This paper is concerned with the estimation of the partial derivatives of a probability density function of directional data on the d-dimensional torus within the local thresholding framework. The estimators here introduced are built by means of the toroidal needlets, a class of wavelets characterised by excellent concentration properties in both the real and the harmonic domains. In particular, we discuss the convergence rates of the (Formula presented.) -risks for these estimators, investigating their minimax properties and proving their optimality over a scale of Besov spaces, here taken as nonparametric regularity function spaces.

Durastanti, C., Turchi, N. (2023). Nonparametric needlet estimation for partial derivatives of a probability density function on the d-torus. JOURNAL OF NONPARAMETRIC STATISTICS, 35(4), 733-772 [10.1080/10485252.2023.2208686].

Nonparametric needlet estimation for partial derivatives of a probability density function on the d-torus

Turchi, N
2023

Abstract

This paper is concerned with the estimation of the partial derivatives of a probability density function of directional data on the d-dimensional torus within the local thresholding framework. The estimators here introduced are built by means of the toroidal needlets, a class of wavelets characterised by excellent concentration properties in both the real and the harmonic domains. In particular, we discuss the convergence rates of the (Formula presented.) -risks for these estimators, investigating their minimax properties and proving their optimality over a scale of Besov spaces, here taken as nonparametric regularity function spaces.
Articolo in rivista - Articolo scientifico
adaptivity; directional data; Local thresholding; needlets; nonparametric density estimation;
English
5-mag-2023
2023
35
4
733
772
partially_open
Durastanti, C., Turchi, N. (2023). Nonparametric needlet estimation for partial derivatives of a probability density function on the d-torus. JOURNAL OF NONPARAMETRIC STATISTICS, 35(4), 733-772 [10.1080/10485252.2023.2208686].
File in questo prodotto:
File Dimensione Formato  
Durastanti-2023-J Nonparametric Stat-AAM.pdf

accesso aperto

Descrizione: Sharing in repositories - https://authorservices.taylorandfrancis.com/research-impact/sharing-versions-of-journal-articles/
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri
Durastanti-2023-J Nonparametric Stat-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/401474
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact