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ON SOME QUESTIONS RELATED TO INTEGRABLE GROUPS

RUSSELL D. BLYTH, FRANCESCO FUMAGALLI, AND FRANCESCO MATUCCI

Abstract. A group G is integrable if it is isomorphic to the derived subgroup
of a group H; that is, if H′ ≃ G, and in this case H is an integral of G. If
G is a subgroup of U , we say that G is integrable within U if G = H′ for
some H ≤ U . In this work we focus on two problems posed in [1]. We classify
the almost-simple finite groups G that are integrable, which we show to be
equivalent to those integrable within Aut(S), where S is the socle of G. We
then classify all 2-homogeneous subgroups of the finite symmetric group Sn

that are integrable within Sn.

This paper is dedicated to the memory of Carlo Casolo

1. introduction

Recently several articles ([12, 1, 2]) have appeared on the topic of the integrability
of a group G, where we say that a group H is an integral of a group G if G ≃ H ′

and we then say that G is integrable. Given two groups G ≤ U , we say that G is
(relatively) integrable within U if there exists a subgroup H ≤ U such that H ′ = G.
Burnside [5] was the first to consider integrals of groups, showing, for example, that
a nonabelian finite p-group with cyclic center cannot have an integral which is a
finite p-group. Since then, several other authors have considered which groups can
appear as derived subgroups under certain restrictions. Among known results, we
mention that all abelian groups are integrable, while all direct powers of dihedral
groups D2n are non-integrable for n ≥ 3, and that if a finite group has an integral,
it also has a finite integral. We leave the reader to explore these results and other
prior work (see [1, 2] and their references).

In [1, Section 8.2] the following problem is posed:

Problem 1. Classify all the almost-simple finite groups G that are integrable within
Aut(S), where S denotes the socle of G.

More generally, we can ask the following question.

Problem 1′. Classify all the integrable almost-simple finite groups.
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In Section 3 we provide the following response.

Theorem A. A finite almost-simple group G (with socle S) is integrable if and only
if it is integrable within Aut(S). Moreover, the subgroups between S and Aut(S)
that are integrable within Aut(S) are precisely those contained in Aut(S)′.

In Section 4 we consider the relative integrability of 2-homogeneous groups. A
subgroup G acting on a set Ω is said to be k-homogeneous (or k-set transitive) if
it is transitive on the set Ω{k} of all k element subsets of Ω (for k ≥ 1). We are
interested in the following problem, which is also mentioned in [1, Section 8.2].

Problem 2. Classify all the 2-homogeneous subgroups G of the finite symmetric
group Sn that are integrable within Sn.

In Section 4 we prove

Theorem B. Let G be a 2-homogeneous subgroup of the finite symmetric group
Sn and let S be its socle. If G is integral within Sn then G lies between (NSn

(S))′′

and (NSn
(S))′; the converse is also true with the exception of a few solvable groups

(see Remark 4.5).

The proof of Theorem B is based on the classification of the 2-homogeneous
subgroups of Sn (see Theorem 4.1) and it is completed by considering each possible
case appearing in that classification. The proof, of course, relies on the classification
of finite simple groups.

We note that the group PGL3(7), in its action on the 57 projective points, is
an example of a 2-homogeneous subgroup of S57 that is not integrable within S57.
Nevertheless, the group PGL3(7) is integrable as an abstract group (see Example
4.6).

Most of our notation is standard and well-known. We write actions on the
right, and for x, y in a group G, we define the conjugation xy to be y−1xy and
the commutator [x, y] to be x−1y−1xy. We use the ATLAS [8] notation for some
groups and constructions. Hence we use A.B to denote any group that has a normal
subgroup isomorphic to A for which the corresponding quotient group is isomorphic
to B (an (upward) extension of A by B), and we use A : B to indicate a case of
A.B that is a split extension A⋊B (a notation we also sometimes use), while A

.

B
denotes a non-split extension. Also, given a positive integer n we denote the cyclic
group of order n with both symbols Cn and n.

Finite affine semilinear transformation groups AΓLd(q), and their important
subgroups (such as ASLd(q) and AGLd(q)) arise in Section 4; as a reference, we
suggest [11, Section 2.8].

2. Preliminaries

We start with a simple example that draws a clear distinction between the inte-
grability of a group and the integrability of a particular subgroup within a particular
group.

Example 2.1. Consider the dihedral group D8 = 〈r, s | r4 = s2 = 1, srs−1 = r−1〉.
Since D′

8 = {1, r2}, we see immediately that D′
8 is the unique subgroup of order 2

of D8 to be integrable within D8, while the other four subgroups of order 2 are not
integrable within D8 (although they are all integrable since they are abelian).
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The two parts of the next result are fundamental in reducing integrability within
certain groups to integrability within suitable quotients.

Lemma 2.2. Let T be a finite group and G be a subgroup of T .

(1) If G is not a cyclic p-group and it contains a unique minimal normal sub-
group S, then G is integrable within T if and only if G/S is integrable within
NT (S)/S.

(2) If G admits a nontrivial characteristic perfect subgroup K, then G is inte-
grable within T if and only if G/K is integrable within NT (K)/K.

Proof. (1) Let H ≤ T be such that H ′ = G. Of course S, since it is characteristic in
H ′, is normal in H , that is, H ≤ NT (S). Then we have that H/S is a subgroup of
NT (S)/S having derived subgroup equal to G/S. Conversely, assume that H/S ≤
NT (S)/S is such that (H/S)′ = G/S. Thus G = H ′S ≤ HS, and since S ≤ H , we
have G ≤ H . Since S is the unique minimal normal subgroup of G and H ′ E G, we
have that either H ′ = 1 or S ≤ H ′. If H ′ = 1 then, since G ≤ H , G is abelian and
therefore G is a cyclic p-group for some prime p, which is a contradiction. Thus
S ≤ H ′, and so G = H ′ is integrable within T .

(2) If G = H ′ for some H ≤ T , then since K is characteristic in H ′, it is
normal in H , that is, H ≤ NT (K). But then H/K is a subgroup of NT (K)/K
such that (H/K)′ = G/K. Conversely, assume now that G/K = (H/K)′ for
some H ≤ NT (K). Then G = H ′K. Since K ≤ H and K is perfect, we have
K = K ′ ≤ H ′ and so G = H ′. �

We will need the following result, which does not require the involved groups to
be finite.

Lemma 2.3. Let A be a metacyclic group A = 〈x, y〉 with 〈x〉 E A. The subgroups
of A that are integrable within A are precisely all the subgroups of A′.

Proof. Let B be any subgroup of A that is integrable within A. Then there exists
some C ≤ A such that B = C′, and therefore B ≤ A′. For the converse, write
[x, y] = xc for some c ∈ Z, so that A′ = 〈xc〉 by standard commutator calculus.
Since [x, y] commutes with x, we have [xt, y] = xct for some t ∈ Z. Therefore if B
is an arbitrary subgroup of A′, say B = 〈xct〉, then if we set C = 〈xt, y〉 we have
B = C′. �

The following example shows that Lemma 2.3 cannot be extended to the classes
of supersolvable or nilpotent groups.

Example 2.4. Let G be the standard wreath product G = D8 ≀ C2. Then G′ ≃
D8 × C2, and therefore not all subgroups of G′ are integrable, since D8 is not
integrable (see [1] for a history of this result). In this particular case the subgroups
of G′ that are not integrable in G are: four copies of D8 (all maximal in G′) and
three copies of C2 × C2, these last three subgroups are each contained in a unique
maximal subgroup of G′ of order 8 (one C4 × C2 and two (C2)

3).
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3. integrable almost-simple groups

We recall that [2, Theorem 3.2] states that if a group G is integrable, then
Inn(G) ≤ Aut(G)′ and that, indeed, Inn(G) has an integral within Aut(G). Fol-
lowing the language of [1, Section 5], we recall that a group H is a reduced integral
of a group G if H ′ = G and CH(G) = 1. The following result uses ideas from [1,
Lemma 5.2] and [2, Theorem 3.2] and does not require the groups to be finite.

Theorem 3.1. Let S be a nonabelian simple group and let G be a group such that
Inn(S) ≤ G ≤ Aut(S). Then G is integrable if and only if G is integrable within
Aut(S).

Proof. The converse implication is obvious, so we assume now that G is integrable.

We recall that we write functions on the right, that is, if g is an arbitrary
element of G and s is an arbitrary element of S we write s.g for the image of
s under the automorphism g. Also, if A is any group and a ∈ A, denote with
γa ∈ Aut(A) the conjugation map x.γa = a−1xa for all x ∈ A. Since for every
g ∈ G and every s ∈ S we have that g−1γsg = γs.g, the action of G on S is
equivalent to the action by conjugation of G on its normal subgroup Inn(S). In
particular, CG(Inn(S)) = 1, and Inn(S) is characteristic in G (since Inn(S) is the
unique minimal normal subgroup of G). Since Z(G) ≤ CG(Inn(S)) = 1, we apply
[1, Lemma 5.2] to deduce that G admits a reduced integral H , namely a group H
such that H ′ = G and CH(G) = 1. We extend the faithful action of G on S to
a faithful action of H on S by defining, for every h ∈ H and every s ∈ S, the
element s.h to be the unique element of S such that h−1γsh = γs.h. Note that this
extension of the action is well defined since Inn(S) is characteristic in G and H acts
faithfully by conjugation on G. Let K = CH(S) denote the kernel of this action.
Then K is normal in H and K ∩ G = CG(S) = 1. Therefore [K,G] = 1, but then
K ≤ CH(G) = 1. This shows that the above action of H on S is faithful, that is H
is an integral of G within Aut(S). �

Throughout this section let S be a finite nonabelian simple group and, by iden-
tifying S with Inn(S), let S ≤ G ≤ Aut(S). By applying Lemma 2.2 (case (1) with
T := Aut(S) = NT (S)) we have the following crucial fact.

Lemma 3.2. G is integrable within Aut(S) if and only if G/S is integrable in the

group of outer automorphisms Out(S) = Aut(S)
Inn(S) .

As an immediate consequence of Lemma 3.2 and Lemma 2.3 we have that The-
orem A holds for all those S such that Out(S) is either abelian or metacyclic.

To complete our classification of integrable almost-simple groups we need only
focus on those S for which Out(S) is neither abelian nor metacyclic. Using the
classification of finite simple groups (CFSG), such simple groups (and their auto-
morphism groups) are summarized in the following proposition.

Proposition 3.3. Let S be a finite simple group having outer automorphism group
that is neither abelian nor metacyclic. Then (S,Out(S)) must be contained in the
following list:

(1)
(

An(q), d.(f × 2)
)

, where n ≥ 2, d = (n + 1, q − 1) > 1, q = pf and f > 1
is even.
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(2)
(

D4(q), d.
(

f × S3)
)

, where d = (2, q − 1)2 and q = pf .

(3)
(

Dn(q), d.
(

f × 2)
)

, where n > 4, q = pf with p an odd prime, and, respec-

tively, d = (2, q − 1)2 = 22 when n is even, and d = (4, qn − 1) when n
odd.

(4)
(

E6(q), 3.(f × 2)
)

, where d = (3, q − 1) = 3, q = pf and f is even.

Proof. This result is a consequence of the CFSG. The ATLAS [8, Tables 1 and 5] is
a good reference. Note that a normal subgroup of order two in any group is always
central, which implies that the outer automorphism group of each of the following
groups is always abelian or metacyclic: A1(q), B2(q) for q odd, Bn(q) and Cn(q)
when n ≥ 3 and E7(q). Also note that field automorphisms commute with graph
automorphisms (see [6]). �

We complete the proof of Theorem A by considering these four remaining cases
of Proposition 3.3. For convenience in the following we set A = Out(S).

Case (1). S = An(q) = PSLn+1(q), with n ≥ 2, d = (n+1, q−1) > 1 and q = pf

with f > 1 even.
In this situation the group A is metabelian isomorphic to d.(f × 2) and it has the
following presentation (see [19, Proposition 2.2.3]):

〈

δ, φ, ι | δd = φf = ι2 = 1, δφ = δp, δι = δ−1, φι = φ
〉

.

We have that A′ ≤ 〈δ〉, since A/ 〈δ〉 is abelian. Moreover A′ ≥
〈

δ2, δp−1
〉

, as

[δ, ι] = δ−2 and [δ, φ] = δp−1.
Assume first that p is odd. Then δp−1 is a power of δ2, forcing

〈

δ2, δp−1
〉

=
〈

δ2
〉

.

Since A/
〈

δ2
〉

is abelian when p is odd, then A′ =
〈

δ2
〉

. Moreover if we set B = 〈δ, ι〉

then B is a metacyclic group whose derived subgroup is B′ =
〈

δ2
〉

= A′. Thus by
Lemma 2.3 every subgroup of A′ is integrable in B and thus also in A.
Now we assume p = 2. Since

〈

δ2, δp−1
〉

≤ A′, then A′ = 〈δ〉. Arguing as in the
preceding situation, every subgroup of 〈δ〉 is integrable in 〈δ, ι〉 and thus in A too.

We conclude that every subgroup of A′ is integrable in A.

Case (2). S = D4(q) = PΩ+
8 (q).

By [18, p. 181] we have that

Out(S) ≃

{

S3 × f if q is even,

S4 × f if q is odd.

So when q is even all subgroups of A′ are integrable (these subgroups are just 1
and A′ = A3, whose order is three). When q is odd then A′ = A4 and again all
subgroups H of A′ are integrable in A, since if H = A′ this is immediate, if H = V4

then H = A′′, if H has order 3 then H = (S3)
′ for some S3 < S4 < A, and, finally,

if H has order two then H = (D8)
′ for some D8 < S4 < A.

Case (3). S = Dn(q) = O+
2n(q) = PΩ+

2n(q), with n > 4.
When the group A is nonabelian and not metacyclic then, according to [19, Propo-
sitions 2.7.3 and 2.8.2], A is isomorphic to D8 × f . Therefore in this case too the
subgroups of A that are integrable within A are precisely all the subgroups of A′,
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namely, 1 and A′ ≃ 2.

Case (4). S = E6(q).
When A is nonabelian and not metacyclic then A ≃ 3.(f × 2) with f > 1 even.
Then |A′| = 3 and, trivially, the subgroups of A that are integrable within A are
precisely all the subgroups of A′.

This completes the proof of Theorem A.

4. Integrable 2-homogeneous groups

The enumeration of k-transitive and k-homogeneous subgroups of the finite sym-
metric group Sn (for k ≥ 2) has a long history, which is intertwined with the discov-
ery of various finite simple groups, extending back to the work of Mathieu [21, 22]
(or even earlier, to notions of transitivity investigated by Cauchy (e.g., [7])). The 2-
homogeneous subgroups of Sn have been completely determined as part of the work
on the classification of the finite simple groups. The list of 2-homogeneous groups
in the following theorem is extracted from Blackburn and Huppert [3, XII, Remark
7.5] and Dixon and Mortimer [11, Section 7.7 and Theorem 9.4B] (with minor errors
corrected). We mention several contributions to this classification. Hering’s results
[13, 14] provide the tools for the classification of 2-transitive groups for which the
socle is regular and abelian (Cases (2)-(9) below), building on significant contribu-
tions by Huppert [15] (who completed the solvable point stabilizer subgroup case
(Case (5) below)), Livingston and Wagner [20], and Kantor [16, 17]. Curtis, Kantor
and Seitz [9] classified the 2-transitive groups with socle a nonabelian simple group
of Lie type (Cases (10)-(15)). Case (16), when the socle is sporadic, was undertaken
by Hering in [14].

We summarize the complete list of the 2-homogeneous subgroups of Sn as follows.

Theorem 4.1. Let G be a 2-homogeneous subgroup of Sn and set S = soc(G) to
be its socle. Then G is one of the groups appearing in the following list:

• G is not 2-transitive.
This happens precisely when:
(1) G is a 2-homogeneous subgroup of the affine semilinear group that

contains the special affine linear group, ASL1(q) ≤ G ≤ AΓL1(q) and
n = q ≡ 3 (mod 4).

• G is 2-transitive and S is regular and abelian.
Then G ≤ AΓLd(q), with degree n = qd = |S| and point stabilizer G0 that
acts transitively on the set of nonzero vectors in the underlying vector space.
This case happens precisely when G is the semidirect product G = S ⋊G0

and one of the following holds:
(2) SLd(q) ≤ G0 ≤ ΓLd(q).
(3) G0 ≤ ΓLd(q) and G0 contains a copy of Spd(q) as a normal subgroup.
(4) G0 ≤ ΓL6(2

f ) and G0 contains as a normal subgroup respectively a
copy of G2(2

f) when f > 1, and of U3(3) when f = 1.
(5) G0 is a solvable subgroup of ΓLd(q) containing a normal extraspecial

subgroup E of order 2df+1 such that CG0
(E) = Z(G0) and G0/EZ(G0)

is faithfully represented on E/Z(E). Moreover, this situation happens
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if and only if G0 ≤ GLd(q) where:

(d, q) ∈ {(2, 3), (2, 5), (2, 7), (2, 11), (2, 23), (4, 3)} .

(6) (G0)
′′ ≃ SL2(5) for d = 2 and q ∈ {9, 11, 19, 29, 59}.

(7) G0 ≃ A6, d = 4, q = 2.
(8) G0 ≃ A7, d = 4, q = 2.
(9) G0 ≃ SL2(13), d = 6, q = 3.

• G is 2-transitive and S is a nonabelian simple group.
This case happens precisely when:
(10) S = An and G ∈ {An, Sn}.
(11) S = PSLd(q) ≤ G ≤ PΓLd(q) of degree n = (qd − 1)/(q − 1).
(12) S = G = PSp2m(2) of two possible degrees n ∈

{

2m−1(2m ± 1)
}

.

(13) S = U3(q) ≤ G ≤ PΓU3(q) of degree n = q3 + 1.
(14) S = 2B2(q) ≤ G ≤ Aut(S), with q = 22m+1 and degree n = q2 + 1.
(15) S = 2G2(q) ≤ G ≤ Aut(S), with q = 32m+1 and degree n = q3 + 1.
(16) S is isomorphic to one of:

(a) M11,M12,M23,M24 of degree, respectively, 11, 12, 23 and 24. More-
over G = S.

(b) PSL2(11) of degree 11, and G = S.
(c) A7 or A8 ≃ PSL4(2), both of degree 15, and G = S.
(d) HS of degree 176 and G ∈ {S,Aut(S) = S.2}.
(e) Co3 of degree 276 and G = S.

Remark 4.2. Note that whenever in the statement of Theorem 4.1 we write S ≤
G ≤ H, for some suitable H ≤ Sn, then the subgroup H coincides with NSn

(S).
This follows from the fact that S ✂H for all the groups listed above, and so H ≤
NSn

(S). Moreover, any group containing a 2-homogeneous subgroup must itself be
2-homogeneous, hence NSn

(S) is a 2-homogeneous subgroup of Sn with socle S and
it must be contained in the same H coming from the classification in Theorem 4.1,
that is, NSn

(S) ≤ H. A similar situation occurs in Case (2) with G0 in place of G.

Note that trivially if G is 2-homogeneous and G = H ′ (for some H ≤ Sn), then
H itself is also 2-homogeneous. Thus our approach to solving Problem 2 is to de-
termine which derived subgroups of 2-homogeneous subgroups of Sn are themselves
2-homogeneous. To obtain such a classification we use Lemma 2.2 (both parts (1)
and (2)). The following result guarantees that the hypotheses of Lemma 2.2 are
satisfied. Indeed, it is a significant step in the classification of the 2-homogeneous
subgroups of Sn (that is, of the proof of Theorem 4.1).

Lemma 4.3. Let G be a 2-homogeneous subgroup of Sn. Then the socle of G is
the unique minimal normal subgroup of G.

Proof. This follows immediately by [11, Theorem 4.1B] when G is 2-transitive and
S is nonabelian, and in the other cases from [11, Theorem 4.3B] and the fact that
G is primitive ([11, Exercise 2.1.10]; see also [20, p. 402]). �

As an immediate application of Lemma 2.2 we therefore have the following corol-
lary.
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Corollary 4.4. Let G be a 2-homogeneous subgroup of Sn having socle S. Then
G is integrable within Sn if and only if G/S is integrable within NSn

(S)/S. Sup-
pose further that G has a nontrivial characteristic perfect subgroup K. Then G is
integrable within Sn if and only if G/K is integrable within NSn

(K)/K.

To classify the 2-homogeneous subgroups of degree n that are integrable within
Sn (and therefore prove Theorem B) we now take into consideration all the groups
G in the list of Theorem 4.1 and apply Corollary 4.4 to them. In the following we
will always denote with q = pf (p a prime) the order of the field on which classical
and Lie type groups are defined, except when the groups are unitary in which case
we set q2 = pf .

Case (1). We have that AΓL1(q)/ASL1(q) is isomorphic to a metacyclic group of
order (q−1) : f . By Lemma 2.3 we conclude that in this case G is integrable within
Sn precisely when G is a subgroup of (AΓL1(q))

′, containing ASL1(q).

Case (2). We have that ASLd(q) = S ⋊ SLd(q) is a characteristic and perfect sub-
group of G = S ⋊G0, and therefore by Corollary 4.4 the integrability of G within
Sn is equivalent to the integrability of G0/SLd(q) within ΓLd(q)/SLd(q). Note that
this latter group is metacyclic isomorphic to (q − 1) : f . Therefore Lemma 2.3
implies that G is integrable within Sn if and only if SLd(q) ≤ G0 ≤ ΓLd(q)

′.

Case (3). Let H be a subgroup of ΓLd(q) isomorphic to Spd(q) and let H ≤ G0 ≤
NΓLd(q)(H) ≃ ΓSpd(q). By [19, Section 2.4] this latter group is isomorphic to

(

Spd(q) : (q − 1)
)

:f.

In particular Spd(q) is characteristic in ΓSpd(q), and thus by Corollary 4.4 the
integrable 2-homogeneous subgroups of this case correspond precisely to those G0

such that G0/H is isomorphic to an integrable subgroup within ΓSpd(q))/Spd(q).
Finally, note that ΓSpd(q))/Spd(q) is a metacyclic group. Lemma 2.3 completes
the proof of this case.

Case (4). In this case q = 2f . It is well-known that the group Sp6(q) contains, as a
maximal subgroup, a subgroup isomorphic to G2(q) (see [10] or [23, Theorem 3.7]),
which is transitive on the corresponding projective space. We let H be a subgroup
of SL6(q) isomorphic to G2(q) and we first determine the structure of NΓL6(q)(H).
By [4, Table 8.29], we see that a field automorphism φ of order f can be taken to
normalize H . Thus by Dedekind’s modular law we have that

NΓL6(q)(H) = NGL6(q)(H). 〈φ〉 .

Also NGL6(q)(H) = ZNSL6(q)(H), where Z = Z(GL6(q)) ≃ (q − 1) (here we used
again [4, Table 8.29]). We now claim that

NSL6(q)(H) = Z(SL6(q))×H ≃ (q − 1, 3)×G2(q).

This follows from the fact that every maximal subgroup of SL6(q) containing a
copy of G2(q) is isomorphic to (q− 1, 3)× Sp6(q). To prove this statement we look
at the maximal subgroups of SL6(q) in [4, Tables 8.24 and 8.25] (eventually also
Tables 8.3 and 8.4 to exclude the unique non immediate case of maximal subgroups
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isomorphic to SL3(q
2).(q + 1).2). This shows that

NΓL6(q)(H) ≃ (H × (q − 1)).f

and therefore NΓL6(q)(H)/H is metacyclic. Lemmas 2.2 and 2.3 complete the proof
of this case. We observe that Remark 4.5 summarizes the integrable subgroups for
this particular case.

Case (5). The main reference for this case is [15], where the full classification for the
2-transitive groups of this type appear. In particular we have that E is a subgroup
of SLd(q); moreover, since q is always a prime number, G0 ≤ GLd(q) = ΓLd(q).
Now, the integrability of G in Sn, by Corollary 4.4, is equivalent to the integrability
of G0 within GLd(q). Thus in particular G0 must be a subgroup of SLd(q) that
normalizes E. We examine all possible situations that are classified in [15].
When d = 2, according to [15], the subgroups of SL2(q) that are transitive on
nonzero vectors appear just when q ∈ {3, 5}. Moreover, if q = 3, since SL2(3) ≃
2

.

A4, the subgroup E is the unique Sylow 2-subgroup of SL2(3). Then either
G0 = E or G0 = SL2(3). Both are integrable in GL2(3) since SL2(3) = (GL2(3))

′

and E = (GL2(3))
′′.

When q = 5 then E is a Sylow 2-subgroup of SL2(5), since SL2(5) ≃ 2
.

A5. In this
case G0 = NSL2(5)(E) ≃ 2

.

A4 ≃ SL2(3) is transitive on nonzero vectors and also
integrable (in GL2(5)) since it is equal to (NGL2(5)(E))′.
Finally we consider the case d = 4 and q = 3. Then E is isomorphic to the central
product D8 ◦ Q8. Also Z(E) = Z(GL4(3)) and up to conjugation there are only
three subgroups in GL4(3) that are transitive on nonzero vectors. They are all
contained in SL4(3) and they are respectively isomorphic to E : 5, (E : 5).2 and
(E : 5).4. Only the first of these is integrable being the derived subgroup of the
other two.

Case (6). Set L = (G0)
′′ be the second derived subgroup of G0, so that L ≃

SL2(5) ≃ 2
.

A5 and L ≤ G0 ≤ NΓL2(q)(L) with q as in the statement. By Corollary
4.4, G is integrable within Sn if and only if G0/L is integrable within NΓL2(q)(L)/L,
therefore we examine the structure of this last group. By [4, Table 8.2], L is al-
ways a maximal subgroup SL2(q) and therefore it coincides with its normalizer in
SL2(q). When q 6= 9 we have that q is prime, forcing GL2(q) = ΓL2(q). It follows
that NΓL2(q)(L) = LZ, where Z = 〈z〉 is the center of GL2(q) (where we used again
[4, Table 8.2]). The conclusion is that, when q 6= 9, only G = S ⋊ L ≃ S : SL2(5)
is integrable within Sn. Assume now that q = 9. Again by [4, 8.2], the subgroup L
is maximal in SL2(9) and, outside SL2(9)Z, only field automorphisms of order two
normalize it. Therefore NΓL2(9)(L) = LZ.2 and NΓL2(9)(L)/L ≃ D8. We conclude

that, for q = 9, G0 is integrable within Sn if it is either L or L
〈

z4
〉

= (NΓL2(9)(L))
′.

Cases (7)-(9). These groups are all integrable, since G0 (and therefore G) is perfect.

Case (10). Of course G = An is integrable within Sn, while G = Sn is not.

Case (11). Since S = PSLd(q) and NSn
(S) = PΓLd(q), by [19, Proposition 2.2.3],

the group PΓLd(q)/PSLd(q) ≤ Out(S) is isomorphic to a finite metacyclic group
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m : f , where m = gcd(d, q − 1). Lemma 2.3 together with Corollary 4.4 im-
ply that the integrable subgroups in this case are precisely all those G such that
PSLd(q) ≤ G ≤ (PΓLd(q))

′.

Case (12). Here we have that G = S = NSn
(S) is a perfect group and therefore

trivially integrable.

Case (13). Now we write q2 = pf , so that S = U3(q) and NSn
(S) = PΓU3(q). By

[19, Proposition 2.3.5], the group PΓU3(q)/U3(q) is isomorphic to a finite meta-
cyclic group m : (2f), where m = gcd(3, q + 1). By Corollary 4.4, the integrable
subgroups in this case are precisely S = U3(q) (always) and PGU3(q) when 3|(q+1)
and PΓU3(q)/U3(q) is not abelian. This latter situation happens if and only if p ≡ 2
(mod 3) and f/2 is odd.

Cases (14)-(15). In both cases we have that Out(S) is a cyclic group of order f .
Therefore, by Lemma 2.3, Theorem A and Lemma 3.2, the only integrable groups
are G = S in both cases.

Case (16). All the simple groups S listed have trivial or cyclic outer automorphism
group. Therefore, by Lemma 2.3, Theorem A and Lemma 3.2, these are the unique
integrable subgroups in this case.

It is straightforward now to check that in all cases - except Case (5) - the 2-
homogeneous subgroups G that are integrable within Sn are precisely those G such
that

(NSn
(S))′′ ≤ G ≤ (NSn

(S))′,

thus proving Theorem B. We leave this verification to the reader. We collect in the
following remark the solvable exceptions appearing in Case (5).

Remark 4.5. Let G be a 2-transitive subgroup of Sn that belongs to Case (5) of
Theorem 4.1. Note that this is the unique case in which G is solvable. Then G
is integrable within Sn precisely when G is isomorphic to a group in the following
table

isomorphism type of G degree n

32 : Q8 32

ASL2(3) 32

52 : SL2(3) 52

34 : ((D8 ◦Q8) : 5) 34

Note that each of these subgroups is between (NSn
(S))′′ and (NSn

(S))′ and that,
apart from when n = 32, there are also subgroups in this interval that are not
integrable (within Sn).

As mentioned in the Introduction, the following example shows that the more
general problem of classifying all integrable 2-homogeneous groups (as abstract
groups) has a different solution than Problem 2 has.
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Example 4.6. The group G = PGL3(7) acts 2-transitively on the set of projective
points (or, equivalently, on the set of projective lines) whose size is 57 (this group
arises in Case (11) of Theorem 4.1). By Theorem B, G is not integrable within
S57. Nevertheless, the simple group PSL3(7) has outer automorphism group iso-
morphic to S3, since it is generated by an outer diagonal automorphism of order
three and a graph involution. This implies that (Aut(PSL3(7)))

′ = PGL3(7) which
demonstrates the abstract integrability of G.
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