Robust inference for the Cluster Weighted Model requires the specification of a few hyper-parameters. Their role is crucial for increasing the quality of the estimators, while arbitrary decisions about their value could severely hamper inferential results. To guide the user in the delicate choice of such parameters, a monitoring approach has been introduced in the recent literature, yielding an adaptive method. The approach is here exemplified, via the analysis of a dataset on the effect of punishment regimes on crime rates.

Cappozzo, A., Garcia-Escudero, L., Greselin, F., Mayo-Iscar, A. (2023). Monitoring Tools in Robust CWM for the Analysis of Crime Data. In L.A. García-Escudero, A. Gordaliza, A. Mayo, M.A. Lubiano Gomez, M. Angeles Gil, P. Grzegorzewski, et al. (a cura di), Building Bridges between Soft and Statistical Methodologies for Data Science . SMPS 2022. Advances in Intelligent Systems and Computing (pp. 65-72). Springer International Publishing [10.1007/978-3-031-15509-3_9].

Monitoring Tools in Robust CWM for the Analysis of Crime Data

Greselin, Francesca
;
2023

Abstract

Robust inference for the Cluster Weighted Model requires the specification of a few hyper-parameters. Their role is crucial for increasing the quality of the estimators, while arbitrary decisions about their value could severely hamper inferential results. To guide the user in the delicate choice of such parameters, a monitoring approach has been introduced in the recent literature, yielding an adaptive method. The approach is here exemplified, via the analysis of a dataset on the effect of punishment regimes on crime rates.
Capitolo o saggio
Cluster-weighted modeling; Outliers; Trimmed BIC; Eigenvalue constraint; Monitoring; Model-based clustering; Robust estimation
English
Building Bridges between Soft and Statistical Methodologies for Data Science . SMPS 2022. Advances in Intelligent Systems and Computing
García-Escudero, LA; Gordaliza, A; Mayo, A; Lubiano Gomez, MA; Angeles Gil, M; Grzegorzewski, P; Hryniewicz, O
25-ago-2022
2023
978-3-031-15508-6
1433
Springer International Publishing
65
72
Cappozzo, A., Garcia-Escudero, L., Greselin, F., Mayo-Iscar, A. (2023). Monitoring Tools in Robust CWM for the Analysis of Crime Data. In L.A. García-Escudero, A. Gordaliza, A. Mayo, M.A. Lubiano Gomez, M. Angeles Gil, P. Grzegorzewski, et al. (a cura di), Building Bridges between Soft and Statistical Methodologies for Data Science . SMPS 2022. Advances in Intelligent Systems and Computing (pp. 65-72). Springer International Publishing [10.1007/978-3-031-15509-3_9].
reserved
File in questo prodotto:
File Dimensione Formato  
Cappozzo-2022-SMPS 2022-VoR.pdf

Solo gestori archivio

Descrizione: Contributo in libro
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 936.94 kB
Formato Adobe PDF
936.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/398373
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
Social impact