

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA **https://doi.org/10.26493/1855-3974.2694.56a** (Also available at http://amc-journal.eu)

The A-Möbius function of a finite group

Francesca Dalla Volta

Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 55, 20126 Milano, Italy

Andrea Lucchini *

Universita degli Studi di Padova, Dipartimento di Matematica "Tullio Levi-Civita", ` Via Trieste 63, 35121 Padova, Italy

Received 11 September 2021, accepted 30 September 2022

Abstract

**EXERCUSE AND THE SECTION CONTROLLED AND CONTROLLED CONTROLLED SURFACES (SCIENCE CONTROLLED SURFACES (SCIENCE CONTROLLED MANUSCRIPT)

The** *A***-Möbius function of a finite group

Francesca Dalla Volta
** *Physicianes of Micro* The Möbius function of the subgroup lattice of a finite group G has been introduced by Hall and applied to investigate several different questions. We propose the following generalization. Let A be a subgroup of the automorphism group $Aut(G)$ of a finite group G and denote by $\mathcal{C}_A(G)$ the set of A-conjugacy classes of subgroups of G. For $H \leq G$ let $[H]_A = \{ H^a \mid a \in A \}$ be the element of $C_A(G)$ containing H. We may define an ordering in $C_A(G)$ in the following way: $[H]_A \leq [K]_A$ if $H^a \leq K$ for some $a \in A$. We consider the Möbius function μ_A of the corresponding poset and analyse its properties and possible applications.

Keywords: Groups, subgroup Lattice, Mobius function. ¨ Math. Subj. Class. (2020): 20D30, 05E16

1 Introduction

The Möbius function of a finite partially ordered set (poset) P is the map $\mu_P: P \times P \to \mathbb{Z}$ satisfying $\mu_P(x, y) = 0$ unless $x \leq y$, in which case it is defined inductively by the equations $\mu_P(x, x) = 1$ and $\sum_{x \le z \le y} \mu_P(x, z) = 0$ for $x < y$.

In a celebrated paper [7], P. Hall used for the first time the Möbius function μ of the subgroup lattice of a finite group G to investigate some properties of G , in particular to compute the number of generating t -tuples of G . A detailed investigation of the properties of the function μ associated to a finite group G is given by T. Hawkes, I. M. Isaacs and M.

^{*}Corresponding author.

E-mail addresses: francesca.dallavolta@unimib.it (Francesca Dalla Volta), lucchini@math.unipd.it (Andrea Lucchini)

Ozaydin in [8]. In that paper, the authors also consider the Möbius function λ of the poset of conjugacy classes of subgroups of G, where $[H] \leq [K]$ if $H \leq K^g$ for some $g \in G$ (see $[8, Section 7]$). In particular, they propose the interesting and intriguing question of comparing the values of μ and λ .

Ossycial in [3], In hits piace, the authors also consider the Mobilis function A of the poset of A consider the sign of the space of A consider α . For α for α , the anti-function α is the particular the p In this paper we aim to generalize the definitions and main properties of the functions μ and λ to a more general context. Let G and A be a finite group and a subgroup of the automorphism group $Aut(G)$ of G, respectively. Denote by $\mathcal{C}_{A}(G)$ the set of Aconjugacy classes of subgroups of G. For $H \leq G$ let $[H]_A = \{ H^a \mid a \in A \}$ be the element of $C_A(G)$ containing H. We may define an ordering in $C_A(G)$ in the following way: $[H]_A \leq [K]_A$ if $H^a \leq K$ for some $a \in A$; we consider the Möbius function μ_A of the corresponding poset. We will write $\mu_A(H, K)$ in place of $\mu_A([H]_A, [K]_A)$. When $A = \text{Inn}(G)$, we write $\mathcal{C}(G)$ and $[H]$, in place of $\mathcal{C}_{\text{Inn}(G)}(G)$ and $[H]_{\text{Inn}(G)}$. When $A = 1$, $\mu_A = \mu$ is the Möbius function in the subgroup lattice of G, introduced by P. Hall. In the case when $A = \text{Inn}(G)$ is the group of the inner automorphism, $\mu_{\text{Inn}(G)}$ coincides the Möbius function λ of the poset of conjugacy classes of subgroups of G, defined above. Note that for any subgroup A of Aut(G), we get $[G]_A = \{G\}.$

In Section 2, we prove some general properties of μ_A . In particular we prove the following result:

Proposition 1.1. Let G be a finite solvable group. If $G' \leq K \leq G$ and A is the subgroup of $\text{Inn}(G)$ *obtained by considering the conjugation with the elements of* K, *then* $\mu_A(H, G)$ = $\lambda(H, G)$ *for every* $H \leq G$.

To illustrate the meaning of the previous proposition, consider the following example. Let $G = A_4$ be the alternating group of degree 4 and A the subgroup of $\text{Inn}(G)$ induced by conjugation with the elements of $G' \cong C_2 \times C_2$. The posets $\mathcal{C}(G)$ and $\mathcal{C}_A(G)$ are different. For example there are three subgroups of G of order 2, which are conjugated in G , but not A-conjugated. However $\lambda(H, G) = \mu_A(H, G)$ for any $H \leq G$.

In Section 3, we generalize some result given by Hall in [7], about the cardinality $\phi(G, t)$ of the set $\Phi(G, t)$ of t-tuples (g_1, \ldots, g_t) of group elements g_i such that $G =$ $\langle g_1, \ldots, g_t \rangle$. As observed by P. Hall, using the Möbius inversion formula, it can be proved that

$$
\phi(G,t) = \sum_{H \le G} \mu(H,G)|H|^t. \tag{1.1}
$$

We generalize this formula, showing that $\phi(G, t)$ can be computed with a formula involving μ_A for any possible choice of A.

Theorem 1.2. For any finite group G and any subgroup A of $Aut(G)$,

$$
\phi(G,t) = \sum_{[H]_A \in \mathcal{C}_A(G)} \mu_A(H,G) |\cup_{a \in A} (H^a)^t|.
$$

If G is not cyclic, then $\phi(G, 1) = 0$, so we obtain the following equality, involving the values of μ_A .

Corollary 1.3. *If* G *is not cyclic, then*

$$
0 = \sum_{[H]_A \in \mathcal{C}_A(G)} \mu_A(H, G) | \cup_{a \in A} H^a |.
$$

Further generalizations are given in Section 4, where we consider the function $\phi^*(G, t)$, which is an analogue of $\phi(G, t)$: actually, $\phi^*(G, t)$ denotes the cardinality of the set of of t-tuples (H_1, \ldots, H_t) of subgroups of G such that $G = \langle H_1, \ldots, H_t \rangle$. As a corollary of our formula for computing $\phi^*(G, t)$, we obtain we following unexpected result.

Proposition 1.4. *Let* σ(X) *denote the number of subgroups of a finite group* X. *For any finite group* G, *the following equality holds:*

$$
1 = \sum_{H \leq G} \mu(H, G) \sigma(H).
$$

Finally, in Section 5, we consider one question originated from a result given by Hawkes, Isaacs and Özaydin in $[8]$: they proved that the equality

$$
\mu(1, G) = |G'| \lambda(1, G)
$$

holds for any finite solvable group G ; later Pahlings $[10]$ generalized the result proving that

$$
\mu(H, G) = |N_{G'}(H) : G' \cap H| \cdot \lambda(H, G)
$$
\n(1.2)

Further ge[n](#page-14-0)eralizations are given in Section 4, where we consider the function of $V(G, t)$ cannot be the set of of

vision is an analogue of $\phi(G, t)$; a retailly, $\phi'(G, t)$ cannot the calibration of G and that $G = (H_1, ..., H$ holds for any $H \leq G$ whenever G is finite and solvable. Following [4], we say that G satisfies the (μ, λ) -property if (1.2) holds for any $H \leq G$. Several classes of non-solvable groups satisfy the (μ, λ) -property, for example all the minimal non-solvable groups (see [4]). However it is known that the (μ, λ) -property does not hold for every finite group. For instance, it does not hold for the following finite almost simple groups: A_9 , S_9 , A_{10} , S_{10} , $A_{11}, S_{11}, A_{12}, S_{12}, A_{13}, S_{13}, J_2, PSU(3,3), PSU(4,3), PSU(5,2), M_{12}, M_{23}, M_{24},$ $PSL(3, 11), HS, Aut(HS), He Aut(H), McL, PSL(5, 2), G_2(4), Co_3, P\Omega^-(8, 2),$ $P\Omega^+(8,2)$. It is somehow intriguing to notice that although the (μ, λ) -property fails for the sporadic groups M_{12} , J_2 , McL , it holds for their automorphism groups.

We prove the following generalization of Pahlings's result.

Theorem 1.5. *Let* N *be a solvable normal subgroup of a finite group* G*. If* G/N *satisfies the* (μ, λ) -property, then G also satisfies the (μ, λ) -property.

An almost immediate consequence of the previous theorem is the following.

Corollary 1.6. $PSU(3,3)$ *is the smallest group which does not satisfy the* (μ, λ) *property.*

In the last part of Section 5, we use Theorem 1.2 to deduce some consequences of the (μ, λ) -property. In particular we prove the following theorem.

Theorem 1.7. *Suppose that a finite group* G *satisfies the* (µ, λ)*-property. Then, for every positive integer* t, *the following equality is satisfied:*

$$
\sum_{[H]\in \mathcal{C}(G)} \lambda(H,G) \left(\frac{|H|^{t-1}|G||G'H|}{|G'N_G(H)|} - |\cup_{a\in A} (H^a)^t| \right) = 0.
$$

Some open questions are proposed along the paper.

2 Applying some general properties of the Möbius function

Given a poset P, a closure on P is a function^{$-$}: $P \rightarrow P$ satisfying the following three conditions:

- (a) $x \leq \bar{x}$ for all $x \in P$;
- (b) if $x, y \in P$ with $x \leq y$, then $\bar{x} \leq \bar{y}$;
- (c) $\bar{\bar{x}} = \bar{x}$ for all $x \in P$.

If \bar{I} is a closure map on P, then $\bar{P} = \{x \in P | \bar{x} = x\}$ is a poset with order induced by the order on P. We have:

Theorem 2.1 (The closure theorem of Crapo [3]). Let P be a finite poset and let $\bar{\cdot}: P \to P$ *be a closure map. Fix* $x, y \in P$ *such that* $y \in \overline{P}$ *. Then*

$$
\sum_{x \le z \le y, \overline{z} = y} \mu_P(x, z) = \begin{cases} \mu_{\bar{P}}(x, y) & \text{if } x = \bar{x} \\ 0 & \text{otherwise.} \end{cases}
$$

In [7], P. Hall proved that if $H < G$, then $\mu(H, G) \neq 0$ only if H is an intersection of maximal subgroups of G . Using the previous theorem, the following more general statement can be obtained.

Proposition 2.2. *If* $H < G$ *and* $\mu_A(H, G) \neq 0$ *, then* H *can be obtained as intersection of maximal subgroups of* G.

2 A[p](#page-3-2)plying so[m](#page-3-1)e general properties of the Möbius function

Given a poset P , a dosure or P is a function $\because P \rightarrow P$ satisfying the following three

conditions:

(b) $x \leq \hat{u}$ for all $x \in P$,

(c) $\hat{u} = \hat{u}$ for a co *Proof.* Let H be a proper subgroup of G and let \overline{H} be the intersection of the maximal subgroups of G containing H. Moreover let $\overline{G} = G$. The map $[H]_A \mapsto [\overline{H}]_A$ is a well defined closure map on $C_A(G)$. Apply Theorem 2.1, with $x = [H]_A$ and $y = [G]_A$. Since $\overline{K} = G$ if and only if $K = G$, we have that $\mu_A(H, G) = 0$ if $H \neq \overline{H}$.

An element a of a poset P is called conjunctive if the pair $\{a, x\}$ has a least upper bound, written $a \vee x$, for each $x \in \mathcal{P}$.

Lemma 2.3 ([8, Lemma 2.7]). Let P be a poset with a least element 0, and let $a > 0$ be a *conjunctive element of* P *. Then, for each* $b > a$ *, we have*

$$
\sum_{a \vee x = b} \mu_{\mathcal{P}}(0, x) = 0.
$$

From the above 2.3, the following Lemma 2.4 follows easily. Together with Lemma 2.5 and Lemma 2.7, this allows us to prove Proposition 1.1.

