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Abstract
We propose a hidden Markov model for multivariate continuous longitudinal
responses with covariates that accounts for three different types of missing pat-
tern: (I) partially missing outcomes at a given time occasion, (II) completely
missing outcomes at a given time occasion (intermittent pattern), and (III)
dropout before the end of the period of observation (monotone pattern). The
missing-at-random (MAR) assumption is formulated to deal with the first two
types of missingness, while to account for the informative dropout, we rely on an
extra absorbing state. Estimation of the model parameters is based on the max-
imum likelihood method that is implemented by an expectation-maximization
(EM) algorithm relying on suitable recursions. The proposal is illustrated by a
Monte Carlo simulation study and an application based on historical data on
primary biliary cholangitis.

KEYWORDS
expectation-maximization algorithm, forward–backward recursion, latent Markov model,
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1 INTRODUCTION

It is well known that longitudinal data are typically affected by missing responses that may arise in different ways (Diggle
et al., 2002; Fitzmaurice et al., 2004; Little & Rubin, 2020). The missing pattern is defined as monotone when individuals
may drop out of the sample before the end of the study. In the medical field, this may be due to a terminal event, such
as the death of a patient. Another type of missingness, also referred to as intermittent, is when individuals are still in the
sample but, for any reason, they do not provide responses at one or more time occasions, as when a clinical visit is missed.
The problem is particularly severe when the missing data mechanism is informative or not ignorable, that is, when the
missingness depends on the unobserved responses (Albert, 2000; Albert et al., 2002; Diggle & Kenward, 1994; Little, 1995;
Little & Rubin, 2020; Rubin, 1976; Rizopoulos, 2012; Yuan & Little, 2009). Additional reviews that are relevant for the
present approach may be found in Verbeke et al. (2014) and Zhou et al. (2020).
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In this paper, we propose a hidden Markov (HM) model (Bartolucci et al., 2013; Zucchini et al., 2016) for multivari-
ate continuous longitudinal outcomes that can address both monotone and intermittent missing data patterns. The HM
approach is of particular interest when dealing with longitudinal data (Bartolucci et al., 2014) as it models time depen-
dence in a flexible way and allows us to perform a dynamic model-based clustering (Bouveyron et al., 2019). Within this
approach, the same individual is allowed to move between clusters across time, and these dynamics are provided in terms
of trajectories. This is because a sequence of discrete latent variables, rather than a single latent variable, is associated
to every individual, giving rise to a hidden process assumed to follow a Markov chain, generally of first order. The states
of this chain correspond to latent clusters or subpopulations of homogeneous individuals sharing the same latent char-
acteristics. This framework may be formulated to deal with responses of different nature. In the proposed approach, we
consider continuous outcomes so that, given the latent state, the response variables are assumed to follow a multivari-
ate Gaussian distribution with state-specific parameters. On the other hand, with categorical responses, the conditional
distribution of the response variables is freely parameterized on the basis of conditional response probabilities.
The proposed model may also include individual covariates that affect the distribution of the latent states and, in par-

ticular, the initial and the transition probabilities of the Markov chain (Bartolucci et al., 2014), so that it is possible to
understand the effect of these covariates on the evolution of the latent states representing different levels of the latent trait
of interest. For a general comparison between discrete latent variable approaches, as the present one, and corresponding
continuous latent variable models, see Bartolucci et al. (2022).
In detail, the proposed HMmodel takes explicitly into account the following patterns of missing data: (I) partially miss-

ing outcomes at a given time occasion, (II) completelymissing outcomes at one occasionwithout dropout from the sample
of the individual, (III) dropout from the sample. The first two cases correspond to the intermittent missing responses
defined above, whereas the third corresponds to a monotone missing pattern also defined as attrition. In particular, cases
(I) and (II) are dealt with under themissing-at-random (MAR) assumption, according towhich themissing pattern is inde-
pendent of the missing responses given the observed data. In case (III), dropout is not ignorable, and specifying a model
for the missing data mechanism is in order. Along with the proposal of Montanari and Pandolfi (2018), who applied a
similar model in the context of longitudinal categorical response variables, we include a hidden (or latent) state, which is
absorbing, in addition to the other states representing unobserved heterogeneous populations that may arise in the study;
see also Spagnoli et al. (2011).
We rely on the maximum likelihood (ML) approach to estimate the proposed model, paying particular attention to

the computational aspects. In more detail, we propose an extended expectation-maximization (EM; Baum et al., 1970;
Dempster et al., 1977; Welch, 2003) algorithm based on suitable recursions and that relies on certain techniques used
to estimate a finite mixture (FM) of Gaussian distributions (McLachlan & Peel, 2000) with MAR responses (Delalleau
et al., 2012; Eirola et al., 2014). In fact, the proposed HM approach may be seen as an extension of the FM approach for
cross-sectional data under the MAR assumption. The estimation algorithm is also employed when individual covariates
are available. In this way, it is possible to understand the influence of these covariates on the dynamic allocation of the
individuals between states over time.
The proposed approach directly compares with other approaches available in the literature that rely on an HM model

for longitudinal data with missing responses; we refer, in particular, to Spagnoli et al. (2011), Maruotti (2015), Marino and
Alfó (2015), Bartolucci and Farcomeni (2015), Marino et al. (2018), Montanari and Pandolfi (2018), and Bartolucci and
Farcomeni (2019). The added value of the present proposal is that of unifying in the same model three different types
of missing pattern, indicated by (I), (II), and (III) above. In particular, with respect to the shared-parameter approach
illustrated in Bartolucci and Farcomeni (2015, 2019), we account for dropout relying on the absorbing state, without the
need to specify a survival model component.
In order to illustrate our proposal, we rely on a series of simulations that allow us to assess the ML estimator in terms

of finite sample properties. We also show an application based on historical data about primary biliary cholangitis (or
cirrhosis; PBC) collected by the Mayo Clinic from January 1974 to May 1984 (Murtaugh et al., 1994). Data are referred
to several biochemical measurements of the liver function scheduled for the patients according to the clinical protocol.
Continuous and binary covariates related to the patients are also available such as age, gender, and medication use. The
data are very sparse due to missing visits and the fact that some biochemical measurements were not collected at each
visit. Moreover, several deaths were registered and this is considered a dropout indicator. In this applied context, as noted
in Royston et al. (2006), it is important to dispose of risk groups of patients derived from the model, especially to make
clinical decisions about therapy.
The codes used to performML estimation of the proposed HMmodel with missing values, both in its basic version and

with the inclusion of individual covariates, are implemented by extending the functions of the R package LMest (Bartolucci
et al., 2017) and are available as Supporting Information.
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The remainder of the paper is organized as follows. In Section 2, we recall some preliminary statistical methods, and
in Section 3, we illustrate the proposed HM formulation. In Section 4, we outline the inferential approach proposed for
estimatingmodel parameters togetherwith aspects related to the computation of the standard errors, identifiability,model
selection, and decoding. In Section 5, we present the simulation study. In Section 6, we illustrate the applicative example,
whereas in Section 7, we provide some conclusions. The Appendix provides additional information on the simulation
results, data, and results of the application.

2 PRELIMINARIES

As mentioned in the previous section, the proposed HMmodel is an extension of the FMmodel of multivariate Gaussian
distributions for cross-sectional data under theMARassumption. Consequently, the lattermodel is briefly reviewed in this
section, also in terms of estimation via the EM algorithm, in order to simplify the illustration of the proposed approach.

2.1 Model formulation

We consider individual vectors 𝒀𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑟)′ of 𝑟 continuous response variables, with 𝑖 = 1, … , 𝑛, referred to the
same measurement occasions. It is well known that the FM model of Gaussian distributions assumes that there exist 𝑘
components identified by the discrete latent variable 𝑈𝑖 such that

𝒀𝑖|𝑈𝑖 = 𝑢 ∼ 𝑁(𝝁𝑢, 𝚺𝑢), 𝑢 = 1,… , 𝑘.

In the previous expression, 𝝁𝑢 and 𝚺𝑢 denote the mean vector and the variance–covariance matrix for the same mix-
ture component 𝑢. Note that the variance–covariance matrices are typically assumed to be equal each other, that is,
𝚺1 = ⋯ = 𝚺𝑘 = 𝚺. This assumption of homoscedasticity makes the model more parsimonious and avoids certain esti-
mation problems because otherwise the likelihood is unbounded (McLachlan & Peel, 2000, chapter 3.8). More articulated
constraints on the 𝚺𝑢 matrices may be expressed, as proposed in Banfield and Raftery (1993), on the basis of suitable
matrix decompositions.
Withmissing data, it is convenient to partition each response vector as (𝒀𝑜𝑖 , 𝒀

𝑚
𝑖 )
′, where𝒀𝑜𝑖 is the (sub)vector of observed

variables and𝒀𝑚𝑖 is that ofmissing variables. Using a straightforward notation, the conditionalmean vectors and variance–
covariance matrix may be decomposed as

𝝁𝑢 =

(
𝝁𝑜𝑢
𝝁𝑚𝑢

)
, 𝚺𝑢 =

(
𝚺𝑜𝑜𝑢 𝚺𝑜𝑚𝑢
𝚺𝑚𝑜𝑢 𝚺𝑚𝑚𝑢

)
, (1)

where, for instance, 𝚺𝑜𝑚𝑢 is the block of 𝚺𝑢 containing the covariances between each observed and missing response. In
this way, for the observed responses, we have that

𝒀𝑜𝑖 |𝑈𝑖 = 𝑢 ∼ 𝑁(𝝁𝑜𝑢, 𝚺𝑜𝑜𝑢 ), 𝑢 = 1,… , 𝑘.

Without individual covariates, each latent variable𝑈𝑖 has the same distribution based on the component weights 𝜋𝑢 =
𝑝(𝑈𝑖 = 𝑢), 𝑢 = 1,… , 𝑘. Consequently, the manifest distribution of the observed responses is given by

𝑓(𝒚𝑜
𝑖
) =

𝑘∑
𝑢=1

𝜋𝑢𝜙(𝒚
𝑜
𝑖
; 𝝁𝑜𝑢, 𝚺

𝑜𝑜
𝑢 ), (2)

where 𝒚𝑜
𝑖
denotes a realization of 𝒀𝑜𝑖 and 𝜙(⋅; ⋅) denotes the multivariate Gaussian probability density function.

Individual covariates may be included in the model in different ways. In particular, we consider the case of component
weights affected by these covariates. Let 𝜋𝑖𝑢 = 𝑝(𝑈𝑖 = 𝑢|𝒙𝑖) denote the class weight for component 𝑢, which is now spe-
cific of individual 𝑖, and 𝒙𝑖 denote the vector of individual covariates, with 𝑖 = 1, … , 𝑛. We assume a multinomial logit
model of type

log
𝜋𝑖𝑢
𝜋𝑖1

= 𝒙′
𝑖
𝜷𝑢, 𝑢 = 2,… , 𝑘, (3)
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where 𝜷𝑢 is a vector of regression parameters. Expression (2) for the manifest distribution is obviously extended as

𝑓(𝒚𝑜
𝑖
) =

𝑘∑
𝑢=1

𝜋𝑖𝑢𝜙(𝒚
𝑜
𝑖
; 𝝁𝑜𝑢, 𝚺

𝑜𝑜
𝑢 ).

2.2 EM algorithm under the MAR assumption

In the presence of missing data, the observed log-likelihood can be written as

𝓁(𝜽) =

𝑛∑
𝑖=1

log 𝑓(𝒚𝑜
𝑖
) =

𝑛∑
𝑖=1

log

[
𝑘∑
𝑢=1

𝜋𝑢𝜙(𝒚
𝑜
𝑖
; 𝝁𝑜𝑢, 𝚺

oo
𝑢 )

]
,

where 𝜽 is the vector of all model parameters. Its maximization for parameter estimation relies on the EM algorithm
(Dempster et al., 1977). This algorithm is based on the complete-data log-likelihood that has expression

𝓁∗(𝜽) =

𝑛∑
𝑖=1

𝑘∑
𝑢=1

𝑧𝑖𝑢 log[𝜋𝑢𝜙(𝒚𝑖; 𝝁𝑢, 𝚺𝑢)],

where 𝑧𝑖𝑢 is a binary variable indicating whether or not unit 𝑖 comes from component 𝑢.
As usual, the EM algorithm alternates two steps until convergence. The E-step consists in computing the conditional

expectation of the indicator variables given the observed data and the current value of the parameters, that is,

𝑧𝑖𝑢 =
𝜋𝑢𝜙(𝒚

𝑜
𝑖
; 𝝁𝑜𝑢, 𝚺

𝑜𝑜
𝑢 )∑𝑘

𝑣=1
𝜋𝑣𝜙(𝒚

𝑜
𝑖
; 𝝁𝑜𝑣, 𝚺

𝑜𝑜
𝑣 )
. (4)

With individual covariates, this rule is modified by substituting every 𝜋𝑢 with 𝜋𝑖𝑢.
Following the proposals in Eirola et al. (2014) and Delalleau et al. (2012), in order to account for missing data, this step

also includes the computation of the following conditional expectations:

E(𝒀𝑖|𝒚𝑜𝑖 , 𝑢) = (
𝒚𝑜
𝑖

E(𝒀𝑚𝑖 |𝒚𝑜𝑖 , 𝑢)
)
, 𝑖 = 1, … , 𝑛, (5)

where

E(𝒀𝑚𝑖 |𝒚𝑜𝑖 , 𝑢) = 𝝁𝑚𝑢 + 𝚺𝑚𝑜𝑢 (𝚺𝑜𝑜𝑢 )
−1(𝒚𝑜

𝑖
− 𝝁𝑜𝑢),

and of the conditional variances

Var(𝒀𝑖|𝒚𝑜𝑖 , 𝑢) = (
𝑶 𝑶

𝑶 𝚺𝑚𝑚𝑢 − 𝚺𝑚𝑜𝑢 (𝚺𝑜𝑜𝑢 )
−1𝚺𝑜𝑚𝑢

)
,

where 𝑶 is a matrix of zeros of suitable dimension. The above expressions originate from the fact that the missing values’
conditional distribution also follows a multivariate Gaussian distribution (Anderson, 2003).
TheM-step consists in updating themodel parameters bymaximizing the expected value of𝓁∗(𝜽) obtained at the E-step.

