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The A-Möbius function of a finite group

Francesca Dalla Volta
Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca,

Via Cozzi 55, 20126 Milano, Italy

Andrea Lucchini *
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Abstract

The Möbius function of the subgroup lattice of a finite group G has been introduced
by Hall and applied to investigate several different questions. We propose the following
generalization. Let A be a subgroup of the automorphism group Aut(G) of a finite group
G and denote by CA(G) the set of A-conjugacy classes of subgroups of G. For H ≤ G
let [H]A = { Ha | a ∈ A} be the element of CA(G) containing H. We may define an
ordering in CA(G) in the following way: [H]A ≤ [K]A if Ha ≤ K for some a ∈ A. We
consider the Möbius function µA of the corresponding poset and analyse its properties and
possible applications.

Keywords: Groups, subgroup Lattice, Möbius function.
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1 Introduction
The Möbius function of a finite partially ordered set (poset) P is the map µP : P ×P → Z
satisfying µP (x, y) = 0 unless x ≤ y, in which case it is defined inductively by the
equations µP (x, x) = 1 and

∑
x≤z≤y µP (x, z) = 0 for x < y.

In a celebrated paper [7], P. Hall used for the first time the Möbius function µ of the
subgroup lattice of a finite group G to investigate some properties of G, in particular to
compute the number of generating t-tuples of G. A detailed investigation of the properties
of the function µ associated to a finite group G is given by T. Hawkes, I. M. Isaacs and M.
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Özaydin in [8]. In that paper, the authors also consider the Möbius function λ of the poset
of conjugacy classes of subgroups of G, where [H] ≤ [K] if H ≤ Kg for some g ∈ G
(see [8, Section 7]). In particular, they propose the interesting and intriguing question of
comparing the values of µ and λ.

In this paper we aim to generalize the definitions and main properties of the func-
tions µ and λ to a more general context. Let G and A be a finite group and a subgroup
of the automorphism group Aut(G) of G, respectively. Denote by CA(G) the set of A-
conjugacy classes of subgroups of G. For H ≤ G let [H]A = { Ha | a ∈ A} be
the element of CA(G) containing H. We may define an ordering in CA(G) in the following
way: [H]A ≤ [K]A if Ha ≤ K for some a ∈ A; we consider the Möbius function µA

of the corresponding poset. We will write µA(H,K) in place of µA([H]A, [K]A). When
A = Inn(G), we write C(G) and [H], in place of CInn(G)(G) and [H]Inn(G). When A = 1,
µA = µ is the Möbius function in the subgroup lattice of G, introduced by P. Hall. In
the case when A = Inn(G) is the group of the inner automorphism, µInn(G) coincides the
Möbius function λ of the poset of conjugacy classes of subgroups of G, defined above.
Note that for any subgroup A of Aut(G), we get [G]A = {G}.

In Section 2, we prove some general properties of µA. In particular we prove the
following result:

Proposition 1.1. LetG be a finite solvable group. IfG′ ≤ K ≤ G andA is the subgroup of
Inn(G) obtained by considering the conjugation with the elements ofK, then µA(H,G) =
λ(H,G) for every H ≤ G.

To illustrate the meaning of the previous proposition, consider the following example.
LetG = A4 be the alternating group of degree 4 andA the subgroup of Inn(G) induced by
conjugation with the elements of G′ ∼= C2×C2. The posets C(G) and CA(G) are different.
For example there are three subgroups of G of order 2, which are conjugated in G, but not
A-conjugated. However λ(H,G) = µA(H,G) for any H ≤ G.

In Section 3, we generalize some result given by Hall in [7], about the cardinality
ϕ(G, t) of the set Φ(G, t) of t-tuples (g1, . . . , gt) of group elements gi such that G =
⟨g1, . . . , gt⟩. As observed by P. Hall, using the Möbius inversion formula, it can be proved
that

ϕ(G, t) =
∑
H≤G

µ(H,G)|H|t. (1.1)

We generalize this formula, showing that ϕ(G, t) can be computed with a formula involving
µA for any possible choice of A.

Theorem 1.2. For any finite group G and any subgroup A of Aut(G),

ϕ(G, t) =
∑

[H]A∈CA(G)

µA(H,G)| ∪a∈A (Ha)t|.

If G is not cyclic, then ϕ(G, 1) = 0, so we obtain the following equality, involving the
values of µA.

Corollary 1.3. If G is not cyclic, then

0 =
∑

[H]A∈CA(G)

µA(H,G)| ∪a∈A H
a|.
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Further generalizations are given in Section 4, where we consider the function ϕ∗(G, t),
which is an analogue of ϕ(G, t): actually, ϕ∗(G, t) denotes the cardinality of the set of of
t-tuples (H1, . . . ,Ht) of subgroups of G such that G = ⟨H1, . . . ,Ht⟩. As a corollary of
our formula for computing ϕ∗(G, t), we obtain we following unexpected result.

Proposition 1.4. Let σ(X) denote the number of subgroups of a finite group X. For any
finite group G, the following equality holds:

1 =
∑
H≤G

µ(H,G)σ(H).

Finally, in Section 5, we consider one question originated from a result given by Hawkes,
Isaacs and Özaydin in [8]: they proved that the equality

µ(1, G) = |G′|λ(1, G)

holds for any finite solvable groupG; later Pahlings [10] generalized the result proving that

µ(H,G) = |NG′(H) : G′ ∩H| · λ(H,G) (1.2)

holds for any H ≤ G whenever G is finite and solvable. Following [4], we say that G
satisfies the (µ, λ)-property if (1.2) holds for any H ≤ G. Several classes of non-solvable
groups satisfy the (µ, λ)-property, for example all the minimal non-solvable groups (see
[4]). However it is known that the (µ, λ)-property does not hold for every finite group. For
instance, it does not hold for the following finite almost simple groups: A9, S9, A10, S10,
A11, S11, A12, S12, A13, S13, J2, PSU(3, 3), PSU(4, 3), PSU(5, 2), M12, M23, M24,
PSL(3, 11), HS, Aut(HS), He Aut(H), McL, PSL(5, 2), G2(4), Co3, PΩ−(8, 2),
PΩ+(8, 2). It is somehow intriguing to notice that although the (µ, λ)-property fails for
the sporadic groups M12, J2, McL, it holds for their automorphism groups.

We prove the following generalization of Pahlings’s result.

Theorem 1.5. Let N be a solvable normal subgroup of a finite group G. If G/N satisfies
the (µ, λ)-property, then G also satisfies the (µ, λ)-property.

An almost immediate consequence of the previous theorem is the following.

Corollary 1.6. PSU(3, 3) is the smallest group which does not satisfy the (µ, λ) property.

In the last part of Section 5, we use Theorem 1.2 to deduce some consequences of the
(µ, λ)-property. In particular we prove the following theorem.

Theorem 1.7. Suppose that a finite group G satisfies the (µ, λ)-property. Then, for every
positive integer t, the following equality is satisfied:

∑
[H]∈C(G)

λ(H,G)

(
|H|t−1|G||G′H|
|G′NG(H)|

− | ∪a∈A (Ha)t|
)

= 0.

Some open questions are proposed along the paper.



Acc
ep

te
d m

an
usc

rip
t

4 Ars Math. Contemp.

2 Applying some general properties of the Möbius function
Given a poset P , a closure on P is a function¯ : P → P satisfying the following three
conditions:

(a) x ≤ x̄ for all x ∈ P ;

(b) if x, y ∈ P with x ≤ y, then x̄ ≤ ȳ;

(c) ¯̄x = x̄ for all x ∈ P .

If ¯ is a closure map on P, then P = {x ∈ P | x̄ = x} is a poset with order induced by the
order on P . We have:

Theorem 2.1 (The closure theorem of Crapo [3]). Let P be a finite poset and let ¯: P → P
be a closure map. Fix x, y ∈ P such that y ∈ P . Then

∑
x≤z≤y,z̄=y

µP (x, z) =

{
µP̄ (x, y) if x = x̄

0 otherwise.

In [7], P. Hall proved that if H < G, then µ(H,G) ̸= 0 only if H is an intersection
of maximal subgroups of G. Using the previous theorem, the following more general
statement can be obtained.

Proposition 2.2. If H < G and µA(H,G) ̸= 0, then H can be obtained as intersection of
maximal subgroups of G.

Proof. Let H be a proper subgroup of G and let H be the intersection of the maximal
subgroups of G containing H . Moreover let G = G. The map [H]A 7→ [H]A is a well
defined closure map on CA(G). Apply Theorem 2.1, with x = [H]A and y = [G]A. Since
K = G if and only if K = G, we have that µA(H,G) = 0 if H ̸= H.

An element a of a poset P is called conjunctive if the pair {a, x} has a least upper
bound, written a ∨ x, for each x ∈ P.

Lemma 2.3 ([8, Lemma 2.7]). Let P be a poset with a least element 0, and let a > 0 be a
conjunctive element of P. Then, for each b > a, we have∑

a∨x=b

µP(0, x) = 0.

From the above 2.3, the following Lemma 2.4 follows easily. Together with Lemma 2.5
and Lemma 2.7, this allows us to prove Proposition 1.1.

Lemma 2.4. Let N be an A-invariant normal subgroup of G and H ≤ G. If H < HN <
G, then

µA(H,G) = −
∑

[Y ]A∈SA(H,N)

µA(H,Y ),

with SA(H,N) = {[Y ]A ∈ CA(G) | [H]A ≤ [Y ]A < [G]A and Y N = G}.

Proof. Let P be the interval {[K]A ∈ CG(A) | [H]A ≤ [K]A ≤ [G]A]}. Notice that
[HN ]A is a conjunctive element of P. Indeed [HN ]A ∨ [K]A = [KN ]A for every [K]A ∈
P. So the conclusion follows immediately from Lemma 2.3.
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Lemma 2.5. Let K and A be a subgroup of G and the subgroup of Inn(G) induced by
the conjugation with the elements of K, respectively. Assume that N is an abelian minimal
normal subgroup of G contained in K and H < HN ≤ G. Then

µA(H,G) = −µA(HN,G)γA(N,H),

where γA(N,H) is the number of A-conjugacy classes of complements of N in G contain-
ing H.

Proof. If HN = G, then H is a maximal subgroup of G, hence µA(H,G) = −1, while
µA(HN,G) = µA(G,G) = 1 and γA(N,H) = 1, so the statement is true. So we may
assume HN < G and apply Lemma 2.4. Suppose [Y ]A ∈ SA(H,N). Notice that, since
Y N = G andN is abelian, Y ∩N is normal inG. MoreoverN ̸≤ G, since Y < G = Y N.
By the minimality of N as normal subgroup, we conclude Y ∩N = 1. Let

C = {J ≤ G | H ≤ J ≤ Y }, D = {L ≤ G | HN ≤ L}
CA = {[J ]A ∈ CA(G) | [H]A ≤ [J ]A ≤ [Y ]A}, DA = {[L]A ∈ CA(G) | [HN ]A ≤ [L]A}.

The map η : C → D sending J to JN is an order preserving bijection. Clearly, if J2 = Jx
1

for some x ∈ K, then η(J2) = NJ2 = NJx
1 = (NJ1)

x = (η(J1))
x. Conversely assume

η(J2) = (η(J1))
x with x ∈ K. Since Y N = G, x = yn with n ∈ N and y ∈ Y ∩ K.

Thus J2N = (J1N)x = (J1N)y and consequently, applying the Dedekind law, J2 =
J2(Y ∩ N) = J2N ∩ Y = (J1N)y ∩ Y = (J1N ∩ Y )y = Jy

1 . It follows that η induces
an order preserving bijection from CA to DA, but then µA(H,Y ) = µA(HN,Y N) =
µA(HN,G).

The statement of the previous lemma leads to the following open question.

Question 2.6. LetG be a finite group,A ≤ Aut(G) andN anA-invariant normal subgroup
of G. Does µA(HN,G) divide µA(H,G) for every H ≤ G?

The following lemma is straightforward.

Lemma 2.7. Let A be a subgroup of Aut(G) and N an A-invariant normal subgroup of
G. Every a ∈ A induces an automorphism a of G/N . Let A = {a | a ∈ A}. Then, for any
H ≤ G, µA(HN,G) = µA(HN/N,G/N).

Proof of Proposition 1.1. We work by induction on |G| · |G : H|. The statement is true if
G is abelian. Assume thatG′ contains a minimal normal subgroup, sayN, ofG. IfN ≤ H,
then, by Lemma 2.7

λ(H,G) = λ(H/N,G/N) = µA(H/N,G/N) = µA(H,G).

So we may assume N ̸≤ H. If H is not an intersection of maximal subgroups of G, then
λ(H,G) = µA(H,G) = 0. Suppose H =M1 ∩ · · · ∩Mt where M1, . . . ,Mt are maximal
subgroups of G. In particular N is not contained in Mi for some i, so Mi is a complement
of N in G containing H and N ∩H = 1. By Lemma 2.5, we have

λ(H,G) = −λ(HN,G)γ(N,H), µA(H,G) = −µA(HN,G)γA(N,H),

where γ(N,H) is the number of conjugacy classes of complements of N in G containing
H and γA(N,H) is the number of A-conjugacy classes of these complements. Suppose
that K1,K2 are two conjugated complements of N in G containing H. Then K2 = Kn

1 for
some n ∈ NN (H). Since N ≤ G′ ≤ K, it follows γ(N,H) = γA(N,H). Moreover, by
induction, λ(HN,G) = µA(HN,G), hence we conclude λ(H,G) = µA(H,G).
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3 Generalizing a formula of Philip Hall
We begin with introducing the functions ΨA(H, t) and ψA(H, t), analogue of Φ(H, t) and
ϕ(H, t) in the general case of any possible subgroup A of Aut(G).

For any H ∈ CA(G) and any positive integer t, let

1. ΩA(H, t) =
⋃

a∈A(H
a)t;

2. ωA(H, t) = |ΩA(H, t)|;

3. ΨA(H, t) = {(g1, . . . , gt) ∈ Gt | ⟨g1, . . . , gt⟩ = Ha for some a ∈ A};

4. ψA(H, t) = |ΨA(H, t)|.

If (x1, . . . , xt) ∈ ΩA(H, t), then ⟨x1, . . . , xt⟩ ≤ Ha for some a ∈ A, hence ⟨x1, . . . , xt⟩ =
K for some K ≤ G with [K]A ≤ [H]A. Thus∑

[K]≤A[H]

ψA(K, t) = ωA(H, t)

and therefore, by the Möbius inversion formula,∑
[H]∈CA(G)

µA(H,G)ωA(H, t) = ψA(G, t).

On the other hand ψA(G, t) = ϕ(G, t) so we have proved the following formula.

Theorem 3.1. For any finite group G and any subgroup A of Aut(G),

ϕ(G, t) =
∑

[H]∈CA(G)

µA(H,G)ωA(H, t).

Notice that if A = 1, then ωA(H, t) = |Ht|, so that the result by Hall given in (1.1) is
a particular case of the previous theorem.

Corollary 3.2. If G is not cyclic, then

0 = phi(G, 1) =
∑

[H]∈CA(G)

µA(H,G)ωA(H, 1).

Taking A = Inn(G), we deduce in particular that if G is not cyclic, then∑
H∈C(H)

λ(H,G)ωInn(G)(H, 1) =
∑

H∈C(H)

λ(H,G)| ∪g H
g| = 0.

For example, ifG = S4, then the values of λ(H,G) and |∪gH
g| are as in the following

table and 24− 12− 16− 15 + 4 + 9 + 7− 1 = 0.
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λ(H,G) | ∪g H
g|

S4 1 24
A4 -1 12
D4 -1 16
S3 -1 15
K 1 4

⟨(1, 2, 3, 4)⟩ 0 10
⟨(1, 2, 3)⟩ 1 9
⟨(1, 2⟩ 1 7

⟨(1, 2)(3, 4)⟩ 0 4
1 -1 1

If G = A5, then the values of λ(H,G), ωInn(G)(H, 1) = | ∪g H
g|, ωInn(G)(H, 2) =

| ∪g (H
g)2| (taking only the subgroups H with λ(H,G) ̸= 0) are as in the following table

and 60-36-36-40+21+32-1=0.

λ(H,G) | ∪g H
g| | ∪g (H

g)2|
A5 1 60 3600
A4 -1 36 636
S3 -1 36 306
D5 -1 40 550

⟨(1, 2, 3)⟩ 1 21 81
⟨(1, 2)(3, 4)⟩ 2 16 46

1 -1 1 1

Moreover

3600− 636− 306− 550 + 81 + 2 · 46− 1 = 2280 =
19

30
· 3600 = ϕ(A5, 2).

If G = Dp = ⟨a, b | ap = 1, b2 = 1, ab = a−1⟩ and p is an odd prime, then the
behaviour of the subgroups in C(G) is described by the following table.

λ(H,G) | ∪g H
g|

Dp 1 2p
⟨a⟩ -1 p
⟨b⟩ -1 p+ 1
1 -1 1

Another interesting example is given by considering G = Cn
p and A = Aut(G).

Let H ∼= Cn−1
p be a maximal subgroup of G. Then, for K ≤ G, µA(K,G) ̸= 0

if and only if either [K]A = [G]A or [K]A = [H]A. Clearly ∪α∈Aut(G)H
α = G so

µA(G,G)ωA(G, 1)− µA(H,G)ωA(H, 1) = |G| − |G| = 0. More generally, ΩA(H, t) is
the set of t-tuples (x1, . . . , xt) such that (x1, . . . , xt) ∈ Kt for some maximal subgroup
K of G, so µA(G,G)ωA(G, t)− µA(H,G)ωA(H, t) = |G|t − ωA(H, t) is the number of
generating t-tuples of G.
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Another generalization of (1.1), essentially due to Gaschütz, has been described by
Brown in [1, Section 2.2]. Let N be a normal subgroup of G and suppose that G/N admits
t generators for some integer t. Let y = (y1, . . . , yt) be a generating t-tuple of G/N and
denote by P (G,N, t) the probability that a random lift of y to a t-tuple of G generates
G. Then P (G,N, t) = ϕ(G,N, t)/|N |t, where ϕ(G,N, t) is the number of generating t-
tuples ofG lying over y. As is showed in [1, Section 2.2], using again the Möbius inversion
formula it can be proved:

ϕ(G,N, t) =
∑

H≤G,HN=G

µ(H,G)|H ∩N |t. (3.1)

This formula can be generalized in our contest in the following way:

Theorem 3.3. Let N be an A-invariant normal subgroup of G and fix g1, . . . , gt ∈ G with
the property that G = ⟨g1, . . . , gt⟩N. Define

• ΩA(H,N, t) = {(n1, . . . , nt) | ⟨g1n1, . . . , gtnt⟩ ≤ Ha for some a ∈ A};

• ωA(H,N) = |ΩA(H,N, t)|

and let CA(G,N) = {[H]A ∈ CA(G) | HN = G}. Then

ϕ(G,N, t) =
∑

[H]A∈CA(G,N)

µA(H,G)ωA(H,N, t).

Proof. Fix g1, . . . , gt ∈ G with the property that G = ⟨g1, . . . , gt⟩N. Then ϕ(G,N, t) is
the cardinality of the set

Φ(G,N, g1, . . . , gt) = {(n1, . . . , nt) ∈ N t | ⟨g1n1, . . . , gtnt⟩ = G}.

Set:

ΨA(H,N, g1, . . . , gt) = {(n1, . . . , nt)∈N t | ⟨g1n1, . . . , gtnt⟩=Ha for some a ∈ A};
ψA(H,N, t) = |ΨA(H,N, g1, . . . , gt)|.

Notice that ωA(H,N, t) ̸= 0 if and only if [H]A ∈ CA(G,N). If (n1, . . . , nt) ∈ ΩA(H,N, t),
then ⟨g1n1, . . . , gtnt⟩ ≤ Ha for some a ∈ A, and ⟨g1n1, . . . , gtnt⟩ = K for some K ≤ G
with [K]A ≤ [H]A. Thus ∑

[K]A≤[H]A

ψA(K,N, t) = ωA(H,N, t)

and therefore, by the Möbius inversion formula∑
[H]∈CA(G,N)

µA(H,G)ωA(H,N, t) = ψA(G,N, t) = ϕ(G,N, t)
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4 Another application of Möbius inversion formula
Denote by Φ∗(G, t) the set of t-tuples (H1, . . . ,Ht) of subgroups of G such that G =
⟨H1, . . . ,Ht⟩ and by ϕ∗(G, t) the cardinality of this set. For any H ∈ CA(G) and any
positive integer t, let

1. ΣA(H, t) = {(H1, . . . ,Ht) | ⟨H1, . . . ,Ht⟩ ≤ Ha for some a ∈ A};

2. σA(H, t) = |ΣA(H, t)|;

3. ΓA(H, t) = {(H1, . . . ,Ht) | ⟨H1, . . . ,Ht⟩ = Ha for some a ∈ A};

4. γA(H, t) = |ΓA(H, t)|.

Theorem 4.1.
ϕ∗(G, t) =

∑
[H]∈CA(G)

µA(H,G)σA(H, t).

Proof. If (H1, . . . ,Ht) ∈ ΣA(H, t), then ⟨H1, . . . ,Ht⟩ = K for some K ≤ G with
[K]A ≤ [H]A. Thus ∑

[K]≤A[H]

γA(K, t) = σA(H, t)

and therefore, by the Möbius inversion formula,∑
[H]∈CA(G)

µA(H,G)σA(H, t) = γA(G, t) = ϕ∗(G, t).

In the particular case whenA = 1, σA(H, t) = σ(H)t, denoting with σ(H) the number
of subgroups of H. So we obtain the following corollary:

Corollary 4.2.
ϕ∗(G, t) =

∑
H≤G

µ(H,G)σ(H)t.

Clearly Σ∗(G, t) = {G}, so ϕ∗(G, 1) = 1 and therefore it follows:

Corollary 4.3.
1 =

∑
H∈HA

µA(H,G)σA(H, 1).

In particular:

Corollary 4.4.
1 =

∑
H≤G

µ(H,G)σ(H).

For example, if G = A5 then the subgroups of G with µ(H,G) ̸= 0 are listed in the
following table (where κ(H,G) denote the numbers of conjugate of H in G).
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µ(H,G) κ(H,G) σ(H)
A5 1 1 59
A4 -1 5 10
S3 -1 10 6
D5 -1 6 8

⟨(1, 2, 3)⟩ 2 10 2
⟨(1, 2)(3, 4)⟩ 4 15 2

1 -60 1 1

According with Corollary 4.4, 1 = 59− 5 · 10− 10 · 6− 6 · 8 + 2 · 10 · 2 + 4 · 15 · 2− 60.

For a finite group G, denote by P (G, t) and P ∗(G, t) the probability of generating
G with, respectively, t elements or t subgroups. It can be easily seen that P (G, t) =
P (G/Frat(G), t), but in general P ∗(G, t) ̸= P ∗(G/Frat(G), t). For example, if G ∼=
Cpa , then G and H ∼= Cpa−1 are the unique subgroups of G with non trivial Möbius
number and therefore

P (G, t) =
|G|t − |H|t

|G|t
= 1− 1

pt
,

P ∗(G, t) =
σ(G)t − σ(H)t

σ(G)t
= 1− at

(a+ 1)t
.

So P (G, t) is independent of a, while P ∗(G, t) tends to 0 when a tends to infinity.

5 The (µ, λ)-property
Proof of Thereom 1.5. Working by induction on the order of G, it suffices to prove the
statement in the particular case when N is an abelian minimal normal subgroup of G. Let
H be a subgroup of G. If N ≤ H, then

µ(H,G) = µ(H/N,G/N) = λ(H/N,G/N)|NG′N/N (H/N) : H/N ∩G′N/N |
= λ(H,G)|NG′N (H) : H ∩G′N | = λ(H,G)|NNG′(H) : N(H ∩G′)|

= λ(H,G)
|NG′(H) : H ∩G′|

|N ∩NG′(H) : N ∩H ∩G′|
= λ(H,G)

|NG′(H) : H ∩G′|
|N ∩G′ : N ∩G′|

= λ(H,G)|NG′(H) : H ∩G′|.

So we may assume N ̸≤ H. If H is not an intersection of maximal subgroups of G, then
µ(G,H) = λ(G,H) = 0. So we may assume H = M1 ∩ · · · ∩Mt where M1, . . . ,Mt

are maximal subgroups of G. Since N is not contained in H, then N is not contained in
Mi for some i, but then Mi is a complement of N in G containing H and N ∩H = 1. If
g ∈ NG(HN), then g = xn with x ∈ Mi and n ∈ N. In particular Hx ≤ HN ∩Mi =
H(N ∩Mi) = H , so NG(HN) = NG(H)N. By Lemma 2.5, we have

µ(H,G)

λ(H,G)
=
µ(HN,G)

λ(HN,G)

κ

δ
= |NG′N (HN) : HN∩G′N |κ

δ
= |NNG′(H) : HN∩G′N |κ

δ

where k is the number of complements of N in G containing H and δ is the number of
conjugacy classes of these complements. First assume that N ≤ Z(G). Then κ = δ,
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G′ =M ′
i ≤Mi, N ∩G′ = 1 and

µ(H,G)

λ(H,G)
= |NNG′(H) : HN ∩G′N |κ

δ
= |NNG′(H) : HN ∩G′N |

= |NNG′(H) : N(H ∩G′)| = |NG′(H) : H ∩G′|.

Finally assume N ̸≤ Z(G). Then N ≤ G′, κ/δ = |NN (H)| and

µ(H,G)

λ(H,G)
= |NNG′(H) : HN ∩G′N |κ

δ
= |NNG′(H) : N(H ∩G′)||NN (H)|

=
|N ||NG′(H)|
|NN (H)|

|NN (H)|
|N ||H ∩G′|

= |NG′(H) : H ∩G′|.

Proof of Corollary 1.6. Suppose thatG has minimal order with respect to the property that
G does not satisfy the (µ, λ) property. By the previous proposition, G contains no abelian
minimal normal subgroup and therefore soc(G) = S1 × · · · × St is a direct product of
nonabelian finite simple groups. If |G| ≤ |PSU(3, 3)| = 6048, then either t = 1 or
G = soc(G) = A5 × A5. So it suffices to check that A5 × A5 and any almost simple
group of order at most 6048 satisfies the (µ, λ) property. Recall that the table of marks
of a finite group G is a matrix whose rows and columns are labelled by the conjugacy
classes of subgroups of G and where for two subgroups A and B the (A,B)-entry is the
number of fixed points of B in the transitive action of G on the cosets of A in G. Since, for
every H ≤ G, λ(H,G) and µ(H,G) can be computed from the table of marks of G (see
[10, Proposition 1]), our proof can be easily completed using the library of table of marks
available in GAP [5].

We may use Theorem 3.1 to deduce some consequences of the (µ, λ)-property.

Theorem 5.1. Suppose that a finite group G satisfies the (µ, λ)-property. Then

∑
[H]∈C(G)

λ(H,G)

(
|H|t−1|G||G′H|
|G′NG(H)|

− ω(H, t)

)
= 0. (5.1)

Proof. By Theorem 3.1,∑
H∈C(G)

λ(H,G)ω(H, t) = ϕ(G, t) =
∑
H≤G

µ(H,G)|H|t

=
∑

H∈C(G)

µ(H,G)|G : NG(H)||Ht|

=
∑

H∈C(G)

λ(H,G)|NG′(H) : G′ ∩H||G : NG(H)||Ht|

=
∑

H∈C(G)

λ(H,G)
|H|t|G||NG′(H)|
|G′ ∩H||NG(H)|

=
∑

H∈C(G)

λ(H,G)
|H|t−1|G||G′H|
|G′NG(H)|

.



Acc
ep

te
d m

an
usc

rip
t

12 Ars Math. Contemp.

A natural question is whether (5.1) is also a sufficient condition for the (µ, λ)-property.
For any H ≤ G, set µ∗(H,G) = |NG′(H) : G′ ∩ H|λ(H,G). The validity of (5.1) is
equivalent to∑

H∈C(G)

λ(H,G)ω(H, t)−
∑

H∈C(G)

µ∗(H,G)|H|t|G : NG(H)| = 0.

In any case we must have∑
H∈C(G)

λ(H,G)ω(H, t)−
∑

H∈C(G)

µ(H,G)|H|t|G : NG(H)| = 0.

So (5.1) is equivalent to

∑
H∈C(G)

(µ(H,G)− µ∗(H,G))|H|t

|NG(H)|
= 0.

Let T = {[H] ∈ C(G) | µ(H,G) ̸= µ∗(H,G)}. Then (5.1) is true if and only if

∑
[H]∈T

(µ(H,G)− µ∗(H,G))|H|t

|NG(H)|
= 0. (5.2)

For example, if G = PSU(3, 3), then T consists of four conjugacy classes of sub-
groups and the corresponding values are given by the following table:

µ(H,G) µ∗(H,G) |H| |NG(H)|
-48 0 2 96
3 0 6 18
0 -4 8 32
1 2 24 24

In this case (5.2) is equivalent to

2t−1 − 6t−1 − 8t−1 + 24t−1 = 0

which is true only if t = 1.

For any positive integer n let

τ(n) =
∑

H∈T ,|H|=n

µ(H, g)− µ∗(H,G)

|NG(H)|
.

Proposition 5.2. A finite group G satisfies (5.1) for every positive integer t if and only if
τ(n) = 0 for any ∈ N.

Question 5.3. Does τ(n) = 0 for all n ∈ N imply µ∗(H,G) = µ(H,G) for all H ≤ G?
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For any H ≤ G, consider

α(H, t) =
|H|t−1|G||G′H|
|G′NG(H)|

, β(H, t) = α(H, t)− ω(H, t).

Let C∗(G) = {[H] ∈ C(H) | [H] < [G] and λ(H,G) ̸= 0}. If G satisfies the (λ, µ)-
property, then for any t ∈ N, the vector

βt(G) = (β(H, t))[H]∈C∗(G)

is an integer solution of the linear equation∑
[H]∈C∗(G)

λ(H,G)xH = 0. (5.3)

One could investigate about the dimension of the vector space generated by the vectors
βt(G), t ∈ N. For example, if G = A5, then we may order the elements of C∗(G) so that
H1 = A4, H2 = S3, H3 = D5, H4 = ⟨(1, 2, 3)⟩, H5 = ⟨(1, 2)(3, 4)⟩, H6 = 1. Then (5.3)
can be written in the form∑

[H]∈C∗(G)

λ(H,G)xH = −xH1 − xH2 − xH3 + xH4 + 2xH5 − xH6

and
β1(G) = (24, 24, 20, 39, 44, 59),

β2(G) = (84, 54, 50, 99, 74, 59),

β3(G) = (264, 114, 110, 279, 134, 59),

β4(G) = (804, 234, 230, 819, 254, 59),

β5(G) = (2424, 474, 470, 2439, 494, 59),

β6(G) = (7284, 954, 950, 7299, 974, 59).

The first three vectors β1(G), β2(G), β3(G) are linearly independent, while β4(G), β5(G)
and β6(G) can be obtained as linear combinations of β1(G), β2(G), β3(G).

The situation is completely different when G = S3. We may order the elements of
C∗(G) so that H1 = ⟨(1, 2, 3)⟩, H2 = ⟨(1, 2)⟩, H3 = 1. The equation (5.3) has in this
case the form xH1

+ xH2
− xH3

= 0 and βt(G) = (0, 2, 2) independently on the choice of
t.

Some properties of the vectors βt(G) are described in the following propositions.

Proposition 5.4. If H ∈ C∗(G), then β(H, t) ≥ 0 with equality if and only if G′ ≤ H. In
particular βt(G) is a non-negative vector and βt(G) = 0 if and only if G is nilpotent.

Proof. Notice that ω(H, t) ≤ |G : NG(H)|(|H|t − 1) + 1. So

β(H, t) ≥ |H|t−1|G||G′H|
|G′NG(H)|

− |G : NG(H)|(|H|t − 1)− 1

= |H|t|G : NG(H)| |G
′ ∩NG(H)|
|G′ ∩H|

− |G : NG(H)|(|H|t − 1)− 1 ≥ 0

with equality if and only if H ≥ G′.
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Proposition 5.5. The vector βt(G) is independent on the choice of t if and only if G is a
nilpotent group or a primitive Frobenius group, with cyclic Frobenius complement.

Proof. By the previous proposition, if G is nilpotent then βt(G) is the zero vector for any
t ∈ N, so we may assume that G is not nilpotent. Assume that βt(G) is independent on the
choice of t. Let H be a maximal non-normal subgroup of G. Then α(H, t) = |H|t · u with
u = |G : H|. Let H1, . . . ,Hu be the conjugates of H in G. For any J ⊆ {1, . . . , u}, let
αJ = | ∩j∈J Hj |. Then

β(H, t) =
∑

J ̸={1,...,u}

(−1)|J|+1|αJ |t.

We must have αJ = 1 for every choice of J, otherwise limt→∞ β(H, t) = ∞. Hence H
is a Frobenius complement and, since H is a maximal subgroup, the Frobenius kernel V
is an irreducible H-module. Since β(V, t) = |V |t(|H ′| − 1) does not depends on t, H
must be abelian, and consequently cyclic. So if βt(G) is independent of the choice of t,
then G is a primitive Frobenius group with a cyclic Frobenius complement. Conversely
assume G = V ⋊H, where H is cyclic and V and irreducible H-module. If X ∈ C∗(G),
then λ(X,G) ̸= 0, so X is an intersection of maximal subgroups of G and therefore either
V = G′ ≤ X, or X is conjugate to a subgroup of H. In the first case β(H, t) = 0.
Assume X = Kv for some K ≤ H and v ∈ V. Then β(H, t) = |K|t|V | − ω(K, t) =
|K|t|V | − (|V |(|K|t − 1) + 1) = |V | − 1.
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