A group G is integrable if it is isomorphic to the derived subgroup of a group H; that is, if H′≃ G, and in this case H is an integral of G. If G is a subgroup of U, we say that G is integrable within U if G= H′ for some H≤ U. In this work we focus on two problems posed in Araújo et al. (Israel J Math 234:149–178, 2019). We classify the almost-simple finite groups G that are integrable, which we show to be equivalent to those integrable within Aut(S), where S is the socle of G. We then classify all 2-homogeneous subgroups of the finite symmetric group Sn that are integrable within Sn.

Blyth, R., Fumagalli, F., Matucci, F. (2023). On some questions related to integrable groups. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(4), 1781-1791 [10.1007/s10231-022-01300-z].

On some questions related to integrable groups

Matucci, F
2023

Abstract

A group G is integrable if it is isomorphic to the derived subgroup of a group H; that is, if H′≃ G, and in this case H is an integral of G. If G is a subgroup of U, we say that G is integrable within U if G= H′ for some H≤ U. In this work we focus on two problems posed in Araújo et al. (Israel J Math 234:149–178, 2019). We classify the almost-simple finite groups G that are integrable, which we show to be equivalent to those integrable within Aut(S), where S is the socle of G. We then classify all 2-homogeneous subgroups of the finite symmetric group Sn that are integrable within Sn.
Articolo in rivista - Articolo scientifico
2-homogeneous groups; Almost-simple groups; Integrable groups;
English
3-gen-2023
2023
202
4
1781
1791
partially_open
Blyth, R., Fumagalli, F., Matucci, F. (2023). On some questions related to integrable groups. ANNALI DI MATEMATICA PURA ED APPLICATA, 202(4), 1781-1791 [10.1007/s10231-022-01300-z].
File in questo prodotto:
File Dimensione Formato  
Blyth-2022-AMPA-preprint.pdf

accesso aperto

Descrizione: Articolo - versione arXiv
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 203 kB
Formato Adobe PDF
203 kB Adobe PDF Visualizza/Apri
Blyth-2022-AMPA-VoR.pdf

Solo gestori archivio

Descrizione: Article - Online publication
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 301.88 kB
Formato Adobe PDF
301.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/408210
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact