminations.

Consider a water distribution network modelled as a graph G = (V, E). We assume
that sensors can be placed in a subset of the nodes L ⊆ V and that they are capable of
detecting contaminants at any concentration level. In addition, we also assume that when
a contaminant intrusion is first detected, all further consumption is prevented. Thus, a
sensor placement is represented as a binary vector s ∈ {0, 1}|L| where si = 1 if a sensor is
located at node i, and si = 0 otherwise. Then, we assume that contaminant can be injected
in a subset of nodes A ⊆ V.

We introduce a general formulation of OSP as a multi-objective optimization problem.
Let dai be a general “impact” of a sensor located at node i when a contaminant is introduced
in node a, then the OSP problem is:

min f1(s) = ∑
a∈A

1
|A| ∑

i=1,..,|L|
daixai

s.t.
∑

i=1,..,|L|
si ≤ ns

si ∈ {0, 1}

(8)

where xai is an indicator variable that assumes value xai = 1 if si = 1 is the first sensor in
the placement to detect the contamination injected in node a, and xai = 0 otherwise. Here,
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f1 is the average of an impact measure. In addition, as a measure of risk, we consider its
standard deviation as a second objective:

f2(s) =

√√√√√ 1
|A| ∑

a∈A

 ∑
i=1,..,|L|

daixai

− f1(s)

2

(9)

The impact measures considered in this are the detection time and the volume of con-
taminated water; in the two-objective formulation, the objectives are the average detection
time and its standard deviation; in the four-objective formulation, we have also considered
the average volume of contaminated water and its standard deviation.

The above sensor placement model is identical to the well-known p-median facility
location problem in which ns facilities are to be located on m potential sites such that the
sum of distances daj between each of the n customers and the nearest facility is minimized.

4.3. Simulation and Event Data Description

To analyze the spread of the contaminant through the WDN, many simulations have
been performed using the WNTR [36] package, which is a Python wrapper of the widely
used EPANET simulator. In particular, a simulation for each contamination event (i.e.,
injection points of the contaminant) has been executed, tracking the contaminant concen-
tration at each node of the network. Each simulation has been performed for 24 h, with a
simulation step of 1 h. The structure of the data generated in the simulation is analysed
in [37].

Assuming that a sensor, located in a node, detects the contamination if the concentra-
tion of contaminant at the node exceeds a given threshold τ, we can associate a discrete
probability distribution of the detection times over different contamination events to each
sensor. Consider a sensor placed at node i; for each contamination event a ∈ A, we register
the detection time tai, i.e., the time when the concentration of contaminants exceeds τ.

5. Wasserstein-Enabled Multi-Objective Evolutionary Algorithm

MOEA/D is a multi-objective evolutionary algorithm based on the decomposition
strategy proposed in [6]. The idea of MOEA/D is to decompose the multi-objective problem
into N single-objective problems; the solution of each of these problems results in a non-
dominated point.

There are several strategies to scalarize the multi-objective problem. Consider a set of
m-dimensional weight vectors λ1, . . . , λN and a reference point z∗. The simpler approach is
the linear scalarization of the objectives, but it can result in a poor approximation of the
Pareto front, especially when dealing with a non-convex Pareto front. A more effective
approach is the Tchebycheff decomposition in which the objective function of the j-th
single-objective subproblems is:

gte
(

x
∣∣∣λj, z∗

)
= max

1≤i≤m

{
λ

j
i | fi(x)− z∗i |

}
(10)

The key element of the proposed algorithm, namely MOEA/D/W, is the interpretation
of the weight vectors λi as probability measures and in particular as points in the simplex
(Figure 2), since they are always positive, and they all sum to one.
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Figure 2. Two examples of weight vectors seen as discrete probability distributions.

In the standard implementation of MOEA/D, the Euclidean distance between any
two weight vectors is computed, then the neighborhood of each weight vector i = 1, . . . , N
is the set B(i) = {i1, . . . , iT}, where λi1 , . . . , λiT are the T closest weight vectors to λi. In
MOEA/D/W, the Wasserstein distance between the weight vectors is used instead of
the Euclidean distance. Now, the neighbourhood of each weight vector BW (i) is built
using the T farthest vectors, in the Wasserstein sense, from λi. Then, both MOEA/D and
MOEA/D/W randomly select two indexes k, l from B(i) and BW (i), respectively, and
then generate a new solution y from xk and xl by using genetic operators (crossover and
mutation). This process is repeated until a termination criterion is satisfied, such as the
number of generations or the number of function evaluations.

A key factor in decomposition-based MOEA is the initialization of the weight vectors
which define the subproblems. In this paper, Das and Dennis’s approach [38] has been
used, in which a set of weight vectors λ1, . . . λN is sampled from a unit simplex where

N =

(
p−m + 1

m− 1

)
. The N weight vectors are uniformly spaced by 1

p , where p is the number

of partitions considered along each objective. For a fair comparison, the same crossover
and mutation operators have been considered for both MOEA/D and MOEA/D/W. In
particular, the simulated binary crossover with a probability of 1 and η = 20 and the
polynomial mutation with a probability of 0.9 and η = 20 have been used.

6. Computational Results
6.1. Experimental Setting

We have evaluated our approach in two different settings.
First, we have considered a widely used set of benchmark multi-objective problems,

namely DTLZ2, which is defined as:

min f1(x) = (1 + g(x1:k)) cos(x1π/2) · · · cos(xm−2π/2) cos(xm−1π/2)

min f2(x) = (1 + g(x1:k)) cos(x1π/2) · · · cos(xm−2π/2) sin(xm−1π/2)

min f3(x) = (1 + g(x1:k)) cos(x1π/2) · · · sin xm−2π/2
· · ·

min fm(x) = (1 + g(x1:k)) sin(x1π/2)

with g(x1:k) =
k
∑

i=1
(xi − 0.5)2

0 ≤ xi ≤ 1, fori = 1, . . . , n

(11)

with k = n−m + 1. This function is often used to investigate a MOEA’s ability to scale up
its performance in a large number of objectives. The Pareto-optimal solutions correspond
to x1:k = 0.5 and the corresponding Pareto front is shown in Figure 3.
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Figure 3. The Pareto front of DTLZ2 considering 2 objectives (left) and 3 objectives (right).

The experiments have been run for d = 10, 50 and m = 2, 3, 4, 5 considering
200 generations. For each experiment, 10 simulation runs have been performed. Both
algorithms, MOEA/D and MOEA/D/W, have been tested in the configurations reported
in Table 1.

Table 1. Settings of the two algorithms for the test function DTLZ2.

m p N Function Evaluations

2
5 6 1200

11 12 2400

3
5 21 4200

8 45 9000

4
5 56 11,200

7 120 24,000

5
5 126 25,200

6 210 42,000

Second, a real-world water distribution network was used, namely Neptune (Figure 4),
which was a pilot in the European research project Icewater [18]. Neptun is the WDN
of the Romanian city of Timisoara, with an associated graph of 333 nodes (1 reservoir and
332 junctions) and 339 edges (27 valves and 312 pipes). Considering that sensors can be placed
in the node, each individual of the population is a binary vector of d = 333 components.

Figure 4. The water distribution network of Neptun.
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The experiments have been run considering a budget of ns = 10 sensors. For both the
two-objective formulation and four-objective formulation, 10 independent runs have been
performed considering 400 generations. In the two-objective case, the objectives are the
average detection time and its standard deviation, while in the four-objective case, we have
also considered the average volume of contaminated water and its standard deviation. The
experimental settings considered for the optimal sensor placement problem are reported in
Table 2.

Table 2. Settings of the two algorithms for the optimal sensor placement problem.

m p N Function Evaluations

2
6 7 2800

13 14 5600

4
6 84 33,600

8 165 66,000

6.2. Results on Test Functions

In the following figures, the results, in terms of hypervolume, on the test function
DTLZ2, considering different settings, are shown.

For m = 2 MOEA/D and MOEA/D/W show the same performance in terms of
hypervolume for both values of d (Figure 5).

Figure 5. Hypervolume over generations considering DTLZ2 with m = 2 and d = 10 (left) and
d = 50 (right). The average hypervolume over 10 independents run is shown along with the standard
deviation.

For m = 3, MOEA/D/W is marginally better than MOEA/D for both values of d
(Figure 6).

Figure 6. Hypervolume over generations considering DTLZ2 with m = 3 and d = 10 (left) and
d = 50 (right). The average hypervolume over 10 independents run is shown along with the standard
deviation.
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For m = 4 and m = 5, the improvement over MOEA/D increases significantly, in
particular at low generation counts (Figures 7 and 8).

Figure 7. Hypervolume over generations considering DTLZ2 with m = 4 and d = 10 (left) and
d = 50 (right). The average hypervolume over 10 independents run is shown along with the standard
deviation.

Figure 8. Hypervolume over generations considering DTLZ2 with m = 5 and d = 10 (left) and
d = 50 (right). The average hypervolume over 10 independents run is shown along with the standard
deviation.

6.3. Results of Optimal Sensor Placement

The proposed algorithm has also been tested on the problem of optimal sensor place-
ment on a real-world water distribution network. As shown in Figure 9, the results are
coherent with the performance on the test function, reported in the previous section. In the
case of m = 2, the two algorithms are almost equivalent, while with m = 4, the advantage
of MOEA/D/W over MOEA/D increases significantly.

Figure 9. Hypervolume over generations considering Neptun with m = 2 (left) and m = 4 (right).
The average hypervolume over 10 independents run is shown along with the standard deviation.
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6.4. Discussion of the Results

Considering the test function DTLZ2, MOEA/D/W has a consistently better perfor-
mance than MOEA/D: the upper bound for the value of hypervolume is reached at a lower
generation count for MOEA/D/W than MOEA/D, and the improvement is more signifi-
cant for a larger number of objectives. In addition, the gap in performance between the two
algorithms is enhanced, increasing the number of weight vectors (i.e., the single-objective
subproblems in which the multi-objective problem is decomposed), meaning that the
Wasserstein distance, used in the neighbors’ selection, has better exploratory capabilities.
This is highlighted in Figure 10, which shows the increase in the hypervolume of the two
algorithms augmenting the population size (i.e., the number of weight vectors). The im-
provement in terms of performance of MOEA/D/W, doubling the population dimension,
is greater than the one reported by MOEA/D, in particular at a lower generation count.
Very similar behavior can be seen in the real-world problem of optimal sensor placement,
in which MOEA/D/W becomes significantly better moving from two to four objectives.

Figure 10. The difference in hypervolume of the two algorithms increasing the population size
considering both the test function (left and center) and the optimal sensor placement problem (right).

Overall, in the case of DTLZ2, MOEA/D/W reaches a greater hypervolume in 78%
of the experiments, while when increasing the population size, MOEA/D/W outper-
forms MOEA/D in 81% of the experiments. Considering the optimal sensor problem,
MOEA/D/W results in a better hypervolume in 60% of the experiments, while, consider-
ing the augmented population, MOEA/D/W achieves better performance in 75% of the
experiments. Needless to say, a wider set of experiments, both benchmark and real world,
would be required for a full assessment of the computational performance of MOEA/D/W.
The results in this section should be regarded as a “proof of concept” that using a non-
Euclidean distance between combination parameters offers a promising angle in the design
of a MOEA.

7. Conclusions

The key contribution of the paper is the formulation of Wasserstein-enabled selection
operator of the weight parameters in the scalarization. The basic assumption is that the new
operator should induce a better exploration of the space of individuals. This effect should
mitigate two problems with many objectives (m > 2): first, the number of incomparable
solutions dominates the population, reducing the selection pressure and leading to poor
convergence to the Pareto front, and second, it is more difficult to preserve diversity in
the solution set. The assumption is confirmed by the experimental results of the new
algorithm MOEA/D/W both for test functions and a real-world four-objective optimal
sensor placement problem.

In terms of perspectives, it is fair to say that further experiments are needed to
confirm the general relevance of this Wasserstein-based selection strategy. These further
experiments should consider real-world problems such as disease outbreaks in networks
and contact tracing in epidemics as well as a wider set of test problems.
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Other approaches should also be investigated as the Gromow–Wasserstein (GW) dis-
tance for graph clustering, partitioning, and matching. Another interesting perspective
is extending pressure values measured by sensors to other nodes. The Wasserstein dis-
tance can be used to propagate their measurements to the whole network, generating a
distribution-valued map. This would drastically reduce the need for the simulation of the
diffusion.
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