The Möbius function of the subgroup lattice of a finite group G has been introduced by Hall and applied to investigate several different questions. We propose the following generalization. Let A be a subgroup of the automorphism group Aut(G) of a finite group G and denote by CA(G) the set of A-conjugacy classes of subgroups of G. For H ≤ G let [H]A = { Ha | a ∈ A} be the element of CA(G) containing H. We may define an ordering in CA(G) in the following way: [H]A ≤ [K]A if Ha ≤ K for some a ∈ A. We consider the Möbius function µA of the corresponding poset and analyse its properties and possible applications.

Dalla Volta, F., Lucchini, A. (2023). The A-Möbius function of a finite group. ARS MATHEMATICA CONTEMPORANEA, 23(3), 1-14 [10.26493/1855-3974.2694.56a].

The A-Möbius function of a finite group

Dalla Volta, Francesca;
2023

Abstract

The Möbius function of the subgroup lattice of a finite group G has been introduced by Hall and applied to investigate several different questions. We propose the following generalization. Let A be a subgroup of the automorphism group Aut(G) of a finite group G and denote by CA(G) the set of A-conjugacy classes of subgroups of G. For H ≤ G let [H]A = { Ha | a ∈ A} be the element of CA(G) containing H. We may define an ordering in CA(G) in the following way: [H]A ≤ [K]A if Ha ≤ K for some a ∈ A. We consider the Möbius function µA of the corresponding poset and analyse its properties and possible applications.
Articolo in rivista - Articolo scientifico
Groups; Möbius function; subgroup lattice;
English
7-ott-2022
2023
23
3
1
14
P3.08
open
Dalla Volta, F., Lucchini, A. (2023). The A-Möbius function of a finite group. ARS MATHEMATICA CONTEMPORANEA, 23(3), 1-14 [10.26493/1855-3974.2694.56a].
File in questo prodotto:
File Dimensione Formato  
DallaVolta-2022-amc-VoR.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 372.54 kB
Formato Adobe PDF
372.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/396410
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact