The advancements in modern vehicles are mainly due to electrical and electronic components that support an increasing demand for lower emission levels, higher safety and comfort. Increasingly, these components are connected by bus systems, which lead to more complex wire harnesses in modern cars, than ever before. Because of this, the wire harness of a car became one of the most complex building blocks. Therefore, techniques to reduce the wiring overhead are becoming increasingly important. In this work, a new method for integrating the communication and power supply of network participants on one differential bus, is investigated. Different to methods such as Power over Ethernet (PoE), the proposed implementations are using charges to emit defined pulses in to the communication bus, that is also carrying the power supply. Two switched capacitor approaches are proposed, the charge alternation (CA) and the charge pump (CP) method. While the suggested CA mode, operating at 2, requires only 50% of the power of a resistive load modulation that reaches a comparable signal level, the CP mode improves this even further due to the inherent charge-reuse capability of the concept. The approaches are verified with a demonstrator and a transmitter test chip fabricated in a 180nm BCD-on-SOI technology, that both shows the excellent performance of the concept and the silicon implementation. Furthermore, the receiver is discussed and implemented as part of a transceiver test chip, fabricated in the same technology. The reminder of the work is organized as follows: After the introduction and motivation for this research project in chapter 1, basic transmission concepts are described as well as the modelling of the differential bus based on a twisted pair, is analysed in chapter 2. Chapter 3 examines both switched capacitor transmission concepts in detail, regarding pulse shape, encoding, and power consumption. To check the proposed transmission schemes in a real-world environment, a demonstrator using off-the-shelf components will be discussed and evaluated in chapter 4, that successfully replaces the existing physical layer of a CAN-like state-of-the-art application for interior car illumination. It shows also, that standards for electromagnetic emissions can be met with the proposed solutions. A silicon implementation for the transmitter part, realizing both methods, is described in detail in chapter 5. The architecture of the required high-voltage switches, the design of the ESD protection that withstand an HBM stress level > 8 and all necessary building blocks for a chip implementation that can work in a real network environment, are discussed. At the end of this chapter, the performance of the real silicon results are discussed. Chapter 6 proposes the receiver concept, and the transceiver chip level implementation using the same framework as developed with the transmitter test chip. The top-level verification of the build transceiver test chip is presented before conclusions are drawn.

Le ultime novita in ambito automotive sono dovute principalmente ai compoenenti elettronici ed elettrici che favoriscono la riduzione dei livelli di emissione e creano maggiore sicurezza e comfort. L’utilizzo di questi componenti sta aumentando sempre di più, ed essendo generalmente connessi tramite dei bus, stanno rendendo il sistema di cablaggio sempre piu complesso fino a renderlo uno dei blocchi piu critici da progettare. Pertanto, si stanno cercando nuove tecniche per ridurre il numero di interconnessioni. In questo lavoro si analizza un nuovo metodo per integrare la comunicazione e l'alimentazione su un unico bus differenziale. Diversamente dai metodi Power over Ethernet (PoE), l'implementazione proposta si basa sull’iniezione di cariche ben definite sul bus di comunicazione, che allo stesso tempo alimenta i vari dispositivi, al fine di generare dei pulsi. Sono proposti due approcci basati su capacità di commutazione: il Charge Alternation (CA) e il Charge Pump (CP). Il metodo CA, a 2Mbps, richiede solo il 50% della potenza di modulazione del carico resistivo, e il CP migliora ancora di più le prestazioni grazie alla capacità di riutilizzare parzialmente la carica immagazinata. Entrambe i circuiti di transmissione sono validati da una scheda dimostrativa e da un test chip in tecnologia 180nm BCD-on-SOI da cui si sono ottenuti risultati eccellenti. Inoltre, un circuito di ricezione é mostrato ed implementato in un test chip che quindi realizza un ricetrasmettitore completo. La tesi é organizzata come segue: l'introduzione e le motivazioni alla base di questa attivitá sono mostrate nel Capitolo 1. Nel capitolo 2 sono analizzati il concetto basico di transmissione e la modellazione del bus differenziale. Il Capitolo 3 sono esaminate entrambe le implementazioni di trasmettitori proposti, andando nel dettaglio della caratteristica dei pulsi, della codifica e del consumo energetico. Una scheda dimostrativa fatta di componenti discreti e i relativi test sono presentati nel capitolo 4, rimpiazzando con successo un layer fisico di un applicazione simil-CAN per illuminazione interna delle auto. Vengono mostrati anche i risultati sulle emissioni elettromagnetiche che sono in linea con i requisiti standard. L'implentazione in silicio del trasmettitore, includendo entrambi circuiti sviluppati, é descritta dettagliatamente nel capitolo 5. Viene mostrata l’architettura degli switch ad alta tensione, la protezione ESD che fornisce un livello di HBM > 8kV e tutti i blocchi necessari per il funzionamento del chip. Alla fine dello stesso capitolo vengono mostrate le prestazioni del chip integrato. Nel Capitolo 6 si propone il circuito di ricezione e il composizione del chip che implementa il ricetrasmettitore completo in una struttura simile a quella precedente. I test top level del chip sono quindi esplicati prima di trarre le conclusioni finali.

