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Abstract
This paper is concerned with the estimation of the partial derivatives of a

probability density function of directional data on the d-dimensional torus within
the local thresholding framework. The estimators here introduced are built by means
of the toroidal needlets, a class of wavelets characterized by excellent concentration
properties in both the real and the harmonic domains. In particular, we discuss the
convergence rates of the Lp-risks for these estimators, investigating their minimax
properties and proving their optimality over a scale of Besov spaces, here taken as
nonparametric regularity function spaces.
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1 Introduction and background
The estimation of derivatives of the probability density function is related to several open
problems in statistics. Estimators of the first order derivatives in the unidimensional
framework are exploited to detect the modes of uni-modal distributions (see, among others,
Parzen (1962); Schuster (1969)). The straightforward generalization to the multivariate
case has led to the mean–shift algorithm (see, for example, Fukunaga and Hostetler (1975);
Silverman (1986)), where the estimation of the gradient vector of the density function is
exploited to cluster and filter data. This algorithm has become widely popular in several
research fields, such as image analysis and segmentation (see, among others, Cheng (1995);
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Comaniciu and Meer (2002)). In the same setting, estimators of second order derivatives
of a probability density function are used to perform statistical tests for modes of the
data density and to identify key characteristics of the distribution, such as local and
global extrema, ridges or saddle points (see, for example, Genovese et al. (2016)). These
estimators are also extensively used in other statistical problems, such as establishing
the optimal bandwidth in the framework of kernel density estimation, Fisher information
estimation, parameter estimation, regression problems, hypothesis testing and others (see,
among others, Singh (1977)).
In the nonparametric setting, efforts have been made to exploit kernel estimation for
the derivatives of a density function, even if the excellent properties of kernel density
estimators are partially lost due to the problem of bandwidth/smoothing parameter
selection (see, among others, Chacon et al. (2012)).
Several estimators for the derivatives of density functions on R or Rd have been built by
means of wavelet systems and have already been proposed as alternatives to the kernel
methods. This approach have been initially exploited to deal with the estimation of
unknown density functions and regression functions (see, for example, Hardle et al. (1997);
Tsybakov (2009)), to be then extended to the estimation of higher order derivatives of
probability density functions. Among others, wavelet estimators have been defined first
on R in Prakasa Rao (1996) (see also Prakasa Rao (1990)), and then generalized to Rd

in Prakasa Rao (2000) (see also Di Marzio et al. (2011)). Several linear and nonlinear
estimators for derivatives of probability density functions on R and Rd have been studied,
among others, by Hosseinioun et al. (2011, 2012); Liu and Wang (2013); Prakasa Rao
(2017, 2018); Xu (2020).
The so-called needlets, a second generation wavelet system, have already been extensively
used in nonparametric statistics, in view of their extraordinary concentration properties
in both the real and the frequency domains. Needlets have been initially built over
the d-dimensional sphere in Narcowich et al. (2006b,a), while some of their stochastic
properties, mostly related to spherical random fields, are discussed in Baldi et al. (2009b);
Durastanti et al. (2013, 2014); Bourguin et al. (2016); Cammarota and Marinucci (2015);
Shevchenko and Todino (2021). Needlets have also been established over general compact
manifolds in Geller and Mayeli (2009); Kerkyacharian et al. (2012); Pesenson (2013), and
over spin fiber bundles (see Geller and Marinucci (2010)), while a generalized construction
of spherical needlets admitting additional flexibility in the harmonic domain has been
introduced more recently in Durastanti et al. (2021).
The pioneering results concerning needlet frames in the setting of nonparametric statistics,
described in Baldi et al. (2009a), have established minimax rates of convergence for the
Lp-risk of needlet density estimators built by means of hard local thresholding techniques.
Analogous results in the block and global thresholding framework were presented in
Durastanti (2013, 2016). Nonparametric regression estimators of spin functions have been
discussed in Durastanti et al. (2011). The reader is referred to Bourguin and Durastanti
(2017); Gautier and Le Pennec (2013); Kerkyacharian et al. (2012) for other relevant
applications in the nonparametric paradigm. As far as the d-dimensional torus Td is
concerned, toroidal needlets have already been discussed and applied in the framework of
the two sample problem, in Bourguin and Durastanti (2018).
The goal of this paper is to study the asymptotic optimality of adaptive nonlinear
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wavelet estimators for the derivatives of a probability density function defined over the
d-dimensional torus Td in the nonparametric setting. We combine local thresholding
techniques and concentration properties of the needlets to construct estimators achieving
optimality of the Lp-risk for probability density functions defined in some scales of Besov
spaces. The rates here obtained are consistent with the results given in Baldi et al.
(2009a); Durastanti et al. (2011), where local thresholding techniques were applied to
estimate density of spherical data, as well as those related to the estimation of derivatives
of densities on R and Rd (see, for instance, Prakasa Rao (2000); Liu and Wang (2013)).
As already remarked in Bourguin and Durastanti (2017), the choice of the d–dimensional
torus for the support of the probability density function is quite general: since Td is
locally homeomorphic to Rd, hence to any other manifold with the same dimension, the
spatial localization property of the toroidal needlets ensures that the results here achieved
remain valid when approximating locally any such manifold with Td. Furthermore, as a
consequence of the strong concentration properties of the needlet frames, the estimators
here proposed is asymptotically robust even if defined only on sub-regions of the torus
(see for further details Baldi et al. (2009c); Marinucci and Peccati (2011)).
The importance of studying and modeling multivariate toroidal data naturally arises
in many practical problems. Indeed, it is natural to describe the time evolution of
(d− 1)-toroidal variables as an additional dimension in a d-dimensional setting (see Bott
et al. (2017) for d = 2). This fact leads to some applications of interest, for example, in
meteorology, where wind directions can be modeled as toroidal data (see, among others,
Garcia-Portugues et al. (2013)). Most actual wind speeds are shown to lie near the
peaks of the predicted density functions (see, for example Zhang et al. (2020)). Then the
study of the gradient of the corresponding density function by means of estimators with
good concentration properties can provide an excellent method to identify those peaks.
Some other applications can be found in astrophysics. Studying locally 3–dimensional
density functions of galaxies and their geometric characteristics is crucial to understand
morphology–density, color–density and color–concentration–density relations (see for
example Ferdosi, B. J. et al. (2011) and references therein). A fascinating classification
problem, introduced by Sengupta and Ugwuowo (2011) and mentioned by Di Marzio et al.
(2011), concerns measurements on the skull of members from two different population
groups represented by a front angle and a side angle. Identifying different locations for the
peaks can be helpful to support their classification results. Another interesting example
comes from econometrics. In Grith et al. (2018), methods from functional principal
component analysis are used to estimate partial derivatives of multivariate curves and
then applied to the study of state price density surfaces.
The structure of this paper is as follows. Section 2 introduces some preliminary results
on the harmonic analysis on the torus, toroidal needlet frames, Besov spaces and related
properties. In Section 3, we present the construction of our estimators and the statements
of our main results. Section 4 contains some numerical evidence, while all the proofs are
collected in Section 5.
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2 Some preliminary results
In this section, we will provide the reader with some background concerning harmonic
analysis on the torus, toroidal needlets, their derivatives, and Besov spaces. We begin by
setting some necessary notation. Throughout this paper, given two real-valued sequences
{xk}k∈N and {yk}k∈N, we write xk . yk or xk & yk if there exists an absolute positive
constant c ∈ R such that, for any k ∈ N, xk ≤ cyk or xk ≥ cyk respectively. The notation
xk ≈ yk indicates that both xk . yk and xk & yk hold. Furthermore, for any z ∈ C, z̄
denotes its conjugate.

2.1 Harmonic analysis on the torus
As is well known in the literature (see, for example, Grafakos (2008)), the d-dimensional
torus Td can be read as the direct product of d unit circles,

Td = S1 × . . .× S1 ⊂ Cd.

From now on, we will denote the generic coordinates over Td by ϑ = (ϑ1, . . . , ϑd), where
ϑi ∈ [0, 2π) for i = 1, . . . , d. As a straightforward consequence, the uniform Lebesgue
measure over Td will be given by

ρ (dϑ) =
d∏
i=1

dϑi,

where for i = 1, . . . , d, dϑi is the Lebesgue measure over the unit circle.
Let 〈·, ·〉 denote the standard scalar product between d-dimensional vectors; the set of
functions S` : Td → C, where ` = (`1, . . . , `d) ∈ Zd is the frequency index, defined by

S` (ϑ) = (2π)−
d
2 exp (〈`, ϑ〉) ,

describes an orthonormal basis for L2
(
Td
)
, the space of square-integrable functions over

Td (see again Grafakos (2008)). Indeed, the one-dimensional torus T1 can be identified as
an equivalence class of the quotient space R/Z, so that the canonical representation in
[0, 2π)d describes a coordinate system on Td. The set

{
S` : ` ∈ Zd

}
corresponds to the

eigenfunctions of the Laplace-Beltrami operator on the torus ∇Td , defined by

∇Td =
d∑
i=1

∂2

∂ϑ2
i

,

so that (
∇Td + ε2

`

)
S` (ϑ) = 0,

where ε` =
√∑d

i=1 |`i|
2. Thus, the following orthonormality property holds

〈S`, S`′〉Td =
ˆ
Td
S` (ϑ)S`′ (ϑ) ρ (dϑ) = δ`

′

` ,
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where δ·· is the multivariate Kronecker delta. Any function f ∈ L2
(
Td
)
can be then

represented by its harmonic expansion

f (ϑ) =
∑
`∈Zd

a`S` (ϑ) , ϑ ∈ Td,

where
{
a` : ` ∈ Zd

}
is the set of the complex-valued Fourier coefficients, given by

a` =
ˆ
Td
f (ϑ)S` (ϑ) ρ (dϑ) .

Given the multi-index m = (m1, . . . ,md) ∈ Nd
0 such that |m| = ∑d

i=1mi, for f ∈ Cm
(
Td
)
,

the m-th order derivative of f is defined by

f (m) (ϑ) = Dmf (ϑ) = ∂|m|

∂ϑm1
1 . . . ∂ϑmdd

f (ϑ) ,

where the differential operator Dm is given by

Dm = ∂|m|

∂ϑm1
1 . . . ∂ϑmdd

.

2.2 Toroidal needlets
As already mentioned in Section 1, needlets have been originally introduced on the
d-dimensional sphere in Narcowich et al. (2006b,a), and then generalized to compact
manifolds (see Bourguin and Durastanti (2017); Geller and Mayeli (2009); Kerkyacharian
et al. (2012)). Needlet-like wavelets on Td have been already used in Bourguin and
Durastanti (2018) in the framework of the two–sample problem. Their construction can
be resumed as follows.
Fixed a resolution level j ∈ N, by means of the Littlewood-Paley decomposition on Td
(see Narcowich et al. (2006a)), there exists a set of cubature points and weights

{(ξj,k, λj,k) : k = 1, ..., Kj} ,

where ξj,k ∈ Td, λj,k ∈ R+, and Kj is the cardinality of needlets at the level j. Loosely
speaking, Td can be decomposed into a partition of Kj sub-regions, called pixels, centered
on the corresponding ξj,k and with area equal to λj,k. The d-dimensional toroidal needlets
are defined by

ψj,k (ϑ) =
√
λj,k

∑
`∈Zd

b
(
ε`
Bj

)
S` (ξj,k)S` (ϑ) ,

where B > 1 is a a scale parameter (typically, B = 2), and b : R → R+ is the so-called
needlet weight or window function, which satisfies the following properties:

(i) b has compact support in [B−1, B];

(ii) b ∈ C∞ (R);
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(iii) the partition of unity property holds, that is, for any c > 1,∑
j∈N

b2
(
c

Bj

)
= 1.

Therefore, needlets are characterized by the following properties. Following (i), for any
j ∈ N, b( ε`

Bj
) is not null only over a finite subset of Zd, that is Λd

j = {` : ε` ∈ (Bj−1, Bj+1)}.
As a direct consequence, we can rewrite

ψj,k (ϑ) =
√
λj,k

∑
`∈Λdj

b
(
ε`
Bj

)
S` (ξj,k)S` (ϑ) .

In view of (ii), toroidal needlets are characterized by a quasi-exponential localization
property in the spatial domain, which guarantees that each needlet ψj,k is not–negligible
almost only in the corresponding pixel. More rigorously, for any M > 0, there exists
cM > 0 such that, for any ϑ ∈ Td,

|ψj,k (ϑ)| ≤ cMB
d
2 j

(1 +Bjd (ϑ, ξj,k))M
,

where d (·, ·) is the geodesic distance over Td. As a consequence, the following bounds
on the Lp-norms of the toroidal needlets hold (see Narcowich et al. (2006a)): for any
p ∈ [1,∞) , there exist two positive constants cp, Cp, which depend only on p, such that

cpB
jd( 1

2−
1
p) ≤ ‖ψj,k‖Lp(Td) ≤ CpB

jd( 1
2−

1
p). (2.1)

Finally, it follows from (iii) that the needlet system {ψj,k : j ≥ 0; k = 1, . . . , Kj} is a tight
frame over Td. Indeed, for any function f ∈ L2

(
Td
)
, we can define the set of needlet

coefficients {βj,k : j ≥ 0; k = 1, . . . , Kj}, each of those given by

βj,k = 〈f, ψj,k〉Td =
ˆ
Td
f (ϑ)ψj,k (ϑ) ρ (dϑ) .

Then, it holds that ∑
j∈N0

Kj∑
k=1
|βj,k|2 = ‖f‖2

L2(Td) ,

and the following reconstruction formula holds in the L2–sense

f (ϑ) =
∑
j∈N0

Kj∑
k=1

βj,kψj,k (ϑ) , ϑ ∈ Td.

2.3 Needlets and derivatives
The needlet expansion of the m-th order derivative of the density function, f (m) = Dmf ,
is given by

f (m) (ϑ) =
∑
j∈N0

Kj∑
k=1

β
(m)
j,k ψj,k (ϑ) , ϑ ∈ Td, (2.2)
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where
{
β

(m)
j,k : j ≥ 0, k = 1, . . . , Kj

}
is the collection of needlet coefficients associated to

f (m), that is,
β

(m)
j,k =

ˆ
Td
f (m) (ϑ)ψj,k (ϑ) ρ (dϑ) . (2.3)

The m-derivative of a toroidal needlet is given by

ψ
(m)
j,k (ϑ) = Dmψj,k (ϑ) , (2.4)

such that the following result holds.
Lemma 1. Let ψ(m)

j,k be given by (2.4). Then, it holds that

ψ
(m)
j,k (ϑ) =

√
λj,kB

j|m| ∑
`∈Λdj

b
(m)
j (`)S` (ξj,k)S` (ϑ) , ϑ ∈ Td, (2.5)

where
b

(m)
j (`) = (−1)|m|

∏d
i=1 `

mi
i

Bj|m| b
(
ε`
Bj

)
.

The proof of Lemma 1 is given in Section 5.1
Remark 2. Observe that the function b(m)

j : Rd → R preserves some of the properties of
b. Indeed, it is C∞

(
Rd
)
and has compact support in Λd

j . On the other hand, the partition
of unity property does not hold anymore.
The next result is concerned with the localization property of the derivatives of a toroidal
needlet.
Lemma 3. Let ψ(m)

j,k be given by (2.5). Then, for any multi-index m ∈ Nd
0 and for any

M > 0, there exists cM > 0 such that, for any ϑ ∈ Td,
∣∣∣ψ(m)
j,k (ϑ)

∣∣∣ ≤ cMB
j(|m|+ d

2 )

(1 +Bjd (ϑ, ξj,k))M
.

The following corollary establishes bounds for the Lp-norms of the needlet derivatives.
These bounds correspond to the ones given by (2.1) for the toroidal needlets.

Corollary 4. Let ψ(m)
j,k be given by (2.5). Then, for any multi-index m ∈ Nd

0 and for any
p ∈ [1,∞) , there exist two constants c∗p, C∗p , depending only on p such that

c∗pB
j(|m|+d( 1

2−
1
p)) ≤

∥∥∥ψ(m)
j,k

∥∥∥
Lp(Td) ≤ C∗pB

j(|m|+d( 1
2−

1
p)).

The bound in Lemma 3 follows a general result in mathematical analysis, given by (Geller
and Mayeli, 2009, Theorem 2.2), which states that the spatial concentration properties
of needlet-like constructions over compact manifolds are conserved under the action of
C∞-differential operators, up to a polynomial term which depends on the degree of the
operator itself, in our case |m| for Dm.
On the other hand, the proof of Corollary 4 follows strictly the one for the standard
needlets given by Narcowich et al. (2006a)[Eqq. 3.12, 3.13] and for the Mexican needlets
in Durastanti (2017)[Corollary 3.2]. Both the proofs are then omitted for the sake of the
brevity.
Then, the following result holds
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Lemma 5. Let ψ(m)
j,k and β(m)

j,k be given by (2.5) and (2.3) respectively. Then, it holds that

β
(m)
j,k = (−1)|m| 〈f, ψ(m)

j,k 〉Td . (2.6)

Furthermore, for any j ≥ 0, it holds that

Kj∑
k=1

β
(m)
j,k ψj,k (ϑ) =

Kj∑
k=1

βj,kψ
(m)
j,k (ϑ) , ϑ ∈ Td. (2.7)

As a straightforward consequence, Equation (2.2) becomes

f (m) (ϑ) =
∑
j∈N0

Kj∑
k=1

βj,kψ
(m)
j,k (ϑ), ϑ ∈ Td,

The next Lemma collects some results which can be seen as the counterpart in our setting
of (Baldi et al., 2009a, Lemma 2, Lemma 18).

Lemma 6. For any j ∈ N, let {ak : k = 1, . . . , Kj} be a finite real-valued sequence. Hence,
for any 0 < p ≤ ∞, it holds

∥∥∥∥∥∥
Kj∑
k=1

akψ
(m)
j,k

∥∥∥∥∥∥
Lp(Td)

.


Bj(|m|+d( 1

2−
1
p))

(∑Kj
k=1 |ak|

p
) 1
p 0 < p <∞

Bj(|m|+ d
2 )
(

sup
k=1,...,Kj

|ak|
)

p =∞
. (2.8)

Furthermore, there exists a subset Aj ⊂ {1, . . . , Kj}, where

cardAj & Bjd,

such that

∥∥∥∥∥∥
∑
k∈Aj

akψ
(m)
j,k

∥∥∥∥∥∥
Lp(Td)

&


Bj(|m|+d( 1

2−
1
p))

(∑
k∈Aj |ak|

p
) 1
p 0 < p <∞

Bj(|m|+ d
2 )
(

sup
k∈Aj
|ak|

)
p =∞

. (2.9)

As discussed below (see Formula (2.11)), Equation (2.8) will be crucial to establish a
suitable upper bound for the needlet expansion of toroidal density functions belonging
to some Besov space. As far as a lower bound is concerned, if the toroidal needlets were
orthonormal, then (2.8) could have been immediately reversed, such that Aj = {1, . . . , Kj}
in (2.9). Nevertheless, needlets, as well as their derivatives, are not orthogonal, but for
j ∈ N0 and k, k′ ∈ {1, . . . , Kj} such that ξj,k and ξj,k′ are distant enough, the scalar
product between ψj,k and ψj,k′ (and, consequently, between ψ

(m)
j,k and ψ

(m)
j,k′ ) is almost

negligible. This reasoning can be extended pairwise to all the needlets whose cubature
points belong to Aj. The proof of Lemma 6 is very similar to the ones given in (Baldi
et al., 2009a, Lemma 2, Lemma 18) and, then, here omitted for the sake of brevity.
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2.4 Besov spaces
Before concluding this section, we recall the construction of the Besov spaces on Td and
their excellent approximation properties for needlet coefficients. Further details can be
found, among others, in Geller and Mayeli (2009), and in the references therein. Following
Geller and Pesenson (2011) (see also Baldi et al. (2009a); Donoho et al. (1996); Durastanti
et al. (2011); Durastanti (2016), we consider Pt the space of polynomial functions of degree
t on Td. For any f : Td 7→ R, f ∈ Lp

(
Td
)
, the approximation error Gt (f ; p), obtained

when we replace f by g ∈ Pt, is defined by

Gt (f ; p) = inf
g∈Pt
‖f − g‖Lp(Td) .

The Besov space Bsr,q is the space of functions such that

f ∈ Lp
(
Td
)

and
( ∞∑
t=0

(tsGt (f ; r))q
) 1
q

<∞.

Since t 7→ Gt (f, r) is decreasing, a standard condensation argument yields the following
equivalent conditions:

f ∈ Lr
(
Td
)

and
 ∞∑
j=0

(
BjsGBj (f ; r)

)q 1
q

<∞.

The parameters of the Besov space Bsr,q can be read as follows (see also Bourguin and
Durastanti (2017)):

• r concerns the summability with respect to j. In particular, for any j > 0,
{βj,k : k = 1, . . . , Kj} belongs to the set of r-summable sequences `r(Td).

• q is the controlling parameter related to the weighted q-norm along the scale of the
needlet coefficients at the resolution level j;

• s controls the smoothness of the decay rate for the weighted q-norm of the needlet
coefficients.

Defining s = s′+ a, where s′ ∈ N and a ∈ (0, 1), and following (Kerkyacharian and Picard,
1992, Definition 1) (see also Geller and Pesenson (2011)) yields

f ∈ Bsr,q ⇐⇒ f (m) ∈ Bar,q, for |m| ≤ s.

As a straightforward consequence, we have that

f ∈ Bs+|m|r,q ⇐⇒ f (m) ∈ Bsr,q. (2.10)

Then, we can prove the next result, analogous to (Baldi et al., 2009a, Theorem 4) but
properly adapted to derivative functions defined on Td.

Proposition 7. Let 1 ≤ r ≤ ∞, s > 0, 0 ≤ q ≤ ∞. Let f be a measurable function on Td,
associated to the needlet coefficients {βj,k : j ∈ N0, k = 1, . . . , Kj}. Then, the following
conditions are equivalent
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(i) f ∈ Bs+|m|r,q ;

(ii) f (m) ∈ Bsr,q;

(iii) for every j ≥ 1,
Kj∑
k=1

βrj,k ‖ψj,k‖
r
Lr(Td) = B−j(s+|m|)δj,

where (δj : j ∈ N0) is a q-summable sequence;

(iv) for every j ≥ 1,
Kj∑
k=1

(
β

(m)
j,k

)r
‖ψj,k‖rLr(Td) = B−jsδj,

where (δj : j ∈ N0) is a q-summable sequence.

(v) for every j ≥ 1,
Kj∑
k=1

βrj,k
∥∥∥ψ(m)

j,k

∥∥∥r
Lr(Td) = B−jsδj.

where (δj : j ∈ N0) is a q-summable sequence.

The proof of this Proposition follows directly (2.10), (2.7) in Lemma 5, as well as (2.8)
and the proof of (Baldi et al., 2009a, Theorem 4), so it is here omitted for the sake of
brevity.
Using jointly (2.7) in Lemma 5, (2.8) in Lemma 6 and Proposition 7 leads to the following
inequality, for any j ∈ N,∥∥∥∥∥∥

Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
Lp(Td)

. Bj(|m|+d( 1
2−

1
p

))
 Kj∑
k=1
|βj,k|p

 1
p

. (2.11)

Following Baldi et al. (2009a), the Besov space Bsr,q can be read as a Banach space with
norm

‖f‖Bsr,q =
∥∥∥∥∥
(
Bj[s+d( 1

2−
1
r )]
∥∥∥(βj,k)k=1,...,Kj

∥∥∥
`r

)
j∈N0

∥∥∥∥∥
`q

<∞,

so that we can define the Besov ball of radius L > 0 as the following set:

Bsr,q (L) =
{
f ∈ Bsr,q : ‖f‖Bsr,q ≤ L

}
.

Finally, as stated in (Baldi et al., 2009a, Theorem 5) (see also Kerkyacharian and Picard
(1993, 2004)), the following Besov embeddings hold for p < r

Bsr,q ⊂ Bsp,q

Bsp,q ⊂ B
s−d( 1

p
− 1
r )

r,q ,

which can be equivalently stated as
Kj∑
k=1
|βj,k|r ≤

Kj∑
k=1
|βj,k|p
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Kj∑
k=1
|βj,k|p ≤

 Kj∑
k=1
|βj,k|r

K1− p
r

j .

A detailed proof is similar to the ones in (Baldi et al., 2009a, Theorem 5) and (Durastanti
et al., 2011, Equation 8).

3 Local thresholding via toroidal needlets

3.1 The construction of the estimators
Let X1, . . . , Xn be independent and identically distributed random vectors on Td with
unknown density f : Td 7→ [0,∞), f ∈ Cm

(
Td
)
, whose upper bound is given by

M = sup
ϑ∈Td
|f (ϑ)| .

We assume that f has derivatives of order µ ∈ N. Our goal is to produce an estimator
f̂ (m) for f (m), for m ∈ Nd such that |m| ≤ µ. The first step will consist in defining
empirical estimators for the needlet coefficients; the second step will be focused on the
thresholding procedure which yields the construction of the target estimator. Analo-
gously to Prakasa Rao (2000) (cf. also Prakasa Rao (1996, 1990)), for any j ≥ 0 and
k ∈ {1, . . . , Kj}, we can define an empirical estimator for the m-th derivative needlet
coefficients.

β̂
(m)
j,k = (−1)|m|

n

n∑
i=1

ψ
(m)
j,k (Xi) . (3.1)

We exploit the empirical needlet coefficients (3.1) to define nonlinear estimators for
derivatives of a density function as follows. First, we apply a selection procedure to each
coefficient, and then only the selected ones will be used to construct the estimator of f (m)

given by the following formula:

f̂ (m) (ϑ) =
Jn,m−1∑
j=0

Kj∑
k=1

η
(
β̂

(m)
j,k , τj,m,n

)
ψj,k (ϑ) , (3.2)

where Jn,m and τj,m,n are the so-called truncation bandwidth and threshold respectively,
while η : R× R→ R is the thresholding function.
The truncation bandwidth corresponds to the higher resolution level on which the empirical
coefficients are computed. The optimal choice for the truncation bandwidth is defined as
follows:

Jn,m =
⌊ 1
d+ 2 |m| logB

n

log n

⌋
. (3.3)

Loosely speaking, (3.3) allows us to control, in an optimal way, the error due to the
approximation of the infinite sum f (m) by the finite sum f̂ (m). Further details concerning
choice of Jn,m will be provided by Remark 12 below.
The thresholding function is aimed to control the selection of the empirical needlet
coefficients (see, for example, Donoho et al. (1996)). In the framework of local thresholding,
where each empirical coefficient is examined separately, it is standard to choose between
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Figure 1: Comparison between hard (red line) and soft (blue line) threshold functions
(a = 0.5).

hard and soft thresholding (see, for example, (Hardle et al., 1997, Chapters 10 and 11)).
Hard thresholding either keeps or discards the empirical coefficients. The soft thresholding,
also known as wavelet shrinkage, “shrinks” towards zero the values for the empirical
coefficients. The two thresholding functions ηhard : R× R→ R and ηsoft : R× R→ R are
given respectively by

ηhard (u, a) =

u if |u| ≥ a

0 otherwise
, (3.4)

ηsoft (u, a) = max (|u| − a, 0) sign (u) , (3.5)

see Figure 1. The hard and the soft thresholding needlet estimators for the m-th derivative
of the density f , at every ϑ ∈ Td, are then respectively defined by

f̂
(m)
hard (ϑ) =

Jn,m−1∑
j=0

Kj∑
k=1

ηhard
(
β̂

(m)
j,k , τj,m,n

)
ψj,k (ϑ) ,

and

f̂
(m)
soft (ϑ) =

Jn,m−1∑
j=0

Kj∑
k=1

ηsoft
(
β̂

(m)
j,k , τj,m,n

)
ψj,k (ϑ) ,

where the tuning parameters are described as follows. The threshold τj,m,n is the product
of three objects:

τj,m,n = κBj|m|

√
log n
n

, (3.6)

12



where

• the threshold constant κ, which depends on the Besov parameters. Our theoretical
setting will not answer the question how to choose κ (we will show only that κ
should be large enough). However, in Section 4 we will provide some examples;

• the derivative balancing parameter Bj|m|, which depends on the order of the differ-
ential operator Dm;

• the sample size–dependent scaling factor
√

logn
n

.

Remark 8. Another common choice in the literature concerning the sample size–depending
scaling factor is

√
j/n, rather than

√
log n/n (see, among others, Donoho et al. (1996);

Kerkyacharian and Picard (1992); Tribouley (1995)). As shown for example by (Hardle
et al., 1997, Proof of Proposition 10.3), the two factors are equivalent, and, hence, another
possible choice for the threshold is

τ ′j,m,n = κ′
√
jBj|m|n−

1
2 .

3.2 Some probabilistic results on the empirical needlet coeffi-
cients

First, observe that the estimator (3.1) is unbiased,

E
[
β̂

(m)
j,k

]
= (−1)|m|

n

n∑
i=1

E
[
ψ

(m)
j,k (Xi)

]
= β

(m)
j,k .

Using Corollary 4 with p = 2 yields the following upper bound for its variance:

Var
(
β̂

(m)
j,k

)
≤M

ˆ
Td

∣∣∣ψ(m)
j,k (ϑ)

∣∣∣2 ρ (dϑ) ≤ C∗2MB2j|m|. (3.7)

Additional probabilistic bounds on the empirical coefficients are given in the following
Lemma 9, which can be read as the counterpart in our setting of (Baldi et al., 2009a,
Lemma 16).