This maximization leads to the following updating rules for the mean vector and the variance–covariance matrices:

𝝁𝑢 =
1∑𝑛

𝑖=1
𝑧𝑖𝑢

𝑛∑
𝑖=1

𝑧𝑖𝑢E(𝒀𝑖|𝒚𝑜𝑖 , 𝑢), (6)

𝚺𝑢 =
1∑𝑛

𝑖=1
𝑧𝑖𝑢

𝑛∑
𝑖=1

𝑧𝑖𝑢

{
Var(𝒀𝑖|𝒚𝑜𝑖 , 𝑢) + [E(𝒀𝑖|𝒚𝑜𝑖 , 𝑢) − 𝝁𝑢][E(𝒀𝑖|𝒚𝑜𝑖 , 𝑢) − 𝝁𝑢]′}. (7)
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The rule in (7) is suitably modified by summing the numerator for all 𝑢, and dividing the sum by 𝑛, under the constraint
of homoscedasticity. The component weights are updated as

𝜋𝑢 =

∑𝑛

𝑖=1
𝑧𝑖𝑢

𝑛
, 𝑢 = 1,… , 𝑘,

whereas with individual covariates, we maximize the complete log-likelihood component

𝑛∑
𝑖=1

𝑘∑
𝑢=1

𝑧𝑖𝑢 log 𝜋𝑖𝑢

with respect to the parameter vectors 𝜷2, … , 𝜷𝑘 defined in Expression (3) by a Newton–Raphson algorithm.
These two steps are repeated until convergence, which is checked on the basis of the relative log-likelihood difference,

that is,

∣ 𝓁(𝜽
(𝑠)
) − 𝓁(𝜽

(𝑠−1)
) ∣

∣ 𝓁(𝜽
(𝑠)
) ∣

≤ 𝜖,

where 𝜽(𝑠) is the vector of parameter estimates obtained at the end of the 𝑠-th M-step and 𝜖 is a suitable tolerance level
(e.g., 10−8). A crucial aspect is that of the initialization of the algorithm to deal with the likelihood multimodality. In this
regard, it is important to rely on different strategies, even based on random rules, for choosing the starting values of the
model parameters; see also Shireman et al. (2017).

2.3 Model selection and clustering

Selection of the number of components is an important aspect when applying FM models (McLachlan & Peel, 2000,
Chapter 6). Typically, this choice is based on information criteria such as the Akaike information criterion (AIC; Akaike,
1973) or the Bayesian information criterion (BIC; Schwarz, 1978), obtained through penalizations of the maximum log-
likelihood. In particular, the AIC index is expressed as

𝐴𝐼𝐶𝑘 = −2𝓁𝑘 + 2#𝑝𝑎𝑟𝑘,

whereas the BIC index has expression

𝐵𝐼𝐶𝑘 = −2𝓁𝑘 + log(𝑛)#𝑝𝑎𝑟𝑘,

where 𝓁𝑘 denotes the maximum of the log-likelihood of the FM model with 𝑘 components and #𝑝𝑎𝑟𝑘 denotes the cor-
responding number of free parameters. To select the optimal number of components, we estimate a series of models for
increasing values of 𝑘, and we select the one corresponding to the minimum value of these indexes. The BIC is usually
preferred to the AIC as the latter tends to overestimate the number of components (McLachlan & Peel, 2000, chapter 6.9).
An alternative procedure is based on the cross-validated likelihood criterion proposed for FMmodels by Smyth (2000),

in which the data are repeatedly divided into two randomly chosen partitions: the training subset and the test subset. For
every partition, the model is estimated on the training subset and the corresponding log-likelihood is evaluated on the test
subset. The cross-validated log-likelihood is computed as the average, over all the partitions, of the log-likelihood on the
testing data. The model with the highest value of the cross-validated log-likelihood is then selected as the best one.
Finally, on the basis of the estimation results, model-based clustering is performed with the maximum a posteriori

(MAP) rule, consisting in assigning unit 𝑖 to the latent component corresponding to the maximum over 𝑢 of the posterior
probability computed as in (4). The selected component for unit 𝑖 is denoted by𝑢𝑖. Note that,withmissing data, it is possible
to perform a sort of multiple imputation that allows us to predict the missing responses conditionally or unconditionally
to the model component. In the first case, the predicted value is simply 𝒚̂𝑖 = E(𝒀𝑖|𝒚𝑜𝑖 , 𝑢𝑖), while for the unconditional
case, it is computed as

𝒚̃𝑖 =

𝑘∑
𝑢=1

𝑧𝑖𝑢E(𝒀𝑖|𝒚𝑜𝑖 , 𝑢),
where the expected value is defined in (5).
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3 PROPOSED HMMODELWITHMISSING DATA

In the following, we illustrate the assumptions of the proposed HM approach to deal with the intermittent and monotone
missing data structures indicated by (I), (II), and (III) in Section 1.

3.1 Model formulation

We denote by 𝒀𝑖𝑡 = (𝑌𝑖1𝑡, … , 𝑌𝑖𝑟𝑡)′ the vector of 𝑟 continuous response variables measured at time 𝑡 for individual 𝑖, with
𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇𝑖 . Note that the number of time occasions 𝑇𝑖 is specific for each individual 𝑖. In this way, we also
conceive unbalanced panels that, for example, are due to a different number of scheduled visits for every individual in
a medical study. Also note that the time between visits should be at least approximatively the same across the panel of
patients. Clearly, in a longitudinal setting, it is also important to account for dropout that gives rise to monotone informa-
tive missing data. In this regard, we first introduce the indicator variable𝐷𝑖𝑡 for the dropout, which assumes a value equal
to 0 if unit 𝑖 is still in the panel at occasion 𝑡 and equal to 1 if the same unit has dropped out. It is worth noting that the
event of dropout at time 𝑡, so that 𝐷𝑖𝑡 = 1, implies that 𝐷𝑖,𝑡+1, … , 𝐷𝑖𝑇𝑖 = 1, where we use the convention that a comma is
inserted between two indices when necessary to avoid misunderstandings. Obviously, even if 𝐷𝑖𝑡 = 0, we may still have a
missing observation at occasion 𝑡 due to the intermittent missing data pattern with all or some of the outcomes that are
not observed.
The general HM formulation assumes the existence of a latent process for each individual 𝑖, denoted by 𝑼𝑖 =

(𝑈𝑖1, … ,𝑈𝑖𝑇𝑖 )
′, which affects the distribution of the response variables and is assumed to follow a first-orderMarkov chain

with a certain number of states equal to 𝑘 + 1. This model may account for dropout by adding an extra latent state, the
(𝑘 + 1)-th, defined as an absorbing state, in the sense that once it has been reached, then it is not possible to move away
from it. This proposal has been previously introduced in Montanari and Pandolfi (2018) for the HM model with discrete
response variables.
The HM model has two components: the measurement (sub)model, concerning the conditional distribution of the

response variables given the latent process, and the latent (sub)model, concerning the distribution of the latent process.
Regarding the first component, we assume that the response vectors are conditionally independent given the hidden state
and that, as in the FMmodel presented in Section 2, for the first 𝑘 states, the response vectors have a Gaussian distribution
with a specific mean vector and variance–covariance matrix. More precisely, we assume that

𝒀𝑖𝑡|𝑈𝑖𝑡 = 𝑢, 𝐷𝑖𝑡 = 0 ∼ 𝑁(𝝁𝑢, 𝚺), 𝑢 = 1,… , 𝑘, (8)

where the vectors 𝝁𝑢 of length 𝑟, with 𝑟 denoting the number of response variables, are specific of each state 𝑢, 𝑢 = 1,… , 𝑘,
and the variance–covariance matrix 𝚺, of dimension 𝑟 × 𝑟, is assumed to be constant across states under the assumption
of homoscedasticity. This choice is based on the same arguments clarified in Section 2.1 for FM models and allows us to
avoid an excessive number of parameters and possible estimation problems. However, it may be suitably relaxed on the
basis of proper matrix decompositions. In addition, we assume that

𝑃(𝐷it = 𝑑|𝑈it = 𝑢) =

{
1 with 𝑑 = 0 and 𝑢 = 1,… , 𝑘 or 𝑑 = 1 and 𝑢 = 𝑘 + 1,
0 otherwise.

In order to account for intermittent missing responses, we consider the partition 𝒀𝑖𝑡 = (𝒀
𝑜
𝑖𝑡, 𝒀

𝑚
𝑖𝑡 )
′, where 𝒀𝑜𝑖𝑡 is the

(sub)vector of the observed responses and 𝒀𝑚𝑖𝑡 is referred to the missing data. As for the model illustrated in Section 2,
we consider a decomposition of the conditional mean vector and the variance–covariance matrix; see Expression (1).
Consequently, we have that

𝒀𝑜𝑖𝑡|𝑈𝑖𝑡 = 𝑢, 𝐷𝑖𝑡 = 0 ∼ 𝑁(𝝁𝑜𝑢, 𝚺𝑜𝑜), 𝑢 = 1,… , 𝑘. (9)

Note that the distribution of 𝒀𝑜𝑖𝑡 given 𝑈𝑖𝑡 = 𝑘 + 1 and 𝐷𝑖𝑡 = 1 does not need to be defined.
Finally, the parameters of the latent model are the initial probabilities

𝜋𝑢 = 𝑝(𝑈𝑖1 = 𝑢), 𝑢 = 1,… 𝑘,
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PANDOLFI et al. 7 of 28

and the transition probabilities

𝜋𝑢|𝑢̄ = 𝑝(𝑈it = 𝑢|𝑈𝑖,𝑡−1 = 𝑢̄), 𝑡 = 2, … , 𝑇𝑖, 𝑢̄, 𝑢 = 1,… , 𝑘 + 1,

where 𝑢 denotes a realization of 𝑈𝑖𝑡 and 𝑢̄ a realization of 𝑈𝑖,𝑡−1. Note that the transition probabilities are assumed to be
time homogeneous to reduce the number of free parameters, but even this assumption may be relaxed if necessary. More-
over, given the interpretation of the latent state referred to the dropout, the transition probabilities are suitably constrained
as

𝜋𝑘+1|𝑘+1 = 1, 𝜋𝑢|𝑘+1 = 0, 𝑢 = 1,… , 𝑘.

Therefore, once a subject reaches the (𝑘 + 1)-th latent state, he/she yields missing values until the end of the study. Note
also that the initial probabilities are defined for the first 𝑘 states, as no unit is in the dropout state at the beginning of
the study. The interest in modeling this extra state is evident when the model includes individual covariates, as shown in
the following.
In the present formulation, the manifest distribution is expressed with reference to the observed data represented by

𝑜
𝑖
= {𝒚𝑜

𝑖𝑡
, 𝑡 = 1, … , 𝑇𝑖 ∶ 𝑑𝑖𝑡 = 0}, which is the set of vectors 𝒚𝑜𝑖𝑡 observed when 𝑑𝑖𝑡 = 0, for 𝑖 = 1, … , 𝑛. Denoting by 𝒅𝑖 the

vector of the observed indicator variables 𝐷𝑖𝑡 for individual 𝑖, we have that

𝑓(𝒅𝑖,
𝑜
𝑖
) =

∑
𝒖𝑖

𝑓(𝑜
𝑖
|𝑫𝑖 = 𝒅𝑖,𝑼𝑖 = 𝒖𝑖)𝑃(𝑫𝑖 = 𝒅𝑖|𝑼𝑖 = 𝒖𝑖)𝑃(𝑼𝑖 = 𝒖𝑖)

=
∑
𝒖𝑖

[
𝑇𝑖∏
𝑡=1

𝑓(𝒚𝑜
𝑖𝑡
|𝑑𝑖𝑡, 𝑢𝑖𝑡) 𝑝(𝑑𝑖𝑡|𝑢𝑖𝑡)

](
𝜋𝑢𝑖1

𝑇𝑖∏
𝑡=2

𝜋𝑢𝑖𝑡|𝑢𝑖,𝑡−1
)
, (10)

where the density 𝑓(𝒚𝑜
𝑖𝑡
|𝑑𝑖𝑡, 𝑢𝑖𝑡) is based on assumption (9) for 𝑑𝑖𝑡 = 0 and is let equal to 1 otherwise. As usual in dealing

with HMmodels, to efficiently compute this distribution, we rely on a forward recursion (Baum et al., 1970; Welch, 2003).
The above formulation allows characterizing the process of generating informative dropout and the probability of tran-

sition from the latent states to the dropout state. More in detail, starting from the EM algorithm illustrated in Section 2.2,
we develop an inferential approach to obtain exact ML estimates of model parameters under the MAR assumption for the
intermittentmissingness andwith informative dropout. The resulting EM algorithm, illustrated in Section 4, also includes
suitable forward–backward recursions to perform the E-step (Baum et al., 1970; Welch, 2003).
Finally note that a common problem in the literature of HM and FMmodels is the label switching problem, that is, the

invariance of the likelihoodwith respect to permutations of the first 𝑘 hidden (or latent) states. The dropout state is instead
not exchangeable with the other states. However, although it has been known to be a challenging issue in the Bayesian
context, this is not a problem when performing ML inference, as it is possible to arbitrarily order the hidden states after
the estimation process to favor their interpretability.

3.2 Inclusion of individual covariates

Longitudinal data allow for a precise assessment of the effect of individual covariates and this aspect is particularly relevant
when these variables are related to a certain treatment as in the empirical illustration provided in Section 6. In the HM
formulation, individual covariatesmay be included in themeasurementmodel or in the latentmodel; for a general review,
see Bartolucci et al. (2013) andBartolucci et al. (2014). In the first case, the conditional distribution of the response variables
given the latent states must be suitably parameterized. In such a situation, the latent variables account for the unobserved
heterogeneity that is allowed to be time-varying (Bartolucci&Farcomeni, 2009).When covariates are included in the latent
model, the interest is in modeling the effect of covariates on the distribution of the latent process (Vermunt et al., 1999).
This formulation is relevant when the response variables measure an individual characteristic of interest represented by
the latent variables.
In this work, we consider the second formulation, and we adopt a multinomial parameterization for the initial and

transition Markov chain probabilities. More in detail, let 𝒙𝑖𝑡 denote the vector of individual covariates available at the
𝑡-th time occasion for individual 𝑖. Now the initial and transition probabilities are individual specific and denoted by
𝜋𝑖𝑢 = 𝑝(𝑈𝑖1 = 𝑢|𝒙𝑖1), 𝑢 = 1,… , 𝑘, and 𝜋𝑖,𝑢|𝑢̄ = 𝑝(𝑈𝑖𝑡 = 𝑢|𝑈𝑖,𝑡−1 = 𝑢̄, 𝒙𝑖𝑡), 𝑡 = 2, … , 𝑇, 𝑢̄, 𝑢 = 1,… , 𝑘 + 1, respectively. For
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8 of 28 PANDOLFI et al.

the initial probabilities, we rely on the following parameterization:

log
𝜋iu
𝜋𝑖1

= 𝛽0𝑢 + 𝒙
′
𝑖1
𝜷1𝑢, 𝑢 = 2,… , 𝑘, (11)

whereas for the transition probabilities, we consider the following parameterization:

log
𝜋𝑖,𝑢|𝑢̄
𝜋𝑖,𝑢̄|𝑢̄ = 𝛾0𝑢̄𝑢 + 𝒙′it𝜸1𝑢̄𝑢, 𝑢̄ = 1, … , 𝑘, 𝑢 = 1,… , 𝑘 + 1, 𝑢̄ ≠ 𝑢. (12)

In the above expressions, 𝜷𝑢 = (𝛽0𝑢, 𝜷
′
1𝑢)

′ and 𝜸𝑢̄𝑢 = (𝛾0𝑢̄𝑢, 𝜸
′
1𝑢̄𝑢)

′ are parameter vectors to be estimated that are collected
in the matrices 𝑩 and 𝚪, respectively. Parameters in 𝑩 are not affected by the presence of the extra state since no unit is
in the dropout state at the beginning of the study. On the other hand, parameters in 𝚪 are properly constrained to avoid
transitions from the latent absorbing state.
Finally, Expression (10) for the manifest distribution is extended as

𝑓(𝒅𝑖,
𝑜
𝑖
) =

∑
𝒖𝑖

[
𝑇𝑖∏
𝑡=1

𝑓(𝒚𝑜
𝑖𝑡
|𝑑𝑖𝑡, 𝑢𝑖𝑡) 𝑝(𝑑𝑖𝑡|𝑢𝑖𝑡)

](
𝜋𝑖,𝑢𝑖1

𝑇𝑖∏
𝑡=2

𝜋𝑖,𝑢𝑖𝑡|𝑢𝑖,𝑡−1
)
. (13)

4 MODEL INFERENCE

In the following, we first illustrate the proposed inferential approach based on the maximization of the log-likelihood
function. Then, we outline the strategy for the initialization of the estimation algorithm. Finally, we discuss issues related
to the computation of the standard errors, model identifiability, selection of the number of states, and model-based
dynamic clustering.

4.1 Maximum log-likelihood estimation with missing responses

Assuming independence between sample units, the log-likelihood referred to the observed data is

𝓁(𝜽) =

𝑛∑
𝑖=1

log 𝑓(𝒅𝑖,
𝑜
𝑖
).

In the above expression, 𝜽 is the vector of all model parameters and 𝑓(𝒅𝑖,𝑜
𝑖
) is the manifest distribution of the observed

responses defined in (10) without covariates and in (13) with covariates. In order to estimate the parameters, wemaximize
𝓁(𝜽) by an EM algorithm based on a complete-data log-likelihood that may be expressed as the sum of three components
that are maximized separately

𝓁∗(𝜽) = 𝓁∗1(𝜽) + 𝓁
∗
2(𝜽) + 𝓁

∗
3(𝜽),

where

𝓁∗1(𝜽) =

𝑛∑
𝑖=1

𝑇𝑖∑
𝑡=1

(𝑑𝑖𝑡=0)

𝑘∑
𝑢=1

𝑧𝑖𝑡𝑢 log 𝑓(𝒚𝑖𝑡|𝐷𝑖𝑡 = 0, 𝑢),

𝓁∗2(𝜽) =

𝑛∑
𝑖=1

𝑘∑
𝑢=1

𝑧𝑖1𝑢 log 𝜋𝑢,

𝓁∗3(𝜽) =

𝑛∑
𝑖=1

𝑇𝑖∑
𝑡=2

𝑘+1∑
𝑢̄=1

𝑘+1∑
𝑢=1

𝑧𝑖𝑡𝑢̄𝑢 log 𝜋𝑢|𝑢̄.
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PANDOLFI et al. 9 of 28

In the above expressions, 𝑓(𝒚𝑖𝑡|𝐷𝑖𝑡 = 0, 𝑢) is based on assumption (8), 𝑧𝑖𝑡𝑢 = 𝐼(𝑢𝑖𝑡 = 𝑢) is an indicator variable equal to 1
if individual 𝑖 is in latent state 𝑢 at time 𝑡, and 𝑧𝑖𝑡𝑢̄𝑢 = 𝑧𝑖,𝑡−1,𝑢̄ 𝑧𝑖𝑡𝑢 is the indicator variable for the transition from state 𝑢̄
to state 𝑢 of individual 𝑖 at time occasion 𝑡. When individual covariates are available, expressions for 𝓁∗

2
(𝜽) and 𝓁∗

3
(𝜽) are

modified by substituting every𝜋𝑢 and𝜋𝑢|𝑢̄ with𝜋𝑖𝑢 and𝜋𝑖,𝑢|𝑢̄, respectively, which in turn are formulated as in Expressions
(11) and (12). Also note that in 𝓁∗

1
(𝜽), the sum over 𝑡 is computed only when 𝑑𝑖𝑡 = 0, whereas in 𝓁∗3(𝜽) the last two sums

also involve the absorbing hidden state, 𝑘 + 1. More explicitly, the first component of the complete log-likelihood function
may be written as

log 𝑓(𝒚𝑖𝑡|𝐷𝑖𝑡 = 0, 𝑢) = −12 log(|𝚺|) − 12(𝒚𝑖𝑡 − 𝝁𝑢)′𝚺−1(𝒚𝑖𝑡 − 𝝁𝑢).
Therefore, we have that

𝓁∗1(𝜽) =

𝑛∑
𝑖=1

{
−
𝑇𝑖 − 𝑑𝑖+

2
log(|𝚺|) − 1

2

𝑇𝑖∑
𝑡=1

(𝑑𝑖𝑡=0)

𝑘∑
𝑢=1

𝑧𝑖𝑡𝑢tr
[
𝚺−1(𝒚𝑖𝑡 − 𝝁𝑢)(𝒚𝑖𝑡 − 𝝁𝑢)

′
]}
,

where 𝑑𝑖+ =
∑𝑇𝑖
𝑡=1
𝑑𝑖𝑡.

At the E-step of the EM algorithmwe compute the posterior expected value of the indicator variables given the observed
data and the current value of the parameters. In particular, these expected values correspond to the following quantities:

𝑧itu = 𝑝(𝑈it = 𝑢|𝒅𝑖,𝑜
𝑖
), 𝑡 = 1, … , 𝑇𝑖, 𝑢 = 1,… , 𝑘 + 1, (14)

𝑧it𝑢̄𝑢 = 𝑝(𝑈it = 𝑢,𝑈𝑖,𝑡−1 = 𝑢̄|𝒅𝑖,𝑜
𝑖
), 𝑡 = 2, … , 𝑇𝑖, 𝑢̄, 𝑢 = 1,… , 𝑘 + 1, (15)

computed by means of forward–backward recursions of Baum et al. (1970) and Welch (2003); for an illustration, see Bar-
tolucci et al. (2013). We stress that when 𝑑𝑖𝑡 = 1, that is, when unit 𝑖 has dropped out at occasion 𝑡, we have 𝑧𝑖𝑠𝑢 = 0,
for 𝑢 = 1,… , 𝑘 and 𝑠 = 𝑡, … , 𝑇𝑖 , and 𝑧𝑖𝑠,𝑘+1 = 1 for 𝑠 = 𝑡, … , 𝑇𝑖 . With individual covariates, the posterior probabilities in
(14) and (15) also take into account these covariates that affect the initial and transition probabilities. Furthermore, when
𝑑𝑖𝑡 = 0, the E-step also includes the computation of the following expected values resulting from theMAR assumption for
the missing observations:

E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢) = (
𝒚𝑜
𝑖𝑡

𝝁𝑚𝑢 + 𝚺
𝑚𝑜(𝚺𝑜𝑜)−1(𝒚𝑜

𝑖𝑡
− 𝝁𝑜𝑢)

)
, (16)

E
[
(𝒀𝑖𝑡 − 𝝁𝑢)(𝒀𝑖𝑡 − 𝝁𝑢)

′|𝒚𝑜
𝑖𝑡
, 𝑢

]
= Var(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡) + E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢)E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢)′
−𝝁𝑢E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢)′ − E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢)𝝁′𝑢 + 𝝁𝑢𝝁′𝑢

= Var(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡) + [𝐸(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢) − 𝝁𝑢][𝐸(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢) − 𝝁𝑢]′,
where

Var(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡) = (
𝑶 𝑶

𝑶 𝚺𝑚𝑚 − 𝚺𝑚𝑜(𝚺𝑜𝑜)−1𝚺𝑜𝑚

)
.

At the M-step of the EM algorithm, we update the model parameters by considering the closed-form solution for the
means

𝝁𝑢 =
1∑𝑛

𝑖=1

∑𝑇𝑖
𝑡=1

(𝑑𝑖𝑡=0)

𝑧𝑖𝑡𝑢

𝑛∑
𝑖=1

𝑇𝑖∑
𝑡=1

(𝑑𝑖𝑡=0)

𝑧𝑖𝑡𝑢E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢), 𝑢 = 1,… , 𝑘,
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10 of 28 PANDOLFI et al.

and we update 𝚺 as

𝚺 =
1∑𝑛

𝑖=1
(𝑇𝑖 − 𝑑𝑖+)

𝑛∑
𝑖=1

𝑇𝑖∑
𝑡=1

(𝑑𝑖𝑡=0)

𝑘∑
𝑢=1

𝑧𝑖𝑡𝑢

{
Var(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡) + [E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢) − 𝝁𝑢][E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢) − 𝝁𝑢]′}

that directly compare with Expressions (6) and (7).
Finally, without individual covariates, the initial and transition probabilities may be updated as

𝜋𝑢 =

∑𝑛

𝑖=1
𝑧𝑖1𝑢

𝑛
, 𝑢 = 1,… , 𝑘,

𝜋𝑢|𝑢̄ =
∑𝑛

𝑖=1

∑𝑇𝑖
𝑡=2
𝑧it𝑢̄𝑢∑𝑛

𝑖=1

∑𝑇𝑖
𝑡=2
𝑧𝑖,𝑡−1,𝑢

, 𝑢̄, 𝑢 = 1,… , 𝑘 + 1,

whereas, with individual covariates, in order to update the latent model parameters, we maximize the complete
log-likelihood components 𝓁∗

2
(𝜽) and 𝓁∗

3
(𝜽), with respect to 𝑩 and 𝚪, by a Newton–Raphson algorithm.

4.2 Algorithm initialization

As alreadymentioned for FMmodels, the initialization of the EMalgorithmplays a central role as themodel log-likelihood
is typically multimodal. This is a common problem in the estimation of discrete latent variable models implying that
the EM algorithm may converge to one of the local modes that do not correspond to the global maximum. In such a
situation, a multistart strategy, based both on a deterministic and a random starting rule, is necessary. More in detail, the
deterministic rule consists in computing the starting values of the parameters of themeasurementmodel,𝝁𝑢 and 𝚺, on the
basis of descriptive statistics (mean and covariance matrix) of the observed outcomes. In particular, the starting values for
every 𝝁𝑢, 𝑢 = 1,… , 𝑘, are diversified on the basis of the product between the observed standard deviation of the response
variables and suitable quantiles of the standardGaussian distribution that are added to themean of the observed outcomes.
The starting values for the initial probabilities𝜋𝑢 are chosen as 1∕𝑘, for 𝑢 = 1,… , 𝑘, also including the constraint𝜋𝑘+1 = 0.
For the transition probabilities, we use 𝜋𝑢|𝑢̄ = (ℎ + 1)∕[ℎ + (𝑘 + 1)]when 𝑢 = 𝑢̄ and 𝜋𝑢|𝑢̄ = 1∕[ℎ + (𝑘 + 1)]when 𝑢 ≠ 𝑢̄,
for 𝑢 = 1,… , 𝑘 + 1 and 𝑢̄ = 1, … , 𝑘, where ℎ is a suitable constant; for instance, in the application illustrated in Section 6,
we use ℎ = 9. We also constrain the last row of the transition matrix to have elements 𝜋𝑢|𝑘+1 = 0 for 𝑢 = 1,… , 𝑘 and
𝜋𝑘+1|𝑘+1 = 1. The random starting rule is based on values generated from a Gaussian distribution for the vectors 𝝁𝑢,
𝑢 = 1,… , 𝑘, and on suitable normalized random numbers drawn from a uniform distribution between 0 and 1 for both
initial and transition probabilities. The starting values for the variance–covariance matrix are again chosen according to
the corresponding matrix computed for the observed outcomes. The same rules may be suitably adapted when individual
covariates are included in the model. In this case, the initialization of the EM algorithm directly refers to the parameters
in 𝑩 and 𝚪.
Overall, for a given 𝑘, the inference is based on the solution corresponding to the largest value of the log-likelihood at

convergence, which typically corresponds to the global maximum. The vector of parameter estimates obtained in this way
is denoted by 𝜽̂. For an illustration of alternative initialization strategies of HM models, we refer the reader to Maruotti
and Punzo (2021).

4.3 Standard errors, identifiability, model selection, and clustering

Once parameter estimates are computed for a given number of latent states 𝑘, and collected in 𝜽̂, the corresponding stan-
dard errors may be obtained on the basis of different methods. In this work, considering the ease of implementation and
robustness of the corresponding results, we mainly rely on a nonparametric bootstrap procedure (Davison & Hinkley,
1997). This is performed by repeatedly sampling with replacement data from the original sample, and fitting the proposed
HMmodel with the selected number of states on these bootstrap samples. A drawback of this method is the high compu-
tational cost due to the need to fit themodel for each resampled data set. A possible approach to reduce the computational
burden is to use, as starting values for the EM algorithm, the parameter estimates obtained for the observed data.
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PANDOLFI et al. 11 of 28

Alternative methods to obtain standard errors may be based on a parametric bootstrap procedure, which relies on sam-
ples simulated from the estimated model, or on the computation of the square root of the diagonal elements of the inverse
of the information matrix. In this regard, it is well known that the EM algorithm does not provide the observed informa-
tion matrix directly. However, among the available approaches to obtain this matrix, one of the simplest is based on the
numerical method proposed in Bartolucci and Farcomeni (2009), that is, as minus the numerical derivative of the score
vector at convergence. The score vector, in turn, is obtained as the first derivative of the expected value of the complete
data log-likelihood, as suggested by Oakes (1999).
The observed information matrix at the ML estimate may also be used to check identifiability of the model, which

represents a fundamental issue when applying a statistical model. Given the complexity of the problem, no general rules
are available in the literature of HMmodels. One possibility for assessing if themodel is locally identifiable at 𝜽̂ consists in
checking if the observed information matrix is of full rank; see, among others, Goodman (1974). An alternative empirical
approach is based on comparing the different solutions at convergence of the estimation algorithm starting from different
points of the parameter space (Bartolucci et al., 2013). If there exist at least two different estimates leading to a value of
the log-likelihood close enough to the maximum, we can assess that the model is not globally identifiable. Otherwise,
provided that the number of initializations is large enough, we can be confident about the global identifiability of the
model, apart from the invariance issue mentioned at the end of Section 3.1.
Concerning model selection, we rely on information criteria that are also common in the FM literature (McLachlan &

Peel, 2000) and, in particular, on the BIC, which outperforms alternative information criteria as confirmed by Bacci et al.
(2014). Based on this selection approach,we estimate a series ofmodels for increasing values of 𝑘, andwe select the number
of latent states corresponding to the minimum value of the BIC index. However, as typically happens in applications to
complex and high-dimensional data, this index may continue to decrease for each state added until a very large value of
𝑘. In such a situation, it is advisable to choose the value of 𝑘 that represents a good compromise between goodness-of-fit
and interpretability of the resulting latent states as implemented, among others, in Montanari and Pandolfi (2018). It is
also useful to visually display the values of the index against increasing 𝑘 so as to look for the “elbow,” that is, a change
of slope in the curve suggesting the optimal number of states (Nylund-Gibson & Choi, 2018). A similar approach has
also been proposed by Pohle et al. (2017) in an application to ecological time-series data about animal movement, where
a large number of states may not be easily interpretable. In such a context, the authors suggested a pragmatic solution
that takes into account the standard information criteria as guidance, which are combined with an expert knowledge and
model checking procedures to select the most suitable number of states for the application at hand, also taking its aim
into account.
Finally, consider that also a cross-validated likelihood approach has been proposed by Celeux and Durand (2008) to

select the number of states of an HM model. However, this approach turns out to be computationally demanding and
we prefer to rely on the classical information criteria, whose behavior will be investigated in the section referred to the
simulation study.
Once the number of states is selected, dynamic clustering is performed by assigning every unit to a latent state at each

time occasion. The EM algorithm directly provides the estimated posterior probabilities of 𝑈𝑖𝑡, as defined in (14). These
probabilities can be directly used to perform local decoding so as to predict the latent states of every unit 𝑖 at each time
occasion 𝑡. To obtain the prediction of the latent trajectories of a unit across time, that is, the a posteriori most likely
sequence of hidden states, we also employ the so-called global decoding, which is based on an adaptation of the Viterbi
algorithm (Viterbi, 1967); see also Juang and Rabiner (1991).
Even in this case, it is possible to perform imputation of the missing responses conditionally or unconditionally to the

predicted latent state. As for FMmodels, in the conditional case, the predicted value is simply 𝒚̂𝑖𝑡 = E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢𝑖𝑡), where
𝑢𝑖𝑡 are the predicted states. The unconditional prediction of the missing responses is instead computed as

𝒚̃𝑖𝑡 =

𝑘∑
𝑢=1

𝑧𝑖𝑡𝑢E(𝒀𝑖𝑡|𝒚𝑜𝑖𝑡, 𝑢),
where the expected value is defined as in (16).

5 SIMULATION STUDY

In the following, we illustrate the simulation design carried out to assess the performance of the proposed approach. It
is developed varying the sample size, the number of hidden states, and the assumed proportion of intermittent missing
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12 of 28 PANDOLFI et al.

responses and informative dropout observations. Here, we aim at evaluating whether the proposed inferential approach
allows us to identify the correct data-generating process in terms of model parameters’ recovery. We also assess the
performance of the suggested information criteria in selecting the true number of hidden states.

5.1 Simulation design

We randomly drew 𝐵 = 250 samples of 𝑛 = 500, 1000 individuals from an HM model with a number of hidden states
equal to 𝑘 = 2, 3. We also considered the same number of time occasions for each individual by setting 𝑇𝑖 = 𝑇 = 5, corre-
sponding to balanced panel data. We finally considered 𝑟 = 3, 6 continuous response variables, and a varying proportion
of intermittent missing responses, that is, 𝑝miss = 0.01, 0.05, 0.10, 0.25.
Regarding the measurement model, the following values for the conditional means are considered: 𝝁1 = (−2,−2, 0)

′

and 𝝁2 = (0, 2, 2)
′, with 𝑘 = 2 states and 𝑟 = 3 response variables; 𝝁1 = (−2,−2, 0, −1, −1, 0)

′ and 𝝁2 = (0, 2, 2, 0, 1, 1)
′,

with 𝑘 = 2 and 𝑟 = 6. Moreover, with 𝑘 = 3 latent states and 𝑟 = 3 outcomes, we set 𝝁1 = (−2,−2, 0)
′, 𝝁2 = (0, 0, 0)

′, and
𝝁3 = (0, 2, 2)

′, and with 𝑟 = 6 variables, we set 𝝁1 = (−2,−2, 0, −1, −1, 0)
′, 𝝁2 = (0, 0, 0, 0, 0, 0)

′, and 𝝁3 = (0, 2, 2, 0, 1, 1)
′.

We also assumed a variance–covariance matrix constant across states, with all variances equal to 1 and covariances
equal to 0.5. We considered equally likely hidden states at the first time period 𝜋𝑢 = 1∕𝑘, with 𝑢 = 1,… , 𝑘. Finally, we
assumed a varying proportion of informative dropout, which was simulated by considering a transition matrix with
increasing probabilities of moving toward the additional absorbing latent state, 𝑘 + 1, corresponding to the dropout, that
is, 𝑝drop = 0.01, 0.05, 0.10, 0.25. This transition matrix is assumed to be time-homogeneous. Overall, we considered a total
of 32 different scenarios. In the following, we report the estimation results obtained under the most sensible scenarios in
order to assess the effect of the different design factors on the accuracy of the parameter estimates.

5.2 Results

The simulation results are assessed in terms of bias and root mean square error (rmse) of the parameter estimates. In
particular, given the true value of the vector of all free model parameters 𝜽0, the empirical bias is computed as

bias =
1

𝐵

𝐵∑
𝑏=1

𝜽̂𝑏 − 𝜽0,

whereas the rmse is obtained as

rmse =

√√√√ 1

𝐵

𝐵∑
𝑏=1

(𝜽̂𝑏 − 𝜽0)2,

where 𝜽̂𝑏 is the vector of parameter estimates obtained under the simulated sample 𝑏, with 𝑏 = 1,… , 𝐵, and the power and
square root are applied element-wise. The estimation algorithmwas initialized by means of a multistart strategy based on
combining a deterministic initialization with 9 random starting values, as defined in Section 4.2.
The results reported in the following are based on a series of scenarios:

(1) The first scenario, which may be seen as a benchmark, is based on 𝑛 = 500 individuals, 𝑘 = 2 latent states, 𝑟 = 3
response variables, and a low proportion of intermittent missing values and dropout, that is, 𝑝miss = 𝑝drop = 0.01.

(2) The second scenario, which is aimed at evaluating the performance of the proposed approach when the sample size
increases, is based on 𝑛 = 1000 individuals, whereas the other parameters of the simulation study are left unchanged
with respect to the first scenario.

(3) The third scenario is aimed at evaluating the effect of an increase in the number of hidden states, by assuming 𝑘 = 3
states, while letting 𝑛 = 500 , 𝑟 = 3, and 𝑝miss = 𝑝drop = 0.01, as in the benchmark.

(4) The fourth scenario differs from the benchmark with respect to the number of response variables, 𝑟 = 6.
(5) The fifth scenario allows us to assess the effect on the accuracy of the parameter estimates of an increased proportion

of missing values, that is, when 𝑝miss = 𝑝drop = 0.25. Even in this case, the remaining parameters are left unchanged
with respect to the benchmark.
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PANDOLFI et al. 13 of 28

TABLE 1 Average, over the latent states and response variables, of the bias (in absolute value) and rmse of the conditional mean vectors
𝝁𝑢, 𝑢 = 1,… , 𝑘; average, over pairs of response variables, of the bias (in absolute value) and rmse of the variance–covariance matrix 𝚺; average,
over the hidden states and pairs of hidden states, of the bias (in absolute value) and rmse of the initial and transition probabilities, 𝜋𝑢, 𝑢 =
1,… , 𝑘, and 𝜋𝑢|𝑢̄, 𝑢, 𝑢̄ = 1, … , 𝑘 + 1, respectively. The benchmark scenario is based on 𝑛 = 500 individuals, 𝑟 = 3 response variables, 𝑘 = 2
states, and 𝑝miss = 𝑝drop = 0.01.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Benchmark 𝒏 = 𝟏𝟎𝟎𝟎 𝒌 = 𝟑 𝒓 = 𝟔 𝒑𝐦𝐢𝐬𝐬 = 𝒑𝐝𝐫𝐨𝐩 = 𝟎.𝟐𝟓

𝝁𝑢 ∣bias∣ 0.0013 0.0008 0.0016 0.0007 0.0023
rmse 0.0297 0.0206 0.0371 0.0285 0.0433

𝚺 ∣bias∣ 0.0013 0.0006 0.0012 0.0011 0.0011
rmse 0.0250 0.0176 0.0264 0.0245 0.0381

𝜋𝑢 ∣bias∣ 0.0004 0.0002 0.0001 0.0011 0.0002
rmse 0.0156 0.0115 0.0173 0.0156 0.0170

𝜋𝑢|𝑢̄ ∣bias∣ 0.0005 0.0004 0.0006 0.0004 0.0006
rmse 0.0078 0.0055 0.0100 0.0082 0.0178

The estimation results obtained under the remaining scenarios are reported in Appendix A.1. Table 1 reports the average,
over the latent states and response variables, of the bias (in absolute value) and rmse of the conditional mean vectors 𝝁𝑢,
𝑢 = 1,… , 𝑘, under the different scenarios. The table also reports the bias and rmse, computed as the average over pairs of
response variables, for the variance–covariance matrix 𝚺, and as the average over the hidden states and pairs of hidden
states for the initial and transition probabilities, respectively.
Simulation results highlight the ability of our approach in recovering the true data-generatingmechanism. In particular,

we observe that, regarding the estimation of all model parameters, the average bias and rmse are relatively small under
all scenarios. Moreover, as expected, they tend to decrease as the sample size increases (second scenario). Furthermore,
the rmse tends to increase when considering a model with a higher number of hidden states (third scenario). When the
number of response variables increases, leading to a larger amount of available information about clustering, we expect an
improvement in the estimation results for the parameters of the latent process. This improvement is not so evident under
the fourth scenario, where the bias and rmse are very close to those obtained under the benchmark scenario. This may be
due to the fact that, according to the additional variables included in the model, the states are less separated, with higher
uncertainty in the allocation of the units to the hidden states. This may lead to a lack of improvement in the estimation
results. Finally, model parameters are estimated with good accuracy, even in the presence of missing data. However, the
quality of results is negatively affected by the presence of higher rates of intermittent missing data and/or dropout, as
observed in the last scenario with 𝑝miss = 𝑝drop = 0.25.
In order to evaluate how increasing frequencies of informative dropout affect the results, we also report in Table 2 the

average, over the random samples, of the estimated probability of transition to the absorbing/dropout state, denoted as
𝑑𝑟𝑜𝑝, under the scenariowith 𝑘 = 3 latent states and 𝑟 = 3 response variables. From these results, wemay observe that the
probability of moving toward the dropout state is appropriately estimated as the dropout proportion increases, regardless
of the sample size.
In evaluating the performance of the proposed approach, the computational cost is also of interest. We observe that,

under all scenarios, the computing time required by the estimation algorithm to reach the convergence is, in average, of
the order of a few minutes. The computational cost increases when moving from 𝑟 = 3 to 𝑟 = 6 response variables, but
this increase is, in average, less than proportional to the increase in the number of response variables.
Finally, we consider the issue of selecting the number of latent states in connection with the proposed estimation

approach. In this respect, referred to the above simulation scenarios with 𝑘 = 3 states, we run the estimation algorithm
for a varying number of states ranging from 1 to 5, andwe selected the optimal 𝑘 by identifying themodel corresponding to
the minimum of AIC and BIC. Results show that, regardless the simulated scenario, the suggested BIC is able to correctly
identify the true number of hidden states in all of the 𝐵 = 250 samples. On the other hand, as expected, the AIC tends
to select a higher number of states, even if the true 𝑘 is correctly identified in most samples. More in detail, among the
different scenarios, the frequency of samples in which the number of states is correctly selected by the AIC index varies
from a minimum of 0.7 to a maximum of 0.9.
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14 of 28 PANDOLFI et al.

TABLE 2 Averaged estimated probability of transition toward the dropout state under the HMmodel with 𝑘 = 3 latent states and 𝑟 = 3
response variables.

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

𝑝miss = 𝑝drop = 0.01 𝑢 = 1 0.010 0.010
𝑢 = 2 0.010 0.010
𝑢 = 3 0.010 0.010
𝑑𝑟𝑜𝑝 1.000 1.000

𝑝miss = 𝑝drop = 0.05 𝑢 = 1 0.050 0.050
𝑢 = 2 0.050 0.050
𝑢 = 3 0.051 0.050
𝑑𝑟𝑜𝑝 1.000 1.000

𝑝miss = 𝑝drop = 0.1 𝑢 = 1 0.098 0.099
𝑢 = 2 0.099 0.099
𝑢 = 3 0.100 0.099
𝑑𝑟𝑜𝑝 1.000 1.000

𝑝miss = 𝑝drop = 0.25 𝑢 = 1 0.251 0.251
𝑢 = 2 0.253 0.250
𝑢 = 3 0.247 0.248
𝑑𝑟𝑜𝑝 1.000 1.000

6 APPLICATION

In the following, we describe the historical data on PBC, and thenwe illustrate the results obtained through the application
of the proposed model on these data.

6.1 Data description

The data come from biochemical measurements collected prospectively by theMayo Clinic from January 1974 toMay 1984
(Murtaugh et al., 1994). They are collected through a randomized control trial referred to the PBC, which is a liver disease
implying inflammatory destruction of the bile ducts and eventually leads to cirrhosis of the liver (Dickson et al., 1989).
It is a chronic disease of unknown causes with a prevalence of about 50-cases-per-million population. It is important to
remark that this study is very popular since it is one of the last allowing the natural history of the disease for those patients
treated with only supporting care or its equivalent (Fleming & Harrington, 1991).
The available data are referred to 𝑛 = 312 patients, some of which (158) were randomized to D-penicillamine and some

others (154) with placebo. The original clinical protocol for these patients specified visits at 6 months, and annually after
that.We considered time occasions at 6months from the baseline, thus accounting formissing observations,missing visits,
and dropout in a period of 29 time occasions. As reported in Rizopoulos (2012, p. 2) by the end of the study 140 patients
had died, 29 received a transplant, and 143 were still alive. These data have been frequently analyzed through the Cox
hazard model (Cox, 1972) and, more recently, by joint models (Bartolucci & Farcomeni, 2015; Rizopoulos, 2012). In these
previous works, despite the immunosuppressive properties of D-penicillamine, no relevant differences were observed
between the distribution of treated and untreated patients’ survival times. In this context, it is often of interest to account
for multivariate analysis of the longitudinally collected measurements for the diagnosing of liver diseases. Moreover, as
remarked inRizopoulos (2012), physicians are interested inmeasuring the joint association of the levels of biomarkerswith
the risk of death. A recent study published in Mulcahy et al. (2022), using longitudinal data to study PBC, remarks the
importance of a proper identification of subgroups with distinct disease trajectories especially tomaking clinical decisions
about therapy.
In the present application, we considered the following biochemical variables: bilirubin, cholesterol, albumin, platelets,

prothrombin, alkaline, and transaminase. To account for some extreme observations in the data, we chose to consider the
natural logarithm of the biomarkers. In addition to drug use, we accounted for the effect of gender and age as covari-
ates. Age is considered a continuous time-varying covariate and, along with gender and drug that are time-fixed binary
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TABLE 3 Results from the fitting of the multivariate HMmodels for an increasing number of hidden states (𝑘).

𝒌 𝓵𝒌 #𝒑𝒂𝒓𝒌 𝑩𝑰𝑪𝒌 𝑨𝑰𝑪𝒌

1 −4618.66 36 9444.07 9309.33
2 −3679.84 47 7629.59 7453.67
3 −3242.58 60 6829.74 6605.16
4 −2879.04 75 6188.81 5908.09
5 −2561.74 92 5651.85 5307.49
6 −2404.29 111 5446.06 5030.58
7 −2314.55 132 5387.18 4893.11
8 −2215.85 155 5321.87 4741.70

TABLE 4 Estimated conditional means 𝝁𝑢, 𝑢 = 1,… , 𝑘, of the biomarkers (in logarithm), under the HMmodel with 𝑘 = 5 hidden states.

𝒖

Responses 1 2 3 4 5
Bilirubin −0.432 0.136 0.865 2.020 2.411
Cholesterol 5.508 5.783 5.496 6.146 5.415
Albumin 1.279 1.270 1.137 1.177 0.940
Platelets 5.477 5.556 4.776 5.525 5.010
Prothrombin 2.339 2.441 2.396 2.363 2.578
Alkaline 6.430 7.270 6.824 7.611 7.033
Transaminase 4.086 4.769 4.664 5.163 5.070

covariates, we investigate their association with the dropout risk. Overall, the research questions we try to address by
analyzing these data are the following: (i) if and how it is possible to characterize distinct groups of patients on the basis
of biomarkers, (ii) which is the most suitable number of these groups, (iii) how being classified in these groups is related
to the risk of death, (iv) how individuals move between these groups according to the covariates with the possibility to
predict individual-specific trajectories.
Descriptive statistics of the responses, dropout rates for treated and untreated patients, and additional details on covari-

ates are provided in Section A.2 of the Appendix, along with the figures of the observed values for every patient on each
response showing the missing pattern at every time occasion. We notice that the sample is not balanced according to
gender since 88% are women. In the whole sample, the median age is 50: the youngest patient is 26 years old and the
oldest 78.

6.2 Results

The proposed HMmodel allows us to jointly account for the missing mechanism and the complex censoring mechanism
(Rubin, 1976) involved in the PBC study. First, we estimated the HM model without covariates and with homogeneous
transition probabilities in order to select a suitable number of groups of patients. The initialization strategy illustrated
in Section 4.2 is adopted for the EM algorithm. In particular, after a deterministic initialization, a number of random
initializations equal to 10 × (𝑘 − 1) is used, with 𝑘 denoting the number of latent states ranging from 1 to 8. Additional
details on the computational aspects are reported in Appendix A.3. Table 3 shows that the decrease in the BIC index
obtained with the model that has more than 5 latent states is relatively lower than that obtained with fewer states. In fact,
the decrease of 𝐵𝐼𝐶𝑘 from 5 to 6 latent states is of 3.64% to be compared with a decrease of 8.67% from 4 to 5 states and even
larger decreases whenmoving from 1 to 2, from 2 to 3, and from 3 to 4 states. Therefore, as discussed in Section 4.3, for the
parsimony principle, we selected the HMmodel with 𝑘 = 5 latent states. Then, we estimated the HMmodel proposed in
Section 3.2 including the available covariates and keeping the number of states fixed at 𝑘 = 5. Table 4 shows the estimated
conditionalmeans𝝁𝑢, 𝑢 = 1,… , 5, of the biomarkers (in logarithm) obtained under thismodel. For a better understanding
of these values, Appendix A.2 (see Table A6) reports the values of the averages for each latent state in the original scale.
Note that it is always possible to order the states according to the informative content of the application.
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TABLE 5 Estimated variance–covariances (lower part, in bold estimated variances) and estimated partial correlations (upper part) under
the HMmodel with 𝑘 = 5 hidden states.

Responses Biril Chol Albu Plat Proth Alka Tran
Bilirubin 0.270 0.151 0.017 −0.102 0.097 0.043 0.255
Cholesterol 0.027 0.087 −0.011 0.115 −0.048 0.210 0.014
Albumin 0.000 −0.001 0.017 −0.026 −0.072 −0.066 0.015
Platelets −0.016 0.014 −0.002 0.118 −0.072 0.150 −0.061
Prothrombin 0.005 −0.001 −0.001 −0.002 0.008 0.043 −0.020
Alkaline 0.039 0.038 −0.005 0.026 0.002 0.246 0.279
Transaminase 0.062 0.015 −0.000 −0.005 0.001 0.062 0.161

TABLE 6 Estimates of the logit regression parameters of the initial probability to belong to the other latent states with respect to the first
state under the HMmodel with 𝑘 = 5 hidden states (significant at †10%, *5%, **1%).

Effect 𝜷𝟏𝟐 𝜷𝟏𝟑 𝜷𝟏𝟒 𝜷𝟏𝟓

Intercept 4.403* −0.624 4.048† −9.103**
Drug −0.341 0.203 −0.663 −0.638
Female −1.204 −1.329 −1.616 5.430**
Age −0.046* 0.023 −0.043† 0.047

In this context, we ordered the states according to increasing bilirubin levels, since it is the strongest univariate predictor
of survival, and it distinguishes patients with good and poor prognosis. Patients in the first group show normal bilirubin
levels; therefore, the illness is not really active because they also have the lowest levels of platelets and alkaline. The second
and third states are those of patients in which the disease appears at the early stages. In particular, those in the third state
have higher bilirubin levels but lower platelets, and this may be a group of patients with partial hypertension. We notice
that the fourth and the fifth states include patients in the worst health conditions since they show the highest bilirubin
and alkaline values. However, the fifth state is also characterized by the lowest average of albumin, the highest average of
prothrombin, and by high values of alkaline and transaminase, and therefore this proves to be the worst group in terms of
disease prognosis.
Table 5 shows the estimated variances and covariances and the partial correlations, fromwhichwe observe that bilirubin

and cholesterol have a positive correlation (0.151) given all the remaining biochemical measurements, as well as alka-
line and transaminase (0.279) and alkaline and cholesterol (0.210). We also observe a negative partial correlation between
albumin and prothrombin (−0.072).
Table 6 provides the estimated regression parameters of the initial probabilities as inExpression (11), where the statistical

significance of the coefficients is established according to the standard errors obtained with the nonparametric bootstrap
and reported in Table A10 of Appendix A.3.
The estimated gender log-odds in Table 6 referred to the fifth state is positive and significant, indicating that the

probability of being in the fifth state at the beginning of the study is higher for females with respect to males.
The estimated parameters in Table 7 refer to the coefficients affecting the transition from level 𝑢̄ to level 𝑢 of the

latent process. We notice that the last column of the first panel of the table contains the parameter estimates measuring
the influence of each covariate on the transition from the first state, corresponding to patients in relatively good health
conditions, to the dropout state. The influence of gender is positive, indicating that this transition probability is higher
for females than for males. This effect is confirmed also on the transition from the second state to dropout. Interestingly,
treated patients in the first state show a higher probability of moving to the dropout state with respect to those untreated.
The other estimated values refer to all possible transitions.
Another interpretation of the effects of covariates can be retrieved by looking at the averaged initial and transition

probabilities defined by categories of patients. Table 8 reports these probabilities, computedwith respect to a typical profile
of the disease referred to a femalewith an average age between 48 and 52 years old at the baseline, who has not been treated
with D-penicillamine. We recall that these probabilities are obtained according to the estimated regression parameters
referred to Expressions (11) and (12) and are computed as average over patients according to the chosen profile, rounded
to the third decimal digit. We observe that at the baseline, the second state is the most likely for this profile since 45% of
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TABLE 7 Estimates of the logit regression parameters of the transition probabilities under the HMmodel with 𝑘 = 5 hidden states
(significant at †10%, ∗5%, **1%).

Effect 𝜸𝟏𝟐 𝜸𝟏𝟑 𝜸𝟏𝟒 𝜸𝟏𝟓 𝜸𝟏𝒅𝒓𝒐𝒑

Intercept 20.506 −17.921** −31.507** −20.653 −20.304**
Drug −17.895** 8.795** −4.017** −1.745 7.761**
Female −20.685** 6.639** −3.181** −6.747 5.205**
Age −0.316 −0.044 0.176** 0.309 0.023
Effect 𝜸𝟐𝟏 𝜸𝟐𝟑 𝜸𝟐𝟒 𝜸𝟐𝟓 𝜸𝟐𝒅𝒓𝒐𝒑

Intercept −5.569 −4.015* −2.686 −20.658** −10.749**
Drug 1.319 0.601 0.266 8.223* 1.193
Female −0.420 −1.150† −0.347 −10.402** 5.329**
Age 0.035 0.033 −0.015 0.165 −0.012
Effect 𝜸𝟑𝟏 𝜸𝟑𝟐 𝜸𝟑𝟒 𝜸𝟑𝟓 𝜸𝟑𝒅𝒓𝒐𝒑

Intercept −20.780** −36.680** 10.020** −4.705 −7.047
Drug −4.293** 1.207** 21.313** −0.040 1.075
Female 2.015** −6.604** −25.621** 0.117 −1.430
Age −0.017** 0.231** −0.757** 0.034 0.045
Effect 𝜸𝟒𝟏 𝜸𝟒𝟐 𝜸𝟒𝟑 𝜸𝟒𝟓 𝜸𝟒𝒅𝒓𝒐𝒑

Intercept −24.962 −7.228 −5.091 −3.817* −8.306
Drug 4.426 −6.792** 2.355 −0.894 1.203
Female 5.484 4.579 9.356 −0.674 1.127
Age 0.173 −0.050 −0.227 0.044† 0.048
Effect 𝜸𝟓𝟏 𝜸𝟓𝟐 𝜸𝟓𝟑 𝜸𝟓𝟒 𝜸𝟓𝒅𝒓𝒐𝒑

Intercept −5.866† −6.887** 9.574** 3.689 −0.825
Drug −1.389 −3.753** −4.542 5.982 −0.595
Female 6.848** 4.468** 23.414** −0.674 0.400
Age −0.051 −0.289** −0.892** −0.261 −0.001

TABLE 8 Initial and transition probabilities under the HMmodel with 𝑘 = 5 hidden states for a typical patient profile: untreated females
with age between 48 and 52 years old.

𝒖

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.181 0.453 0.080 0.236 0.049 0.000
𝜋𝑢|1 1.000 0.000 0.000 0.000 0.000 0.000
𝜋𝑢|2 0.017 0.927 0.035 0.019 0.000 0.002
𝜋𝑢|3 0.000 0.000 0.930 0.000 0.068 0.003
𝜋𝑢|4 0.000 0.004 0.000 0.866 0.120 0.010
𝜋𝑢|5 0.086 0.000 0.000 0.000 0.571 0.344
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

females are in this state and only 18% are in the first state and interestingly 24% are in the fourth state. The fifth state,
which is referred to patients with worse health conditions, includes the 4.9% of patients of this profile. According to
the transition probabilities, the most persistent state is the first, whereas the state with the highest probability toward
dropout is the fifth (𝜋𝑑𝑟𝑜𝑝|5 = 0.344) followed by the fourth state (𝜋𝑑𝑟𝑜𝑝|4 = 0.01). Patients in the fourth latent state have
a probability of moving to the fifth state equal to 𝜋5|4 = 0.120, which is the highest estimated probability out of the main
diagonal of the transition matrix, excluding the probabilities referred to the dropout state. These results also show that
higher values of serum bilirubin, prothrombin, and alkaline, characterizing the fourth state, are strongly related to a severe
disease progression and the risk of death. See Appendix A.3 for additional comparisons across drug use, age, and gender.
An important aspect of this medical application is predicting the sequence of latent states to evaluate the time-varying

patient risk of death. Figure 1 shows the relative frequency of the patients assigned to each state at every time occasion.
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F IGURE 1 Relative frequency of the patients assigned to each group at each time occasion under the estimated HMmodel; the sixth
state (in pink) is the dropout state.

Interestingly, from Figure 1, we notice that at the baseline the proportion of patients assigned to the second state is
around 0.42, instead it is around 0.19 for the patients assigned to the first state and only 0.04 for those assigned to the fifth
state. At the end of the period, instead, 35% are assigned to the first state, thus indicating recovered conditions, and 46%
to the sixth state, corresponding to the dropout state. The frequencies of patients assigned to the second and fifth states
are decreasing over time, while those of third state are almost the same over years.

7 CONCLUSIONS

In this paper, we propose an HMmodel for continuous multivariate longitudinal data addressing three different missing
response types. The first two are intermittent and correspond to completely or partially missing responses for a given
occasion; these types are denoted by (I) and (II), respectively. The third type of missing data corresponds to dropout,
indicated by type (III), which typically occurs due to the early termination from the trial, and we handle it by including
an extra absorbing state in the model so that this type of missing is informative. Estimation is carried out by an extended
EM algorithm implemented to account for missing values of types (I) and (II) on the basis of the MAR assumption and
for the dropout, type (III), on the basis of the extra hidden state. This inferential approach is also developed to estimate
the parameters of the model when individual covariates are included in the distribution of the latent process. In such a
context, it may be of interest to evaluate the effect of these covariates on the transition toward the dropout state. We notice
that in the presence of missing data, the proposed approach also allows us to perform a sort of multiple imputation so as
to predict the missing responses conditionally or unconditionally to the assigned latent state.
The simulation study allowed us to conclude that the model parameters are properly estimated even with a relatively

large proportion of missing responses and dropout. The application related to multivariate data about PBC referred to
several biochemicalmeasurements of liver function turned out to be particularly challenging. The data are very sparse due
tomissing visits of the patients, and some variables were not collected at each visit.Moreover, several deaths are registered,
which is considered a dropout indicator. With the proposed approach, we identified five groups of patients differing in
the severity of this rare disease and in their transitions across states and toward the dropout state over time. According
to the available covariates, it was possible to predict the distributions of survival times for the groups of patients through
the decoded states. Adopting a model-based approach like the HMmodel, which considers all possible missing patterns,
allows us not only to infer the survival probability over time but also to disentangle disease severity based on biomarkers
across relevant population subgroups of patients and to compare survival curves across these groups. Additionally, the
model permits the prediction of individual-specific trajectories for those patients with intermitting missing values, and
thus it allows us to identify patients who need to be prioritized with treatments. Estimating a model only accounting for
missing responses and not for dropout provides different results with respect to those obtained with the proposed one. In
particular, in our application, the average transition probability matrix differs from that reported in the paper since almost
all individuals in the fourth state transit to the fifth group, that referred to patients with a worse prognosis.
Overall, we consider the proposal to be very flexible, given the possibility of accounting for different types ofmissingness

at the same time, in addition to the possibility of dealing withmultivariate continuous longitudinal data. It is important to
stress that all continuous variables whose distribution cannot be approximated with a multivariate Gaussian one may be
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properly transformed (with Box–Cox, log transformation, and so forth), so that the proposedmodel may still be effectively
applied.Moreover, this approachmay be easily extended to the case of categorical response variables, as already introduced
in the work of Montanari and Pandolfi (2018) within a simpler model formulation than the one proposed here, where it
is possible to rely on the conditional independence of the response variables given the latent variables. Finally, even if
it is not always guaranteed that the selected states correspond to meaningful clusters, when adopting a discrete latent
variable structure, latent states have in general a straightforward interpretation and may be used to cluster units in a
meaningful way.
Clearly, in applying the approach, it is necessary to carefully evaluate how realistic are the model assumptions and,

in particular, the assumptions about the missing pattern structures. This could be a limitation of the proposed model-
ing approach. In this regard, it is important to recall the difference in dealing with missing data of type (I) and (II),
which are considered ignorable based on the MAR assumption, and of type (III), which are considered informative.
Moreover, the way of accounting for the last type, based on using an extra absorbing state, distinguishes the proposed
approach from alternative ones based on shared-parameter formulation and does not require to formulate a survival
model. Finally, the proposed EM algorithm could also be adapted to estimate the partially HMmodel proposed in Bordes
and Vandekerkhove (2005), which may be useful to analyze data if, after dropout, new patients are recruited during the
study.
We also mention that, if more time occasions are available, it would be possible to dispose of the estimated stationary

distribution of the underlying hidden process that could be represented as in van Beest et al. (2019). Other possible exten-
sions of the proposed approachmay concern the use with responses of amixed nature, not all continuous. This amounts to
assume that underlying every non-continuous response, there is an unobservable continuous response following a Gaus-
sian distribution and affecting the former by a suitable link function while leaving unaltered the overall structure of the
model. An interesting model to explore at this aim would also be the regime switching copula model to properly account
for the correlation patterns between series, as proposed in other research fields (Chollete et al., 2009).
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APPENDIX: ADDITIONAL DETAILS
In the following Section A.1, we show some additional details on the results of the simulation study presented in Section 5,
then in Section A.2, we report an accurate description of the historical data used for the applicative example shown in
Section 6, and finally, in Section A.3, we illustrate supplementary results of the application of the HMmodel to these data.

A.1 Additional simulation results
We report the estimation results obtained under all simulated scenarios. In particular, Table A1 reports the average, over
the latent states and response variables, of the bias (in absolute value) and rmse of the conditional mean vectors 𝝁𝑢,
𝑢 = 1,… , 𝑘. Table A2 reports the same estimation results, computed as the average over pairs of response variables, of
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TABLE A1 Average, over the latent states and response variables, of the bias (in absolute value) and rmse of the conditional mean
vectors 𝝁𝑢, 𝑢 = 1,… , 𝑘.

𝒓 = 𝟑 𝒓 = 𝟔

𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟐 𝒌 = 𝟑

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

𝑝miss = 𝑝drop = 0.01 ∣ bias∣ 0.0013 0.0008 0.0016 0.0010 0.0007 0.0010 0.0013 0.0009
rmse 0.0297 0.0206 0.0371 0.0266 0.0285 0.0195 0.0355 0.0253

𝑝miss = 𝑝drop = 0.05 ∣bias∣ 0.0021 0.0010 0.0023 0.0016 0.0019 0.0013 0.0022 0.0013
rmse 0.0324 0.0230 0.0400 0.0281 0.0310 0.0216 0.0381 0.0273

𝑝miss = 𝑝drop = 0.10 ∣ bias∣ 0.0025 0.0011 0.0021 0.0021 0.0017 0.0006 0.0027 0.0029
rmse 0.0346 0.0240 0.0441 0.0313 0.0334 0.0233 0.0428 0.0297

𝑝miss = 𝑝drop = 0.25 ∣ bias ∣ 0.0023 0.0015 0.0019 0.0018 0.0026 0.0017 0.0020 0.0032
rmse 0.0433 0.0305 0.0600 0.0416 0.0421 0.0297 0.0543 0.0373

TABLE A2 Average, over pairs of response variables, of the bias (in absolute value) and rmse of the variance–covariance matrix 𝚺.

𝒓 = 𝟑 𝒓 = 𝟔

𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟐 𝒌 = 𝟑

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

𝑝miss = 𝑝drop = 0.01 ∣ bias∣ 0.0013 0.0006 0.0012 0.0012 0.0011 0.0009 0.0006 0.0005
rmse 0.0250 0.0176 0.0264 0.0187 0.0245 0.0174 0.0245 0.0176

𝑝miss = 𝑝drop = 0.05 ∣ bias∣ 0.0008 0.0010 0.0019 0.0008 0.0007 0.0005 0.0015 0.0008
rmse 0.0283 0.0203 0.0297 0.0206 0.0252 0.0181 0.0274 0.0194

𝑝miss = 𝑝drop = 0.10 ∣ bias∣ 0.0015 0.0014 0.0020 0.0017 0.0023 0.0007 0.0012 0.0009
rmse 0.0304 0.0213 0.0313 0.0219 0.0282 0.0191 0.0287 0.0199

𝑝miss = 𝑝drop = 0.25 ∣ bias∣ 0.0011 0.0014 0.0019 0.0017 0.0029 0.0009 0.0017 0.0012
rmse 0.0381 0.0280 0.0423 0.0293 0.0332 0.0254 0.0368 0.0257

TABLE A3 Average, over the latent states, of the bias (in absolute value) and rmse of the initial probabilities 𝜋𝑢, 𝑢 = 1,… , 𝑘.

𝒓 = 𝟑 𝒓 = 𝟔

𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟐 𝒌 = 𝟑

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

𝑝miss = 𝑝drop = 0.01 ∣bias∣ 0.0004 0.0002 0.0001 0.0004 0.0011 0.0010 0.0005 0.0006
rmse 0.0156 0.0115 0.0173 0.0125 0.0156 0.0110 0.0171 0.0122

𝑝miss = 𝑝drop = 0.05 ∣bias∣ 0.0005 0.0002 0.0006 0.0006 0.0004 0.0000 0.0014 0.0006
rmse 0.0146 0.0106 0.0175 0.0125 0.0156 0.0105 0.0177 0.0122

𝑝miss = 𝑝drop = 0.10 ∣bias∣ 0.0006 0.0000 0.0009 0.0006 0.0011 0.0004 0.0014 0.0007
rmse 0.0161 0.0106 0.0176 0.0127 0.0163 0.0108 0.0159 0.0117

𝑝miss = 𝑝drop = 0.25 ∣bias∣ 0.0002 0.0001 0.0010 0.0004 0.0019 0.0015 0.0021 0.0012
rmse 0.0170 0.0116 0.0195 0.0143 0.0142 0.0110 0.0175 0.0128

the variance–covariance matrix 𝚺. Finally, Tables A3 and A4 report the estimation results for the initial and transition
probabilities, respectively.

A.2 Data description
The applicative example, as illustrated in Section 6.1, concerns data referred to biochemical measurements related to a
double-blinded randomized trial in PBC conducted by theMayo Clinic from 1974 to 1984. In the following, we report some
additional details and descriptions of these data.
PBC is a rare but fatal chronic liver disease of unknown cause, with a prevalence of about 50 cases per million inhab-

itants. The primary pathological event of this disease seems to be the destruction of intralobular bile ducts, mediated
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TABLE A4 Average, over pairs of latent states, of the bias (in absolute value) and rmse of the transition probabilities 𝜋𝑢|𝑢̄,
𝑢, 𝑢̄ = 1, … , 𝑘 + 1.

𝒓 = 𝟑 𝒓 = 𝟔

𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟐 𝒌 = 𝟑

𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎 𝒏 = 𝟓𝟎𝟎 𝒏 = 𝟏𝟎𝟎𝟎

𝑝miss = 𝑝drop = 0.01 ∣bias∣ 0.0005 0.0004 0.0006 0.0004 0.0004 0.0003 0.0006 0.0006
rmse 0.0078 0.0055 0.0100 0.0071 0.0082 0.0056 0.0098 0.0069

𝑝miss = 𝑝drop = 0.05 ∣bias∣ 0.0006 0.0002 0.0009 0.0005 0.0005 0.0003 0.0004 0.0002
rmse 0.0103 0.0072 0.0123 0.0088 0.0098 0.0070 0.0121 0.0083

𝑝miss = 𝑝drop = 0.10 ∣bias∣ 0.0008 0.0005 0.0006 0.0007 0.0007 0.0008 0.0009 0.0005
rmse 0.0120 0.0088 0.0147 0.0103 0.0121 0.0083 0.0141 0.0097

𝑝miss = 𝑝drop = 0.25 ∣bias∣ 0.0006 0.0007 0.0014 0.0009 0.0008 0.0007 0.0008 0.0005
rmse 0.0178 0.0120 0.0200 0.0144 0.0166 0.0120 0.0195 0.0137

by immunological mechanisms. To be eligible for these trials, patients had to meet well-established clinical, biochem-
ical, serologic, and histologic criteria for PBC. These are historical data used in many studies since they come from a
research that has been one of the most extensive controlled clinical trials on PBC for a long time. As remarked in Flem-
ing and Harrington (1991), historical data are important since clinical trials are challenging to complete in rare diseases,
and they permit the study of the natural history of the disease before the liver transplant was considered as a standard
practice. Moreover, disposing of accurate and parsimonious models that can predict survival time based on inexpensive,
noninvasive, and readily available measurements is a very relevant feature in clinical science.
The biochemical variables used as responses in the empirical illustration proposed in Section 6 of the paper are the

following1:

(1) Serum bilirubin (Bilir in mg/dL) is a liver bile pigment; normal adult levels range between 0.3 and 1.0 (min log −1.2,
max log 0). Values above 1.2 are synonymous with liver failure.

(2) Serum cholesterol (Chol in mg/dL) is a blood lipoprotein; normal adult levels range between 150 and 199 (min log 4.78,
max log 5.39). Borderline values are considered between 200 and 239.

(3) Serum albumin (Albu in gm/dL) is a protein found in the blood; normal adult levels range between 3.5 and 5.4 (min
log 1.5, max log 1.61). Low albumin values may result from liver malfunction.

(4) Platelets (Plat, counts per cubic mL/1000) are components of blood; normal adult levels range between 150 and 350
(min log 5.01, max log 6.11).

(5) Prothrombin (Prot) is a blood coagulation agent time and time is recorded until a blood sample begins coagulation in
a certain laboratory test in seconds; normal adult levels range between 10 and 13 seconds (min log 2.17, max log 2.45).

(6) Alkaline phosphatase (Alka, in U/L) is an enzyme; normal adult levels range between 36 and 150 (min log 3, max log
4.94). High values of alkaline phosphatase can occur in the presence of liver disease.

(7) Transaminase (Tran or SGOT in U/mL) adult normal levels range between 0 and 35 (min log 2.08, max log 3.69). In
liver damage, an increase of transaminase in blood concentration is observed up to 5- to 10-fold in the presence of
severe damage.

In particular, serum bilirubin level is considered a strong indicator of disease progression and a strong predictor of
survival (Fleming & Harrington, 1991; Taavoni et al., 2020). Bilirubin and albumin are two of the primary indicators to
help evaluate and track the absence of liver diseases. A significantly higher level than bilirubin’s standards excreted in
bile usually indicates certain diseases. Serum albuminmay be harmful to humans having too high or too low circulating
levels. Typically, there exist some associations between the levels of serum bilirubin and serum albumin, and thus it is
important to account for a joint analysis of the longitudinally collected biochemical markers for the diagnosing of liver
diseases as that proposed in the paper through the multivariate HMmodel.
The original clinical protocol for the patients specified visits at 6 months, 1 year, and annually after that. In the analyses,

we considered time occasions at 6 months from the baseline, thus accounting for missing observations, missing visits, and

1 Values reported according to those provided at the following website accessed on April 2021: https://www.msdmanuals.com/professional/resources/
normal-laboratory-values/normal-laboratory-values
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F IGURE A1 Observed survival rates for
treated (with D-penicillamine) and untreated
patients.

TABLE A5 Average and standard deviation (SD) of the responses (in logarithm): bilirubin (Bilir), cholesterol (Chol), albumin (Albu),
platelets (Plat), prothrombin (Prot), alkaline (Alka), and transaminase (Tran) from the baseline to the end of the study.

𝒕 Bilir SD Chol SD Albu SD Plat SD Prot SD Alka SD Tran SD
1 0.57 1.03 5.80 0.43 1.25 0.13 5.50 0.40 2.37 0.08 7.27 0.72 4.71 0.45
2 0.47 1.07 6.05 0.27 1.25 0.15 5.42 0.43 2.38 0.12 7.10 0.64 4.72 0.57
3 0.53 1.04 5.76 0.36 1.24 0.15 5.42 0.42 2.36 0.07 7.10 0.64 4.73 0.54
4 0.48 1.01 5.78 0.34 1.16 0.21 5.27 0.43 2.39 0.07 6.73 0.75 4.55 0.58
5 0.70 1.14 5.69 0.36 1.22 0.15 5.40 0.48 2.38 0.13 7.07 0.67 4.72 0.56
6 0.93 1.47 5.56 0.35 1.36 1.20 5.34 0.36 2.43 0.16 6.96 0.84 4.62 0.58
7 0.59 1.11 5.72 0.36 1.23 0.13 5.39 0.48 2.37 0.08 6.97 0.61 4.65 0.56
8 0.66 1.25 5.72 0.40 1.16 0.15 5.31 0.48 2.42 0.12 6.91 0.66 4.62 0.52
9 0.63 1.16 5.67 0.48 1.19 0.17 5.32 0.45 2.39 0.12 6.92 0.61 4.63 0.56
10 0.40 0.92 5.50 0.29 1.23 0.15 5.25 0.47 2.38 0.10 6.93 0.62 4.59 0.43
11 0.68 1.18 5.62 0.38 1.18 0.19 5.32 0.48 2.39 0.11 6.82 0.60 4.58 0.60
12 0.75 1.14 5.61 0.30 1.15 0.16 5.23 0.45 2.41 0.10 6.92 0.57 4.60 0.53
13 0.73 1.17 5.61 0.31 1.17 0.15 5.27 0.47 2.40 0.09 6.73 0.58 4.59 0.65
14 0.46 1.13 5.48 0.22 1.18 0.14 5.08 0.55 2.43 0.10 6.77 0.46 4.46 0.50
15 0.74 1.07 5.60 0.32 1.15 0.16 5.15 0.45 2.42 0.10 6.72 0.50 4.58 0.60
16 0.54 1.15 5.54 0.35 1.13 0.26 5.23 0.49 2.40 0.07 6.77 0.52 4.46 0.55
17 0.61 1.11 5.59 0.23 1.13 0.17 5.15 0.42 2.43 0.08 6.72 0.50 4.55 0.67
18 0.41 1.23 5.53 0.31 1.12 0.18 5.31 0.43 2.43 0.07 6.68 0.44 4.44 0.66
19 0.62 1.15 5.58 0.32 1.12 0.20 5.17 0.46 2.48 0.21 6.66 0.59 4.51 0.71
20 1.22 1.43 5.64 0.21 0.99 0.25 5.28 0.39 2.51 0.15 6.89 0.41 4.63 0.42
21 0.77 1.22 5.61 0.29 1.18 0.12 5.23 0.43 2.46 0.08 6.76 0.43 4.56 0.59
22 0.21 0.37 5.78 0.06 1.26 0.04 5.14 0.50 2.38 0.02 6.82 0.25 4.32 0.25
23 0.57 1.29 5.46 0.30 1.11 0.19 5.22 0.48 2.46 0.05 6.73 0.45 4.59 0.63
24 0.51 0.82 5.60 0.17 1.20 0.17 5.01 0.41 2.44 0.11 6.59 0.26 4.40 0.37
25 0.42 1.03 5.57 0.20 1.71 1.89 5.13 0.45 2.47 0.06 6.73 0.53 4.38 0.59
26 1.55 2.19 5.74 0.12 1.31 0.02 5.24 0.01 2.46 0.01 6.44 0.04 5.04 0.77
27 0.44 1.25 5.38 0.16 1.20 0.12 5.10 0.46 2.47 0.05 6.60 0.45 4.30 0.54
28 1.22 1.60 5.80 0.12 1.09 0.06 4.85 0.84 2.49 0.01 7.40 1.01 4.77 1.14
29 0.98 1.41 5.51 0.19 1.12 0.24 5.12 0.30 2.46 0.07 6.97 0.71 4.61 0.68
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F IGURE A2 Observed values for every patient and response variable over time occasions; missing values are depicted in black.

dropout in a period of 29 time occasions. Despite the immunosuppressive properties of theD-penicillamine, whichwas the
main treatment at that time, no detectable differences were observed between survival time distributions for placebo and
treated groups. At the end of the study, 140 patients died, 29 had liver transplantation, and 143 were still alive. Figure A1
shows the survival rates for treated and untreated patients over time.
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TABLE A6 Estimated conditional means 𝝁𝑢, 𝑢 = 1,… , 𝑘, of the biomarkers (original scale), under the HMmodel with 𝑘 = 5 hidden
states.

1 2 3 4 5
Bilirubin 0.650 1.150 2.370 7.540 11.140
Cholesterol 246.580 324.760 243.750 467.010 224.640
Albumin 3.590 3.560 3.120 3.240 2.560
Platelets 239.010 258.790 118.590 250.910 149.880
Prothrombin 10.620 10.370 11.480 10.970 13.170
Alkaline 620.450 1,435.860 919.530 2,020.120 1,133.750
Transaminase 59.510 117.770 106.090 174.660 159.250

TABLE A7 Averaged initial and transition probabilities with respect to the drug use (upper panel) or not use (bottom panel).

𝒖

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.219 0.419 0.155 0.169 0.038 0.000
𝜋𝑢|1 0.955 0.000 0.006 0.000 0.037 0.002
𝜋𝑢|2 0.064 0.811 0.073 0.022 0.024 0.005
𝜋𝑢|3 0.000 0.000 0.909 0.009 0.069 0.013
𝜋𝑢|4 0.021 0.000 0.014 0.865 0.065 0.035
𝜋𝑢|5 0.024 0.000 0.003 0.028 0.719 0.226
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.162 0.458 0.086 0.248 0.047 0.000
𝜋𝑢|1 0.918 0.044 0.000 0.000 0.038 0.000
𝜋𝑢|2 0.018 0.917 0.043 0.020 0.000 0.002
𝜋𝑢|3 0.000 0.000 0.929 0.000 0.067 0.004
𝜋𝑢|4 0.000 0.004 0.002 0.852 0.132 0.010
𝜋𝑢|5 0.087 0.000 0.027 0.000 0.561 0.325
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

Descriptive statistics of the responses for each time occasion are provided in Table A5. Due to some atypical observa-
tions or outliers in the data, as also recently proposed in Taavoni et al. (2020), we considered the natural logarithm of
themarkers. Figure A2 shows the observed values (in logarithm) for each patient. We observe that themajority of patients
had a record for each variable at the first three visits with the exception of the response referred to cholesterol. The number
of patients with recorded values after the 11th visit decreased very fast. Patients made on average 6.2 visits, with an average
variation around the mean of 3.8 visits. We observe that bilirubin was recorded on all patients at the baseline except one,
and after the fourth visit, it was recorded on only 7% of patients; cholesterol was recorded on 90% of the patients at the
baseline and on only 3% of the patients (on average) at the subsequent visits.
Concerning the available covariates referred to the drug use, gender, and age, we notice that females were 88% and the

patient treated with D-penicillamine were 51%. The median age is 50 years, and the minimum and the maximum age are
26.5 and 78.5, respectively.

A.3 Additional results of the application
In the following, we provide additional results of the application of the proposedmethodology as illustrated in Section 6.2.
The computing time required by the model selection strategy obviously depends on the complexity of the data at hand.

On a standard personal computer, the overall fitting procedure, based on 10 × (𝑘 − 1) random starting values, may require
up to several hours to reach the convergence. Note also that the adoptedmethod, which consists in selecting the number of
latent states for a simplified model without covariates and then introducing the covariates, has a reduced computational
burden with respect to directly introducing these covariates. This strategy is quite common when estimating discrete
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TABLE A8 Averaged initial and transition probabilities with respect to gender: Female (upper panel) or male (bottom panel).

𝒖

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.205 0.440 0.109 0.198 0.048 0.000
𝜋𝑢|1 0.993 0.000 0.004 0.000 0.002 0.001
𝜋𝑢|2 0.040 0.887 0.048 0.021 0.000 0.004
𝜋𝑢|3 0.000 0.000 0.927 0.000 0.068 0.005
𝜋𝑢|4 0.012 0.002 0.009 0.867 0.086 0.024
𝜋𝑢|5 0.062 0.000 0.017 0.013 0.626 0.282
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.086 0.425 0.209 0.281 0.000 0.000
𝜋𝑢|1 0.507 0.186 0.000 0.000 0.307 0.000
𝜋𝑢|2 0.055 0.679 0.137 0.022 0.107 0.000
𝜋𝑢|3 0.000 0.000 0.857 0.039 0.073 0.031
𝜋𝑢|4 0.000 0.000 0.000 0.799 0.190 0.011
𝜋𝑢|5 0.000 0.000 0.000 0.023 0.760 0.217
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

TABLE A9 Averaged initial and transition probabilities with respect to age: People aged 50 years or older (upper panel) and aged less
than 50 years (bottom panel).

𝒖

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.224 0.363 0.170 0.180 0.062 0.000
𝜋𝑢|1 0.897 0.025 0.002 0.000 0.074 0.001
𝜋𝑢|2 0.054 0.825 0.076 0.018 0.024 0.003
𝜋𝑢|3 0.000 0.000 0.901 0.000 0.086 0.013
𝜋𝑢|4 0.020 0.001 0.000 0.820 0.129 0.030
𝜋𝑢|5 0.032 0.000 0.000 0.000 0.688 0.280
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

1 2 3 4 5 𝒅𝒓𝒐𝒑

𝝅𝒖 0.158 0.513 0.071 0.236 0.022 0.000
𝜋𝑢|1 0.977 0.018 0.004 0.000 0.000 0.001
𝜋𝑢|2 0.029 0.901 0.040 0.024 0.001 0.004
𝜋𝑢|3 0.000 0.000 0.936 0.009 0.050 0.004
𝜋𝑢|4 0.001 0.003 0.016 0.899 0.067 0.015
𝜋𝑢|5 0.078 0.000 0.030 0.028 0.594 0.270
𝜋𝑢|𝑑𝑟𝑜𝑝 0.000 0.000 0.000 0.000 0.000 1.000

latent variable models. The fitting procedure based on 5 × (𝑘 − 1) random starting values, with 𝑘 = 5, when the model is
estimated with covariates requires about 10 hours.
We show the estimated conditional means reported in Table A6 in the original scale according to which the states have

been ordered.
In the following, we compare the averaged initial and transition probabilities to evaluate disease evolution according to

drug use, gender, and individuals with age above or below themedian; see Tables A7, A8, and A9, respectively. We observe
that treated patients have a slightly lower probability of dropping out. Formales, the dropout probability is almost equal to
that of females. Still, males have a lower persistence probability in the first state with respect to females since around 31%
of males are estimated to move toward the fifth state, which is the worst in terms of disease progression. Older patients
are less persistent in each state, except the fifth, than younger patients.
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TABLE A10 Standard errors for the estimated effects of the covariates on the initial and transition probabilities of the multivariate HM
model with 𝑘 = 5 hidden states obtained with the nonparametric bootstrap with 299 bootstrap samples.

Initial probabilities

Effect 𝒔𝒆(𝜷𝟏𝟐) 𝒔𝒆(𝜷𝟏𝟑) 𝒔𝒆(𝜷𝟏𝟒) 𝒔𝒆(𝜷𝟏𝟓)

Intercept 1.966 2.349 2.208 3.395
Drug 0.398 0.630 0.429 1.336
Female 1.457 1.564 1.746 0.890
Age 0.022 0.029 0.025 0.055

Transition probabilities
Effect 𝒔𝒆(𝜸𝟏𝟐) 𝒔𝒆(𝜸𝟏𝟑) 𝒔𝒆(𝜸𝟏𝟒) 𝒔𝒆(𝜸𝟏𝟓) 𝒔𝒆(𝜸𝟏𝒅𝒓𝒐𝒑)

Intercept 21.631 1.878 0.000 36.705 2.988
Drug 5.575 2.506 0.000 8.866 2.022
Female 5.870 1.872 0.000 15.563 1.929
Age 0.358 0.098 0.004 0.606 0.069
Effect 𝒔𝒆(𝜸𝟐𝟏) 𝒔𝒆(𝜸𝟐𝟑) 𝒔𝒆(𝜸𝟐𝟒) 𝒔𝒆(𝜸𝟐𝟓) 𝒔𝒆(𝜸𝟐𝒅𝒓𝒐𝒑)

Intercept 3.878 1.814 4.525 5.374 4.051
Drug 1.279 0.591 0.861 3.208 3.618
Female 2.753 0.692 3.447 1.287 1.594
Age 0.034 0.030 0.048 0.169 0.093
Effect 𝒔𝒆(𝜸𝟑𝟏) 𝒔𝒆(𝜸𝟑𝟐) 𝒔𝒆(𝜸𝟑𝟒) 𝒔𝒆(𝜸𝟑𝟓) 𝒔𝒆(𝜸𝟑𝒅𝒓𝒐𝒑)

Intercept 0.000 0.459 2.346 4.465 8.205
Drug 0.000 0.304 2.340 0.571 3.793
Female 0.000 0.001 0.950 0.799 3.457
Age 0.004 0.026 0.122 0.066 0.113
Effect 𝒔𝒆(𝜸𝟒𝟏) 𝒔𝒆(𝜸𝟒𝟐) 𝒔𝒆(𝜸𝟒𝟑) 𝒔𝒆(𝜸𝟒𝟓) 𝒔𝒆(𝜸𝟒𝒅𝒓𝒐𝒑)

Intercept 15.196 6.365 11.783 1.838 7.922
Drug 4.064 1.500 4.881 1.345 3.492
Female 3.628 3.998 6.371 1.307 3.489
Age 0.299 0.186 0.437 0.025 0.122
Effect 𝒔𝒆(𝜸𝟓𝟏) 𝒔𝒆(𝜸𝟓𝟐) 𝒔𝒆(𝜸𝟓𝟑) 𝒔𝒆(𝜸𝟓𝟒) 𝒔𝒆(𝜸𝟓𝒅𝒓𝒐𝒑)

Intercept 3.511 0.647 3.612 13.279 1.791
Drug 3.534 0.415 4.459 10.440 0.673
Female 2.222 0.651 3.612 6.989 1.268
Age 0.092 0.038 0.180 0.492 0.059

We finally show the standard errors for the estimated parameters referred to the effects of the covariates affecting the
initial and transition probabilities of theMarkov chain as in Expressions (11) and (12) of the paper. The following standard
errors are referred to the estimated coefficients of theHMmodel with 𝑘 = 5 hidden states reported in Tables 6 and 7. These
are obtained (Table A10) by the nonparametric bootstrap based on 299 samples.
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