A group G is integrable if it is isomorphic to the derived subgroup of a group H; that is, if H′≃ G, and in this case H is an integral of G. If G is a subgroup of U, we say that G is integrable within U if G= H′ for some H≤ U. In this work we focus on two problems posed in Araújo et al. (Israel J Math 234:149–178, 2019). We classify the almost-simple finite groups G that are integrable, which we show to be equivalent to those integrable within Aut(S), where S is the socle of G. We then classify all 2-homogeneous subgroups of the finite symmetric group Sn that are integrable within Sn.
Blyth, R., Fumagalli, F., Matucci, F. (2023). On some questions related to integrable groups. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(4), 1781-1791 [10.1007/s10231-022-01300-z].
On some questions related to integrable groups
Matucci, F
2023
Abstract
A group G is integrable if it is isomorphic to the derived subgroup of a group H; that is, if H′≃ G, and in this case H is an integral of G. If G is a subgroup of U, we say that G is integrable within U if G= H′ for some H≤ U. In this work we focus on two problems posed in Araújo et al. (Israel J Math 234:149–178, 2019). We classify the almost-simple finite groups G that are integrable, which we show to be equivalent to those integrable within Aut(S), where S is the socle of G. We then classify all 2-homogeneous subgroups of the finite symmetric group Sn that are integrable within Sn.File | Dimensione | Formato | |
---|---|---|---|
Blyth-2022-AMPA-preprint.pdf
accesso aperto
Descrizione: Articolo - versione arXiv
Tipologia di allegato:
Submitted Version (Pre-print)
Licenza:
Altro
Dimensione
203 kB
Formato
Adobe PDF
|
203 kB | Adobe PDF | Visualizza/Apri |
Blyth-2022-AMPA-VoR.pdf
Solo gestori archivio
Descrizione: Article - Online publication
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
301.88 kB
Formato
Adobe PDF
|
301.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.