Lemma 9. Let β̂(m)
j,k be given by (3.1). Hence, for any j ≥ 0 such that Bj(d+2|m|) ≤

√
n

and for k = 1, . . . , Kj, it holds that

Pr
(∣∣∣β̂(m)

j,k − β
(m)
j,k

∣∣∣ ≥ x
)
≤ 2 exp

− nx2

2Bj|m|
(
C∗2M + 1

3C
∗
∞
√
nx
)
 for x > 0; (3.8)

E
[∣∣∣β̂(m)

j,k − β
(m)
j,k

∣∣∣η] . n−
η
2Bj|m| η2 for η ≥ 1; (3.9)

E
[

sup
k=1,...,Kj

∣∣∣β̂(m)
j,k − β

(m)
j,k

∣∣∣η] . (j + 1)η n−
η
2Bj|m| η2 for η ≥ 1. (3.10)

The proof of Lemma 9 can be found in Section 5.1.
Finally, using Equation (3.8) in Lemma 9 leads to the following result.

13



Lemma 10. Let τj,m,n be given by (3.6). For κ ≥ 6C
∗
2M

C∗∞
, under the hypotheses given in

Lemma 9, there exists γ ≤
(

3
4C∗∞

)
κ, such that

Pr
(∣∣∣β̂(m)

j,k − β
(m)
j,k

∣∣∣ ≥ τj,m,n
2

)
. n−γ. (3.11)

3.3 The main results
We will show that f̂ (m) achieves the optimal rates of convergence up to some logarithmic
factors with respect to Lp

(
Td
)
-loss functions in both the hard and soft thresholding frame-

works. In other words, our goal is to evaluate the global error measure for the estimator

f̂ (m), by studying the worst possible performance of the Lp-risk E
[∥∥∥f̂ (m) − f (m)

∥∥∥
Lp(Td)

]
over a given nonparametric regularity class

{
Bs+|m|r,q : 1 < r <∞, 1 ≤ q ≤ ∞, s > 0

}
of

function spaces, that is, the minimax rate of convergence

Rp,n

(
Bsr,q (R)

)
= inf

f̂ (m)
sup

f∈Bs+|m|
r,q (R)

E
[∥∥∥f̂ (m) − f (m)

∥∥∥
Lp(Td)

]
,

where the infimum is computed over all the possible estimators, 1 ≤ p ≤ ∞ and 0 <
R < ∞ is the radius of the Besov ball on which f is defined. For r > 0, we will
show that f̂ (m) is adaptive for the Lp-risk and for the scale of classes of Besov balls{
Bs+|m|r,q (R) : 1 < r <∞, 1 ≤ q ≤ ∞, s > 0, 0 < R <∞

}
, that is, for every choice of the

parameters r, s, q and the radius R, there exists a constant cr,s,q,R > 0, such that

E
[∥∥∥f̂ (m) − f (m)

∥∥∥
Lp(Td)

]
≤ cr,s,q,RRp,n

(
Bsr,q (R)

)
,

see, e.g., (Hardle et al., 1997, Definition 11.1). Furthermore, we will prove that f̂ (m)

attains the optimal rate of convergence, that is,

sup
f∈Bs+|m|

r,q (R)
E
[∥∥∥f̂ (m) − f (m)

∥∥∥
Lp(Td)

]
≈ Rp,n

(
Bsr,q (R)

)
,

see (Hardle et al., 1997, Definition 10.1). Our achievements are described by two theorems.
The first is concerned with the upper bound for the Lp

(
Td
)
-risk.

Theorem 11 (Upper bound). Let f ∈ Bs+|m|r,q (R), where s− d
r
> 0, let f (m) = Dmf , and

let f̂ (m) be defined by (3.2), with η given by (3.4)-(3.5). Then, for any 1 ≤ p <∞, there
exists a threshold constant κ > 0 such that it holds

sup
f∈Bsr,q(R)

E
[∥∥∥f̂ (m) − f (m)

∥∥∥p
Lp(Td)

]
. (log n)p

[
n

log n

]−α(s,|m|,p,r)

,

where

α (s, |m| , p, r) =


ps

2(s+|m|)+d for r ≥ (2|m|+d)p
2(s+|m|)+d (regular zone)

p(s+d( 1
p
− 1
r ))

2[(s+|m|)+d( 1
2−

1
r )]

for r < (2|m|+d)p
2(s+|m|)+d (sparse zone)

. (3.12)
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Moreover, for p =∞,

sup
f∈Bsr,q(R)

E

[∥∥∥f̂ (m) − f (m)
∥∥∥
L∞(Td)

]
.

[
n

log n

]−α(s,|m|,∞,r)

,

where
α (s, |m| ,∞, r) =

s− d
r

2
[
(s+ |m|)− d

(
1
r
− 1

2

)] .
The names “regular” and “sparse” zones, standard in the literature (see, again, Hardle
et al. (1997)), can be motivated as follows. In the regular zones, the hardest functions to
be estimated are the ones characterized by a regular oscillatory behavior, that is, they
are of a saw-teeth form. In the sparse zone the hardest function to estimate are those
which are very regular everywhere but in small subsets of the domain, where they present
strong irregularities. In this case, just few needlet coefficients β(m)

j,k are not null, and that
justifies the name “sparse”. Observe that p ≤ 2 corresponds always to the regular zone
(see Baldi et al. (2009a)). For further details and discussions, the reader is referred to
Donoho et al. (1996); Hardle et al. (1997).
As usual in the nonparametric setting, we can rewrite the Lp–risk as follows

E
[∥∥∥f̂ (m) − f (m)

∥∥∥p
Lp(Td)

]
= E


∥∥∥∥∥∥
Jn,m−1∑
j=0

η
(
β̂

(m)
j,k , τj,m,n

)
ψj,k (ϑ)ψj,k −

∑
j∈N0

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Td)



= E


∥∥∥∥∥∥
Jn,m−1∑
j=0

[
η
(
β̂

(m)
j,k , τj,m,n

)
− βj,k

]
ψj,k −

∑
j≥Jn,m

βj,kψj,k

∥∥∥∥∥∥
p

Lp(Td)

,
so that it can be bounded as follows

E
[∥∥∥f̂ (m) − f (m)

∥∥∥p
Lp(Td)

]

≤ 2p−1

E

∥∥∥∥∥∥
Jn,m−1∑
j=0

[
η
(
β̂

(m)
j,k , τj,m,n

)
− βj,k

]
ψj,k

∥∥∥∥∥∥
p

Lp(Td)

+

∥∥∥∥∥∥
∑

j≥Jn,m
βj,kψj,k

∥∥∥∥∥∥
p

Lp(Td)


= 2p−1 (Σp +Dp) ,

with the natural extension for p =∞.
The term Σp can be read as the stochastic error to the replacement of the true needlet
coefficients with the selected empirical ones, and Dp is the deterministic error which arises
when we select only a finite set of empirical coefficients (see also Baldi et al. (2009a)).
While the bias term Dp does not affect the rate of convergence for s > d

p
, the asymptotic

behavior of the stochastic error Σp is established thanks to the so-called optimal bandwidth
selection, that is, the resolution level Js,m defined by

Js,m : BJs,m ≈


(

n
logn

) 1
2(s+|m|)+d (regular zone)(

n
logn

) 1
2(s+|m|+d( 1

2−
1
2)) (sparse zone)

(3.13)
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Remark 12. Following Baldi et al. (2009a), but also Efromovich (1985); Kerkyacharian
et al. (1996), both in the regular and in the sparse zones for any k = 1, . . . Kj, |βj,k| ≥ τj,m,n
implies that j ≤ Js,m. Contrarily, the converse implication is not true. Anyway, in this
case, the coefficient β̂(m)

j,k should be discarded, since its error would be of order Bj|m|n−
1
2 ,

as shown in (3.7) (see also Durastanti (2016)), and this consideration motivates the choice
of the threshold τj,m,n in (3.4). The true value of s is unknown and, then, establishing
explicitly Js,m is not possible. Nevertheless, the sum (3.2) truncated at Jn,m includes all
the terms up to Js,m, since

Js,m ≤ Jn,m.

Finally, the next result establishes a lower bound for the rate of convergence, yielding
optimality.

Theorem 13 (Lower bound). Let f ∈ Bs+|m|r,q (G), where s− d
r
> 0, let f̂ (m) be defined by

(3.2), with η given by (3.4) or (3.5). Hence, if 1 ≤ p ≤ ∞

sup
f∈Bsr,q(G)

E
[∥∥∥f̂ (m) − f (m)

∥∥∥p
Lp(Td)

]
& n−α(s,|m|,p,r),

where

α (s, |m| , p, r) =


ps

2(s+|m|)+d for r ≥ (2|m|+d)p
2(s+|m|)+d (regular zone)

p(s+d( 1
p
− 1
r ))

2[(s+|m|)+d( 1
2−

1
r )]

for r < (2|m|+d)p
2(s+|m|)+d (sparse zone)

,

as given by (3.12).

4 Numerical evidence
In this section, we produce the results of some numerical experiments for d = 1, 2. We
present the empirical evaluation of the Lp-risks (p = 2, 3, 5,∞), computed thanks to
local thresholding techniques for the first and the second derivatives of some test density
functions with respect to the choice of several values of the truncation bandwidth Jn,m,
the cardinality of cubature points Kj for any j = 1, . . . , Jn,m, and the threshold constant
κ. The weight function b has been defined as the suitably rescaled primitive of the
function u 7→ exp(− (1− x2)−1) (cf. Figure 2 and see also Marinucci and Peccati (2011)).
Note that, as the simulations are produced over finite samples, they should be read as a
reasonable hint.
First, fixed n ∈ N, (3.3) hints a value for truncation bandwidth Jn,m. For any fixed n,m,
let Lmax denote the highest eigenvalue for frequency indexes admitted within the frame{
ψ

(m)
j,k ; j = 1, . . . , Jn,m, k = 1, . . . , Kj

}
without being annihilated by the weight function

b. For n = 2000, 10000, we have J2000,1 = 3 (Lmax = 15), J2000,2 = 2 (Lmax = 7), for the
first and the second derivatives respectively, and J10000,1 = 4 (Lmax = 31), J10000,2 = 3
(Lmax = 15).
Finally, concerning the thresholding constant κ, for which this paper only establishes a
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Figure 2: The needlet weight function b.

lower bound, we follow the lead given by (Baldi et al., 2009a, Section 6). For q ∈ N, let
us now define

Iq =
ˆ B

1
B

uqb2 (u) du;

Chosen the function b, I|m|/Bj|m| provides an indication about the size of the square of
the L2-norm of ψ(m)

j,k , since
lim
j→∞

∥∥∥ψ(m)
j,k

∥∥∥2

L2(Td) = I|m|.

In (Baldi et al., 2009a, Section 6), where for m = 0, the authors have chosen on the
sphere the analogous of κ = κ0MI0, with k0 > 0 and M = ‖f‖L∞(Td), since using
Cauchy-Schwarz inequality yields∣∣∣β̂(0)

j,k

∣∣∣ =
ˆ
Td
f(ϑ)ψ̄j,k(ϑ) .M ‖ψj,k‖L2(Td) 'MI0.

In our case, for d ∈ 1, 2 and m ∈ Nd
0 such that |m| = 1, 2, we choose

κ = κ0MI|m|,

trying different values for k0.

The uniform density. We define on the unit circle (d = 1) the following uniform
density:

ftest;1 (ϑ) = 1
2π , ϑ ∈ T1,
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Lp-risks (power p) f̃ and k0 = 0 k0 = 1 k0 = 2 k0 = 3 k0 = 4
n = 2000

p = 2 m = 1 0.00841 0.00722 0.00296 0.00249 0.00120
m = 2 0.07470 0.07350 0.06129 0.05879 0.05643

p = 3 m = 1 1.23 · 10−3 1.04 · 10−3 2.91 · 10−4 2.43 · 10−4 8.30 · 10−5

m = 2 0.03366 0.03282 0.02850 0.02798 0.02755

p = 5 m = 1 4.19 · 10−5 3.37 · 10−5 3.82 · 10−6 2.99 · 10−6 5.09 · 10−7

m = 2 0.00947 0.00908 0.00822 0.00814 0.00779

p =∞ m = 1 0.26254 0.26142 0.25438 0.20800 0.06324
m = 2 0.28402 0.26142 0.17695 0.15665 0.09593

n = 10000

p = 2 m = 1 0.01128 0.00900 0.00211 0.00012 0
m = 2 0.11253 0.09892 0.07370 0.01987 0

p = 3 m = 1 1.67 · 10−3 1.28 · 10−3 1.94 · 10−4 4.07 · 10−7 0
m = 2 0.05723 0.04964 0.03610 0.00555 0

p = 5 m = 1 4.97 · 10−5 3.63 · 10−5 2.49 · 10−6 5.84 · 10−9 0
m = 2 0.02165 0.01757 0.01256 0.00059 0

p =∞ m = 1 0.26721 0.25019 0.14390 0.04776 0
m = 2 0.28172 0.26501 0.08387 0.13909 0

Table 1: Test density function ftest;1: some Lp-risk evaluations (p-th powers) for m = 1, 2.

so that
β

(m)
j,k = 0 for any j ∈ N, k = 1, . . . , Kj.

In this case, counting the number of coefficients surviving the thresholding procedure
gives an overview of the performance of our proposal. A measure of the goodness of the
fit is obtained by estimating the p-powers of the Lp-risks, by means of the sums of the
p-th powers of the selected coefficients.
For n = 2000, 10000, all the empirical needlet coefficients (m = 0, 1, 2) are discarded
for k0 = 5.1 and k0 = 3.8. Table 1 provides some evidence on the rate, collecting the
estimates of the p powers of the Lp-norms, p = 2, 3, 5,∞ for k0 = 0, 1, 2, 3, 4, showing
that the Lp-risk decreases along with p and n. Note that the case k0 = 0 corresponds to
the so-called linear estimator, where no selection on the needlet coefficients is performed.
Finally, a comparison is provided with the estimator f̃ (m), built by means of the standard
harmonic basis on Td and defined by f̃(ϑ) = ∑

`∈Ln ã
(m)
` S`(ϑ), where

ã
(m)
` = (−1)m

n

n∑
i=1

S̄
(m)
` (Xi)

and Ln =
{
` ∈ Zd : |`| ≤ BJn,m+1

}
. Observe that, this choice of Ln the f̃ and the needlet

linear estimator are characterized by the same Lp
(
Td
)
-risk, the latter being a linear

combination of the former. As expected, for the highest value of k0, no coefficient survives
the thresholding procedure and then we find a higher value for all the risks.
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Lp-risks f̃ and k0 = 0 k0 = 2 k0 = 4 k0 = 8 k0 = 25
n = 2000

p = 2 m = 1 2.05 · 10−2 1.20 · 10−2 2.04 · 10−3 3.66 · 10−5 1.26 · 10−2

m = 2 0.03015 0.01800 0.00019 0.00019 0.05055

p = 3 m = 1 4.89 · 10−3 2.40 · 10−3 2.70 · 10−4 3.01 · 10−7 1.71 · 10−3

m = 2 7.41 · 10−3 3.59 · 10−3 3.74 · 10−6 3.74 · 10−6 1.36 · 10−2

p = 5 m = 1 4.27 · 10−4 1.42 · 10−4 6.22 · 10−6 2.52 · 10−11 3.47 · 10−5

m = 2 5.60 · 10−4 1.84 · 10−4 1.80 · 10−9 1.80 · 10−9 1.11 · 10−3

p =∞ m = 1 0.40043 0.31739 0.18048 0.01147 0.15915
m = 2 0.35177 0.28271 0.02717 0.02717 0.31830

n = 10000

p = 2 m = 1 1.82 · 10−2 2.95 · 10−3 4.17 · 10−6 4.17 · 10−6 1.26 · 10−2

m = 2 1.49 · 10−1 4.01 · 10−2 3.72 · 10−5 3.72 · 10−5 1.27 · 10−2

p = 3 m = 1 3.92 · 10−3 3.08 · 10−4 1.19 · 10−8 1.19 · 10−8 1.71 · 10−3

m = 2 8.71 · 10−2 2.26 · 10−2 3.18 · 10−7 3.18 · 10−7 1.36 · 10−2

p = 5 m = 1 2.62 · 10−4 4.57 · 10−6 1.22 · 10−13 1.22 · 10−13 3.47 · 10−5

m = 2 4.52 · 10−2 9.82 · 10−3 2.89 · 10−11 2.89 · 10−11 1.10 · 10−3

p =∞ m = 1 0.38401 0.15848 0.00400 0.00400 0.15915
m = 2 1.03924 0.82377 0.01186 0.01186 0.31830

Table 2: Test density function ftest;2: some Lp-risk evaluations, for m = 1 (first entry) and
m = 2 (second entry)

The trigonometric density. The next density function on the unit circle d = 1 is
defined as follows,

ftest;2 (ϑ) = 1
2π

(
1 + 1

2 cos(2ϑ)
)
, ϑ ∈ T1.

This density features two local maxima (in π/2 and 3/2π) and two local minima (in 0
and π). Using (2.5) yields

β
(m)
j,k = λj,k(−1)m2mb

( 2
Bj

)
cos(2ξj,k) for any j ∈ N, k = 1, . . . , Kj,

which are not null only if j = 1, in view of our choice of b. In this case, we aim to find an
optimal threshold which allows to discard all the empirical coefficients with j 6= 1 but, at
the same time, to keep the most relevant one with j = 1 (corresponding to the peaks). In
this sense, choosing a too high value for k0 produces a worse Lp-risk estimate.
Table 2 shows the estimates of the p-powers of the Lp-norms, p = 2, 3, 5,∞, for k0 =
2, 4, 8, 25 (again, the case k0 = 0 is the linear estimator). Table 3 collects the percentage
of surviving coefficients. As expected, the better estimates for Lp-risks correspond to
estimators where only coefficients with j = 1 survive.
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Surviving coefficients (%) k0 = 0 k0 = 2 k0 = 4 k0 = 8 k0 = 25
n = 2000

j = 0 m = 1 100 50 0 0 0
m = 2 100 50 0 0 0

j = 1 m = 1 100 50 50 50 0
m = 2 100 50 50 50 0

j = 2 m = 1 100 12.5 0 0 0
m = 2 100 31.25 0 0 0

j = 3 m = 1 100 21.875 3.125 0 0
m = 2 NA NA NA NA NA

n = 10000

j = 0 m = 1 100 50 0 0 0
m = 2 100 50 0 0 0

j = 1 m = 1 100 50 50 50 0
m = 2 100 62.50 50 50 0

j = 2 m = 1 100 0 0 0 0
m = 2 100 12.50 0 0 0

j = 3 m = 1 100 6.25 0 0 0
m = 2 100 6.25 0 0 0

j = 4 m = 1 100 6.25 0 0 0
m = 2 NA NA NA NA NA

Table 3: Test density function ftest;2: percentage of surviving coefficients, for first and
second derivatives at k0 = 0, 2, 4, 8, 25.

(a) ftest;3 (b) f
(1,0)
test;3 (c) f

(0,1)
test;3

Figure 3: The test density ftest;3 and its first derivatives
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Lp-risks, n = 10000 f̃ and k0 = 0 k0 = 0.5 k0 = 1 k0 = 8 k0 = 15

p = 2 m = (1, 0) 0.00806 0.00699 0.00485 0.00601 0.00781
m = (0, 1) 0.00889 0.00711 0.00493 0.00621 0.00801

p = 3 m = (1, 0) 0.00312 0.00227 0.00100 0.00102 0.00216
m = (0, 1) 0.00343 0.00271 0.00103 0.00110 0.00221

p = 5 m = (1, 0) 1.05 · 10−3 5.65 · 10−4 9.53 · 10−5 5.12 · 10−5 3.42 · 10−4

m = (0, 1) 2.07 · 10−3 6.24 · 10−4 1.20 · 10−4 9.81 · 10−5 4.11 · 10−4

p =∞ m = (1, 0) 0.94465 0.80713 0.36937 0.43902 0.57350
m = (0, 1) 0.95493 0.82432 0.36937 0.47981 0.57483

Table 4: Test density function ftest;3: some Lp-risk evaluations for the first derivatives

Wrapped normal distribution. Here we consider the density function of a 2-d
wrapped normal distribution, defined as:

ftest;3 (ϑ1, ϑ1) = 1
2πσ1σ2

100∑
k1=−100

100∑
k2=−100

e
− (ϑ1−µ1+2πk1)2

2σ2
1

− (ϑ1−µ1+2πk2)2

2σ2
1 , (ϑ1, ϑ2) ∈ T2.

We choose µ1 = 3/4π, µ2 = 5/4π, σ1 = σ2 = 0.5. Figure 3 plots the graphs of ftest;3
and both its derivatives. Our goal is to study the two first derivatives of ftest;3 testing
several values of k0. The goodness of our choice is evaluated thanks to the estimates of
the Lp-risks as described above for n = 10000. Table 4 contains the estimates of the
Lp-norm, p = 2, 3, 5,∞ for k0 = 0, 0.5, 1, 8, 15. Some of the estimators here obtained are
shown in Figure 4. The optimal choice of k lies around k0 = 1, for which we obtain better
Lp-risks. As shown in Figures 4b,4e the graph is evidently smoother and less perturbed
than the linear estimator (k0 = 0) (see Figures 4a,4b).For k0 = 15, the peak is lower than
the theoretical one, so that smaller fluctuations appear more evidently also in the graph
(Figures 4c,4f).

The interaction between multiresolution and the threshold technique shows here its
advantages: finer levels of resolution are non discarded only at locations where they the
theoretical curve is less regular. Hence, the multiresolution properties of the thresholding
needlet estimator allow for local adaptation if the considered derivative presents peaks
and different slopes.

5 Proofs

5.1 Auxiliary results on needlet derivatives and Besov spaces
Proof of Lemma 1. First of all, observe that, for any i = 1, . . . , d and for any n ∈ Z, it
holds that

∂mi

∂ϑmii
S` (ϑ) = (−1)mi `mii S` (ϑ) .

Thus,

DmS` (ϑ) = (−1)|m|
d∏
i=1

`mii S` (ϑ) .
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(a) k0 = 0 (b) k0 = 1 (c) k0 = 15

(d) k0 = 0 (e) k0 = 1 (f) k0 = 15

Figure 4: The density estimators f̂ (1,0)
test;3 (top panels), and f̂

(0,1)
test;3 (bottom panels), for

k0 = 0, 1, 15
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Using (2.5) yields

Dmψ
(m)
j,k (ϑ) =

√
λj,k

∑
`∈Λdj

b
(
ε`
Bj

)
S` (ξj,k)DmS` (ϑ)

=
√
λj,k

∑
`∈Λdj

b
(
ε`
Bj

)
(−1)|m|

d∏
i=1

`mii S` (ξj,k)S` (ϑ)

=
√
λj,kB

j|m| ∑
`∈Λdj

b
(m)
j (`)S` (ξj,k)S` (ϑ) ,

as claimed.

Proof of Lemma 5. First of all, observe that (2.6) is obtained by integrating iteratively
(2.2) by parts, thanks to the periodicity of the function f over Td. As far as (2.7) is
concerned, for any ϑ ∈ Td, observe first of all that
Kj∑
k=1

ψj,k (ϑ)ψ(m)
j,k (ϑ′) =

Kj∑
k=1

λj,kB
j|m| ∑

`∈Λdj

∑
`′∈Λdj

b
(m)
j (`) b(0)

j (`′)S` (ϑ′)S` (ξj,k)S`′ (ξj,k)S`′ (ϑ)

= (−1)|m|
∑
`∈Λdj

(
d∏
i=1

`mii

)
b2
(
ε`
Bj

)
S` (ϑ− ϑ′) .

Thus, it holds that
Kj∑
k=1

β
(m)
j,k ψj,k (ϑ) =

ˆ
Td
f (ϑ′)

Kj∑
k=1

ψ
(m)
j,k (ϑ′)ψj,k (ϑ) ρ (dϑ′)

= (−1)|m|
∑
`∈Λdj

(
d∏
i=1

`mii

)
b2
(
ε`
Bj

)
S` (ϑ)

ˆ
Td
f (ϑ′)S` (ϑ′) ρ (dϑ′)

=
Kj∑
k=1

λj,kB
j|m| ∑

`∈Λdj

∑
`′∈Λdj

b
(m)
j (`) b(0)

j (`′) 〈f, S`′〉L2(Td)S`′ (ξj,k)S` (ξj,k)S` (ϑ)

=
Kj∑
k=1

βj,kψ
(m)
j,k (ϑ) ,

as claimed.

5.2 Auxiliary probabilistic results
Proof of Lemma 9. This proof follows strictly the one of (Baldi et al., 2009a, Lemma 16),
see also Durastanti et al. (2011).
Observe that (3.8) is obtained by means of the Bernstein’s inequality (see, for example,
Hardle et al. (1997)), applied to the set

{
ψ

(m)
j,k (X1) , . . . , ψ(m)

j,k (Xn)
}
, observing additionally

that
Var

(
ψ

(m)
j,k (Xi)

)
≤ E

[(
ψ

(m)
j,k (Xi)

)2
]
≤M

∥∥∥ψ(m)
j,k

∥∥∥2

L2(Td) ≤MC∗2B
2j|m|,
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while ∣∣∣∣ψ(m)
j,k (Xi)

∣∣∣∣ ≤ ∥∥∥ψ(m)
j,k

∥∥∥
L∞(Td) ≤ C∗∞B

j(|m|+ d
2 ) ≤ C∗∞B

j|m|√n,

since Bdj ≤ n.
Now, in order to prove (3.9) and (3.10), first observe that, for x > 0,

Pr
(∣∣∣β̂(m)

j,k − β
(m)
j,k

∣∣∣ ≥ x
)
≤ 2

(
exp

(
− nx2

4Bj|m|C∗2M

))
+ exp

(
− 3

√
nx

4Bj|m|C∗∞

)
.

Hence, on the one hand, for η ≥ 1, we have

E
[∣∣∣β̂(m)

j,k − β
(m)
j,k

∣∣∣η] =
ˆ ∞

0
xη−1 Pr

(∣∣∣β̂(m)
j,k − β

(m)
j,k

∣∣∣ ≥ x
)

dx

≤ 2
ˆ ∞

0
xη−1

(
exp

(
− nx2

4Bj|m|C∗2M

))
+ exp

(
− 3

√
nx

4Bj|m|C∗∞

)
dx

. n−
η
2Bj|m| η2

using Bj|m| ≤ n. On the other hand, let us preliminarily fix

a = 1
(logB) max

(8
3dC

∗
∞, 2
√

2dC∗2M
)

and then write

E
[

sup
k=1,...,Kj

∣∣∣β̂(m)
j,k − β

(m)
j,k

∣∣∣η] ≤ ˆ ajB
j
|m|

2√
n

0
xη−1 dx

+ 2
ˆ ∞
ajB

j
|m|

2√
n

xη−1 Pr
(

sup
k=1,...,Kj

∣∣∣β̂(m)
j,k − β

(m)
j,k

∣∣∣ ≥ x

)
dx

≤ 2
ˆ ∞

0
xη−1

(
exp

(
− nx2

4Bj|m|C∗2M

))
+ exp

(
− 3

√
nx

4Bj|m|C∗∞

)
dx.

If x ≥ ajBj
|m|

2 /
√
n, we have

Bjde
− −nx2

4Bj|m|C∗2M = e
− −nx2

8Bj|m|C∗2M
− −nx2

8Bj|m|C∗2M
+(logB)dj

≤ e
− −nx2

8Bj|m|C∗2M ,

and
Bjde

− −3
√
nx

4Bj|m|C∗∞ = e
− −3

√
nx

8Bj|m|C∗∞
− −3

√
nx

8Bj|m|C∗∞
+(logB)jd

≤ e
− −3

√
nx

8Bj|m|C∗∞ ,

so that

E
[

sup
k=1,...,Kj

∣∣∣β̂(m)
j,k − β

(m)
j,k

∣∣∣η] . (
j + 1√
n

)η
,

as claimed.
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Proof of Lemma 10. The proof follows directly (3.8), choosing x = τj,m,n and observing
that

exp
− 3κ2Bj|m|n

4C∗∞
(
6C
∗
2M

C∗∞
+ κ

)
 ≤ exp

(
−3κBj|m|n

8C∗∞

)

. n
− 3

8C∗∞
κ

. n−
γ
2 ,

given that

γ ≤
(

3
8C∗∞

)
κ,

as claimed.

5.3 Main results
Let us start by proving the upper bound.

Proof of Theorem 11. Let us consider p <∞. As far as Σ is concerned, properly adapting
to our problem the procedure presented in Baldi et al. (2009a) (see also Donoho et al.
(1996); Durastanti et al. (2011)) and using (3.4) yield

Σ/Jp−1
n,m ≤

Jn,m−1∑
j=0

∥∥∥∥∥∥
Kj∑
k=1

E
[(
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(
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)
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)
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]∥∥∥∥∥∥
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E
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)
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p
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1
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}
=: Aa+ Au+ Ua+ Uu,

where the regions considered are the analogous of Bb, Bs, Sb, Ss in Baldi et al. (2009a).
As in Durastanti et al. (2011); Durastanti (2016), we prefer to modify this notation since
B, b, and s are already used in the current work. While the upper bounds for Ua and
Uu are the same for hard and soft thresholding, we have to follow two slightly different
approach to bound Au and Ua. Furthermore, by the heuristic point of view, the bounds
two cross/terms Au and Ua depend on the inequality (3.11) in Lemma 10. Indeed, in the
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hard thresholding settings, using Cauchy–Schwarz inequality and Equations (3.9) and
(3.11) leads to

Au .
Jn,m−1∑
j=0

E
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2

≤ (log n)−
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2 n−
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2 , (5.1)

while in the soft thresholding framework, using additionally the triangle inequality yields
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Note that, in both the cases, for (5.1) and (5.2) we have derived the same bound. As far
as the other cross/term is considered, in both the cases, it holds that
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As far as Aa, and Uu are concerned, we derive their upper bounds by using the tail
behavior in the Besov balls Bsr,q (G), the crucial role of the optimal bandwidth selection
Js,m defined by (3.13), and the bound on the centered moments of β̂(m)

j,k given in Lemma
9. Indeed, in the hard thresholding settings, using (3.9), we obtain that

Aa .
Jn,m−1∑
j=0

E


∥∥∥∥∥∥
Kj∑
k=1

(
β̂

(m)
j,k − β

(m)
j,k

)
ψj,k

∥∥∥∥∥∥
p

Lp(Td)

 1
{∣∣∣β(m)

j,k

∣∣∣ ≥ 1
2τj,m,n

}
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In the soft thresholding framework, similarly to (5.2), using the triangular inequality leads
to
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Now, using the definition of the optimal bandwidth selection (3.13), we can rewrite in
both the cases Aa as the sum of two finite series, that is,
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(5.4)

Finally, in both the hard and soft thresholding frameworks, we have that

Uu =
Jn,m−1∑
j=0

∥∥∥∥∥∥
Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
p

Lp(Td)
1
{∣∣∣β(m)

j,k

∣∣∣ < 2τj,m,n
}

≤
Js,m−1∑
j=0

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣pBjd( p2−1)1
{∣∣∣β(m)

j,k

∣∣∣ < 2τj,m,n
}

+
Jn,m−1∑
j=Js,m

∥∥∥∥∥∥
Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
p

Lp(Td)
=: Uu1 + Uu2.

(5.5)

Regular zone. First of all, combining (5.1) and (5.3) we choose γ such that
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p
2 B−Js,msp.

Then, it holds that

Aa . (log n)
p(2|m|+d)

2(2(s+|m|)+d) n−
ps

2(s+|m|)+d

Consider now (5.5). It holds that

Uu1 =
Js,m−1∑
j=0

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣pBjd( p2−1)1
{∣∣∣β(m)

j,k

∣∣∣ < 2τj,m,n
}

.
Js,m−1∑
j=0

2pτ pj,m,n
Kj∑
k=1

Bjd( p2−1)

.
Js,m−1∑
j=0

(
log n
n

) p
2

B
jp
2 (2|m|+d)

.

(
log n
n

) p
2

B
Js,mp

2 (2|m|+d)
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. (log n)
p
2 n−

sp
2(s+|m|)+d ,

in view of (5.6), while

Uu2 =
Jn,m−1∑
j=Js,m

∥∥∥∥∥∥
Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
p

Lp(Td)

.
Jn,m−1∑
j=Js,m

B−jps

. B−Js,mps

Then,

Uu . (log n)
p
2 n−

ps
2(s+|m|)+d .

As far as D is concerned, observe that

D
1
p ≤

∑
j≥Jn,m

∥∥∥∥∥∥
Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
Lp(Td)

=
∑

j≥Jn,m

∥∥∥∥∥∥
Kj∑
k=1

βj,kψ
(m)
j,k

∥∥∥∥∥∥
Lp(Td)

≤
∑

j≥Jn,m
Bj(|m|+d( 1

2−
1
p)) ‖βj,·‖`p

≤
∑

j≥Jn,m
B−js ‖f‖Bs+|m|

r,q

≤ B−Jn,ms ‖f‖Bs+|m|
r,q

.

Thus D .
(

logn
n

) sp
d+2|m| As in Baldi et al. (2009a); Durastanti et al. (2011), first of all,

notice that for p ≤ r,
Bsr,q ⊆ Bsp,q,

so that we can always use r = p; consider then the case p ≥ r, where the following
embedding holds

Bsr,q ⊆ B
s−d( 1

r
− 1
p)

p,q .

Because in the regular zone
r ≥ (2 |m|+ d) p

2 (s+ |m|) + d
,

it follows that
s

2 (s+ |m|) + d
≤ sr

(2 |m|+ d) p.

Thus, since s > d
r
, it holds that

s

(2 |m|+ d) −
d

(2 |m|+ d)

(
1
r
− 1
p

)
− s

2 (s+ |m|) + d
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≥ s

(2 |m|+ d) −
d

(2 |m|+ d)

(
1
r
− 1
p

)
− sr

(2 |m|+ d) p

= d

(2 |m|+ d)

(
1
r
− 1
p

)(
sr

d
− 1

)
≥ 0,

since s > d
r
.

Sparse zone. This proof is similar to the one above, so it is properly shortened for the
sake of the brevity. As far as (5.1) and (5.3) are concerned, in order to choose γ such that

Au+ Ua . n−
γ
2 . n

−
p(s+d( 1

p−
1
r ))

2[(s+|m|)+d( 1
2−

1
r )] .

Observe now (5.4): note that

Aa2 = 0,

since
1
{∣∣∣β(m)

j,k

∣∣∣ ≥ 1
2τj,m,n

}
for j ≥ Js,m,

see also Baldi et al. (2009a); Durastanti (2016).
Then, we have that

Aa1 =
Js,m−1∑
j=0

Kj∑
k=1

n−
p
2
∥∥∥ψ(m)

j,k

∥∥∥p
Lp(Td) 1

{∣∣∣β(m)
j,k

∣∣∣ ≥ 1
2τj,m,n

}

. n−
p
2

Js,m−1∑
j=0

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣r τ−rj,m,n ‖ψj,k‖pLp(Td)Bj|m|p

.
n
r−p

2

(log n)
r
2

Js,m−1∑
j=0

Bj|m|(p−r)B
jd
2 (p−r)

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣r ‖ψj,k‖rLr(Td)
.

n
r−p

2

(log n)
r
2

Js,m−1∑
j=0

Bj|m|(p−r)B
jd
2 (p−r)B−jsr

.
n
r−p

2

(log n)
r
2
BJs,m[ p−r2 (2|m|+d)−sr]

.
n

−p(s−d( 1
r−

1
p))

2(s+|m|−d( 1
r−

1
2))

(log n)δ
,

since

(p− r) (2 |m|+ d)− 2sr
4
(
s+ |m|+ d

(
1
2 −

1
r

)) + r − p
2 =

−p
(
s− d

(
1
r
− 1

p

))
2
(
s+ |m| − d

(
1
r
− 1

2

)) , (5.7)
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and
δ = (p− r) (2 |m|+ d)− 2sr

4
(
s+ |m|+ d

(
1
2 −

1
r

)) + r

2 =
p
2 (2 |m|+ d)− d

2
(
s+ |m| − d

(
1
r
− 1

2

)) .
Consider now (5.5); on the one hand, it holds that

Uu1 =
Js,m−1∑
j=0

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣pBjd( p2−1)1
{∣∣∣β(m)

j,k

∣∣∣ < 2τj,m,n
}

.
Js,m−1∑
j=0

Bjd( p2−1)τ p−rj,m,n

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣r

.

(
n

log n

) r−p
2 Js,m−1∑

j=0
B

j(p−r)
2 (2|m|+d)

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣r Bjd( r2−1)

.

(
n

log n

) r−p
2 Js,m−1∑

j=0
B

j(p−r)
2 (2|m|+d)B−jsr

.
n
r−p

2

(log n)
r
2
BJs,m[ p−r2 (2|m|+d)−sr]

.
n

−p(s−d( 1
r−

1
p))

2(s+|m|−d( 1
r−

1
2))

(log n)δ
,

in view of (5.7). On the other hand, analogously to in Baldi et al. (2009a); Durastanti
et al. (2011), we define

g =
p |m|+ d

(
p
2 − 1

)
s+ |m| − d

(
1
r
− 1

2

) .
In the sparse zone we have

g − r =
1
2 [p (2 |m|+ d)− r (2s+ 2 |m|+ d)]

s+ |m| − d
(

1
r
− 1

2

) > 0,

so that the embedding Bsr,q ⊆ B
s−d( 1

r
− 1
g )

g,q holds. Furthermore, we easily obtain that

p− g =
p
(
s− d

(
1
r
− 1

p

))
s+ |m| − d

(
1
r
− 1

2

) > 0.

Thus,

Uu2 =
Jn,m−1∑
j=Js,m

Bjd( p2−1)
Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣p 1
{∣∣∣β(m)

j,k

∣∣∣ < 2τj,m,n
}

.

(
log n
n

) p−g
2 Jn,m−1∑

j=Js,m
Bj(2|m|+d)( p−g2 )

Kj∑
k=1

∣∣∣β(m)
j,k

∣∣∣g Bjd( g2−1)
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.

(
log n
n

) p−g
2 Jn,m−1∑

j=Js,m
Bj(2|m|+d)( p−g2 )B−jg(s−d(

1
r
− 1
g )),

. Jn,m

(
log n
n

) p(s−d( 1
r−

1
p))

2(s+|m|−d( 1
r−

1
2))

,

since

(2 |m|+ d)
(
p− g

2

)
− g

(
s− d

(
1
r
− 1
g

))
=
(
|m|+ d

2

)
(p− g)− g

(
s− d

r

)
− d = 0

As far as D is concerned, observe that

D
1
p ≤

∑
j≥Jn,m

∥∥∥∥∥∥
Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
Lp(Td)

=
∑

j≥Jn,m

∥∥∥∥∥∥
Kj∑
k=1

βj,kψ
(m)
j,k

∥∥∥∥∥∥
Lp(Td)

. B−Jn,ms−d(
1
r
− 1
p)

.

(
n

log n

)− s−d( 1
r−

1
p)

2|m|+d

.

Recalling that, in the sparse zone, r ≤ p, it is straightforward to prove that

s− d
(

1
r
− 1

p

)
2 |m|+ d

≥
s− d

(
1
r
− 1

p

)
2
(
s+ |m| − d

(
1
r
− 1

2

)) ,
since, for s > d

r
,

2
(
s+ |m| − d

(1
r
− 1

2

))
≥ d+ 2 |m|

Thus D .
(

logn
n

) sp
d+2|m| , see also Baldi et al. (2009a); Durastanti et al. (2011).

Let us now consider the case p =∞, where we have

E
[∥∥∥f̂ (m) − f (m)

∥∥∥
L∞(Td)

]
. E


∥∥∥∥∥∥
Jn,m−1∑
j=0

[
η
(
β̂

(m)
j,k , τj,m,n

)
− βj,k

]
ψj,k

∥∥∥∥∥∥
L∞(Td)


+

∥∥∥∥∥∥
∑

j≥Jn,m

Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
L∞(Td)

=: Σ∞ +D∞.

Consider preliminarily q = r =∞. Arguments similar to the one discussed above yield

Σ∞ .
Js,m−1∑
j=0

B
j
2 (2|m|+d)E

[
sup

k=1,...,Kj

∣∣∣β̂j,k − βj,k∣∣∣
]

+
Jn,m−1∑
j=Js,m

B
j
2 +d sup

k=1,...,Kj

∣∣∣β(m)
j,k

∣∣∣+ n−
1
2
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. Js,mB
Js,m

2 (2|m|+d)n−
1
2 +B−sJs,m + n−

1
2

. n−
s

2(s+|m|)+d ,

As far as the deterministic error is concerned, it is easy to prove that

D∞ .
∑

j≥Jn,m

∥∥∥∥∥∥
Kj∑
k=1

β
(m)
j,k ψj,k

∥∥∥∥∥∥
L∞(Td)

. B−sJn,m

.

(
n

log n

)− s
2(s+|m|)+d

.

Now, as in Baldi et al. (2009a); Durastanti et al. (2011), for arbitrary q, r, the result holds
since Bsr,q ⊆ B

s− d
r∞,∞.

The idea of proof of Theorem 13 comes from (Baldi et al., 2009a, Theorem 11), see also
Liu and Wang (2013) and it is based on two crucial results, namely, the so-called Fano’s
lemma and Varshanov-Gilbert lemma (see, for example, Tsybakov (2009)). Given two
probability measures P and Q, defined on some probability space, their Kullback-Leibler
divergence is given by

KL (P,Q) =


´

log dP
dQ dP =

´ dP
dQ log dP

dQ dQ if P � Q

∞ otherwise
,

Let P and Q be two probability measures on the d-torus with densities f, g with respect
to ρ (dϑ). If g is bounded below by some positive constant, it holds that

KL (P,Q) . ‖f − g‖2
L2(Td) ,

see, for example, (Baldi et al., 2009a, Equation (33)).

Lemma 14 (Fano’s lemma). For t = 1, . . . , T , let (Ω,F , Pt) be a set of probability spaces,
and Ak ∈ F . Let, furthermore,

LT = inf
t=1,...,T

1
T

∑
t′ 6=t

KL (Pt, Pt′) .

If, for t 6= t′, At ∩ At′ = ∅, then

sup
t=1,...,T

Pt (Act) ≥ min
{1

2 ,
√
Te−

3
e e−LT

}
.

Lemma 15 (Varshanov-Gilbert lemma). Let E = {0, 1}T . Then, there exists a subset{
ε0, . . . , εU

}
⊆ E, where ε0 = (0, . . . , 0), such that U ≥ 2T/8 and

T∑
t=1

∣∣∣εut − εu′t ∣∣∣ ≥ T

8 , 0 ≤ u 6= u′ ≤ U.
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Proof of Theorem 13. As aforementioned, this proof follows strictly the approach devel-
oped by (Baldi et al., 2009a, Theorem 11).
Let us fix j ≥ 0 and consider the family Aj of densities taking the form

fε = 1
(2π)d

+ ζ
∑
k∈Aj

εj,kψj,k,

where Aj ⊆ {1, . . . , Kj} is chosen so that (2.9) in Lemma 6 holds, εk ∈ {0, 1}, and ζ > 0
must ensure that all the densities in Aj are positive. It is sufficient that γ . B−j

d
2 , since

|fε| ≥
1

(2π)d
− |γ|

∣∣∣∣∣∣
∑
k∈Aj

εj,kψj,k

∣∣∣∣∣∣
≥ 1

(2π)d
− |γ| c∞Bj d2 ,

see again Baldi et al. (2009a). Using now (2.7) in Lemma 5 yields

f (m)
ε (ϑ) =ζ

∑
k∈Aj

εj,kψ
(m)
j,k (ϑ) , ϑ ∈ Td.

To ensure that fε ∈ Bs+|m|r,q (G), we impose that

|ζ| ≤ GB−j(s+|m|+
d
2 ).

Indeed, since  Kj∑
k=1
|εj,k|r

 1
r

≤

 Kj∑
k=1

1
 1

r

. B
jd
r

∥∥∥f (|m|)
ε

∥∥∥
Bsr,q

= |ζ|Bj(s+|m|+d( 1
2−

1
r ))

 Kj∑
k=1
|εj,k|r

 1
r

. |ζ|Bj(s+|m|+ d
2 ).

Now, for fε, fε′ ∈ A|,∥∥∥f (m)
ε − f (m)

ε′

∥∥∥2

L2(Td) . ζ2 ∑
k∈Aj

∣∣∣εj,k − ε′j,k∣∣∣2B2j|m|

. B−2js.

Using (2.9) in Lemma 6 yields

∥∥∥f (m)
ε − f (m)

ε′

∥∥∥
Lp(Td) ≥ |ζ|

∑
k∈Aj

∣∣∣εj,k − ε′j,k∣∣∣p ∥∥∥ψ(m)
j,k

∥∥∥p
Lp(Td)

 1
p

. (5.8)
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According to Lemma 15, there exists a finite subset of Aj, whose elements are given by

fεu = 1
(2π)d

+ ζ
∑
k∈Aj

εuj,kψj,k,

where
{
εuj,· : u = 1, . . . , U

}
is such that U ≥ 2cBdj and

∑
k∈Aj

∣∣∣εuj,k − εuj,k∣∣∣ & Bjd.

Thus, using (5.8) yields∥∥∥f (m)
ε − f (m)

ε′

∥∥∥
Lp(Td) & |ζ|Bj|m|+d( 1

2−
1
p)B

jd
p ≈ B−js,

which implies that the events

Aεu =
{∥∥∥f̂ (m) − f (m)

εu

∥∥∥ < 1
2B
−js
}
, u = 1, . . . , U,

are disjoint.
Fixed a density function f , consider now the probability measure P n

f , corresponding to
the density

fn (x) = f (x1) · . . . · f (xn) .
Using Lemma 14 leads to

sup
u=1,...,U

P n
fεu

(Acεu) ≥ min
{1

2 ,
√
Ue−

3
e e−LU

}
,

such that

sup
u=1,...,U

E
[∥∥∥f̂ (m), f

(m)
εu

∥∥∥p
Lp(Td)

]
≥ B−jps

2 sup
u=1,...,U

P n
fεu

(Acεu) & B−jsp min
{1

2 ,
√
Ue−

3
e e−LU

}
.

Observing that

KL (P n
1 , P

n
2 ) =

N∑
i=1

ˆ
f1 (xi) log f1 (xi)

f2 (xi)
dxi = nKL (f1, f2) ,

it holds that

LU . inf
u=1,...,U

n

U

∑
u′ 6=u

KL (fεu , fεu′ ) .
n

U

U∑
u=1

KL (fεu , fε0) ,

where

KL (fεu , fε0) =
ˆ 1
fε0 (ϑ) |fε

u (ϑ)− fε0 (ϑ)|2 ρ (dϑ)

= (2π)d |ζ|2
∥∥∥∥∥∥
∑
k∈Aj

εuj,kψj,k

∥∥∥∥∥∥
2

L2(Td)
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≤ G (2π)dB−2j(s+|m|+ d
2 )Bdj

. B−2j(s+|m|),

and, then,
LU . nB−2j(s+|m|)

while √
U ≈ 2cBjd ,

Then, we choose j such that nB−2js ≈ Bjd, that is, j ∈ N such that Bj ≈ n
1

2(s+|m|)+d .
Hence, it holds that

sup
u=1,...,U

E
[∥∥∥f̂ (m) − f (m)εu

∥∥∥p
Lp(Td)

]
& B−jsp ≈ n−

sp
2(s+|m|)+d .

Consider now two densities

f0 = 1
(2π)d

+ ζψj,k; f1 = 1
(2π)d

+ ζψj,k′ ,

where |ζ| . B−
jd
2 ensures that the two densities are positive. If, additionally, |ζ| ≤

GB−j(s+|m|+d(
1
2−

1
r )), then both f0 and f1 belong to the Besov ball Bs+|m|r,q (G). Again,

KL (f0, f1) ≈ ζ2,

while, if P0 e P1 denote the probability measures whose densities are given by the n-
products of f0 and f1 respectively, it holds that

KL (P0, P1) ≈ nζ2.

using again Lemma 6, we have that∥∥∥f (m)
0 − f (m)

1

∥∥∥
Lp(Td) = |ζ|

∥∥∥ψ(m)
j,k − ψ

(m)
j,k′

∥∥∥
Lp(Td)

& ζBj|m|Bjd( 1
2−

1
p)

& B−j(s+d(
1
p
− 1
r )).

Thus, the events
{∥∥∥f̂ (m) − f (m)

i

∥∥∥
Lp(Td) ≥ B−j(s+d(

1
p
− 1
r ))
}

are disjoint. As in Baldi et al.

(2009a), choosing ζ = n−
1
2 , so that KL (f0, f1) ≈ n, implies that j ≈ 1

2(s+|m|+d( 1
2−

1
r ))
.

Hence, using Fano’s lemma yields

sup
i=0,1

E
[∥∥∥f̂ (m) − f (m)

i

∥∥∥
Lp(Td)

]
& B−j(s+d(

1
p
− 1
r ))

≈ n
−

(s+d( 1
p−

1
r ))

2(s+|m|+d( 1
2−

1
r )) .

Finally, combining these results and checking for which sets of the Besov parameters one
rate is larger than the other one completes the proof of the theorem.
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