(2023). Supply-Embedded Communication in Differential Automotive Networks. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).

Supply-Embedded Communication in Differential Automotive Networks

OTT, ANDREAS
2023

Abstract

The advancements in modern vehicles are mainly due to electrical and electronic components that support an increasing demand for lower emission levels, higher safety and comfort. Increasingly, these components are connected by bus systems, which lead to more complex wire harnesses in modern cars, than ever before. Because of this, the wire harness of a car became one of the most complex building blocks. Therefore, techniques to reduce the wiring overhead are becoming increasingly important. In this work, a new method for integrating the communication and power supply of network participants on one differential bus, is investigated. Different to methods such as Power over Ethernet (PoE), the proposed implementations are using charges to emit defined pulses in to the communication bus, that is also carrying the power supply. Two switched capacitor approaches are proposed, the charge alternation (CA) and the charge pump (CP) method. While the suggested CA mode, operating at 2, requires only 50% of the power of a resistive load modulation that reaches a comparable signal level, the CP mode improves this even further due to the inherent charge-reuse capability of the concept. The approaches are verified with a demonstrator and a transmitter test chip fabricated in a 180nm BCD-on-SOI technology, that both shows the excellent performance of the concept and the silicon implementation. Furthermore, the receiver is discussed and implemented as part of a transceiver test chip, fabricated in the same technology. The reminder of the work is organized as follows: After the introduction and motivation for this research project in chapter 1, basic transmission concepts are described as well as the modelling of the differential bus based on a twisted pair, is analysed in chapter 2. Chapter 3 examines both switched capacitor transmission concepts in detail, regarding pulse shape, encoding, and power consumption. To check the proposed transmission schemes in a real-world environment, a demonstrator using off-the-shelf components will be discussed and evaluated in chapter 4, that successfully replaces the existing physical layer of a CAN-like state-of-the-art application for interior car illumination. It shows also, that standards for electromagnetic emissions can be met with the proposed solutions. A silicon implementation for the transmitter part, realizing both methods, is described in detail in chapter 5. The architecture of the required high-voltage switches, the design of the ESD protection that withstand an HBM stress level > 8 and all necessary building blocks for a chip implementation that can work in a real network environment, are discussed. At the end of this chapter, the performance of the real silicon results are discussed. Chapter 6 proposes the receiver concept, and the transceiver chip level implementation using the same framework as developed with the transmitter test chip. The top-level verification of the build transceiver test chip is presented before conclusions are drawn.
BASCHIROTTO, ANDREA
Supply-embedded; High-voltage; Differential network; HV-CMOS design; CAN network
ING-INF/01 - ELETTRONICA
English
28-feb-2023
FISICA E ASTRONOMIA
35
2021/2022
open
(2023). Supply-Embedded Communication in Differential Automotive Networks. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2023).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_863208.pdf

accesso aperto

Descrizione: Ott Andreas - 863208
Tipologia di allegato: Doctoral thesis
Licenza: Tutti i diritti riservati
Dimensione 13.43 MB
Formato Adobe PDF
13.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/404718
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact