We propose a hidden Markov model for multivariate continuous longitudinal responses with covariates that accounts for three different types of missing pattern: (I) partially missing outcomes at a given time occasion, (II) completely missing outcomes at a given time occasion (intermittent pattern), and (III) dropout before the end of the period of observation (monotone pattern). The missing-at-random (MAR) assumption is formulated to deal with the first two types of missingness, while to account for the informative dropout, we rely on an extra absorbing state. Estimation of the model parameters is based on the maximum likelihood method that is implemented by an expectation-maximization (EM) algorithm relying on suitable recursions. The proposal is illustrated by a Monte Carlo simulation study and an application based on historical data on primary biliary cholangitis.
Pandolfi, S., Bartolucci, F., Pennoni, F. (2023). A hidden Markov model for continuous longitudinal data with missing responses and dropout. BIOMETRICAL JOURNAL, 65(5 (June 2023)), 1-28 [10.1002/bimj.202200016].
A hidden Markov model for continuous longitudinal data with missing responses and dropout
Pennoni, F
2023
Abstract
We propose a hidden Markov model for multivariate continuous longitudinal responses with covariates that accounts for three different types of missing pattern: (I) partially missing outcomes at a given time occasion, (II) completely missing outcomes at a given time occasion (intermittent pattern), and (III) dropout before the end of the period of observation (monotone pattern). The missing-at-random (MAR) assumption is formulated to deal with the first two types of missingness, while to account for the informative dropout, we rely on an extra absorbing state. Estimation of the model parameters is based on the maximum likelihood method that is implemented by an expectation-maximization (EM) algorithm relying on suitable recursions. The proposal is illustrated by a Monte Carlo simulation study and an application based on historical data on primary biliary cholangitis.File | Dimensione | Formato | |
---|---|---|---|
Pandolfi-2023-Biometrical J-VoR.pdf
accesso aperto
Descrizione: Research Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.