Lemma 2.4. Let N be an A-invariant normal subgroup of G and $H \leq G$. If $H < HN <$ G, *then*

$$
\mu_A(H, G) = -\sum_{[Y]_A \in \mathcal{S}_A(H, N)} \mu_A(H, Y),
$$

with $S_A(H, N) = \{ [Y]_A \in C_A(G) \mid [H]_A \leq [Y]_A < [G]_A$ and $YN = G \}.$

Proof. Let P be the interval $\{[K]_A \in C_G(A) \mid [H]_A \leq [K]_A \leq [G]_A\}$. Notice that $[HN]_A$ is a conjunctive element of P. Indeed $[HN]_A \vee [K]_A = [KN]_A$ for every $[K]_A \in$ P. So the conclusion follows immediately from Lemma [2.3.](#page-3-2)

Lemma 2.5. *Let* K *and* A *be a subgroup of* G *and the subgroup of* Inn(G) *induced by the conjugation with the elements of* K*, respectively. Assume that* N *is an abelian minimal normal subgroup of* G *contained in* K *and* H < HN ≤ G. *Then*

$$
\mu_A(H, G) = -\mu_A(HN, G)\gamma_A(N, H),
$$

where $\gamma_A(N, H)$ *is the number of A-conjugacy classes of complements of* N *in* G *containing* H.

Proof. If $HN = G$, then H is a maximal subgroup of G, hence $\mu_A(H, G) = -1$, while $\mu_A(HN, G) = \mu_A(G, G) = 1$ and $\gamma_A(N, H) = 1$, so the statement is true. So we may assume $HN < G$ and apply Lemma 2.4. Suppose $[Y]_A \in S_A(H, N)$. Notice that, since $YN = G$ and N is abelian, $Y \cap N$ is normal in G. Moreover $N \nleq G$, since $Y \nleq G = YN$. By the minimality of N as normal subgroup, we conclude $Y \cap N = 1$. Let

$$
C = \{ J \le G \mid H \le J \le Y \}, \quad D = \{ L \le G \mid HN \le L \}
$$

$$
C_A = \{ [J]_A \in C_A(G) \mid [H]_A \le [J]_A \le [Y]_A \}, \quad D_A = \{ [L]_A \in C_A(G) \mid [HN]_A \le [L]_A \}.
$$

Lemma 25. Let K and A is a subs[p](#page-4-1)ace of G and the subspace of Lui(G) taskets that α is a subspace of G and A is a subspa The map $\eta: \mathcal{C} \to \mathcal{D}$ sending J to JN is an order preserving bijection. Clearly, if $J_2 = J_1^x$ for some $x \in K$, then $\eta(J_2) = NJ_2 = NJ_1^x = (NJ_1)^x = (\eta(J_1))^x$. Conversely assume $\eta(J_2) = (\eta(J_1))^x$ with $x \in K$. Since $YN = G$, $x = yn$ with $n \in N$ and $y \in Y \cap K$. Thus $J_2N = (J_1N)^x = (J_1N)^y$ and consequently, applying the Dedekind law, $J_2 =$ $J_2(Y \cap N) = J_2N \cap Y = (J_1N)^y \cap Y = (J_1N \cap Y)^y = J_1^y$. It follows that η induces an order preserving bijection from \mathcal{C}_A to \mathcal{D}_A , but then $\mu_A(H, Y) = \mu_A(HN, YN) =$ $\mu_A(HN, G)$.

The statement of the previous lemma leads to the following open question.

Question 2.6. Let G be a finite group, $A \leq Aut(G)$ and N an A-invariant normal subgroup of G. Does $\mu_A(HN, G)$ divide $\mu_A(H, G)$ for every $H \leq G$?

The following lemma is straightforward.

Lemma 2.7. *Let* A *be a subgroup of* Aut(G) *and* N *an* A*-invariant normal subgroup of G. Every* $a \in A$ *induces an automorphism* \overline{a} *of G/N. Let* $\overline{A} = {\overline{a} \mid a \in A}$ *. Then, for any* $H \leq G$, $\mu_A(HN, G) = \mu_{\overline{A}}(HN/N, G/N)$.

Proof of Proposition 1.1. We work by induction on $|G| \cdot |G : H|$. The statement is true if G is abelian. Assume that G' contains a minimal normal subgroup, say N, of G. If $N \leq H$, then, by Lemma 2.7

$$
\lambda(H, G) = \lambda(H/N, G/N) = \mu_{\overline{A}}(H/N, G/N) = \mu_A(H, G).
$$

So we may assume $N \nleq H$. If H is not an intersection of maximal subgroups of G, then $\lambda(H, G) = \mu_A(H, G) = 0$. Suppose $H = M_1 \cap \cdots \cap M_t$ where M_1, \ldots, M_t are maximal subgroups of G. In particular N is not contained in M_i for some i, so M_i is a complement of N in G containing H and $N \cap H = 1$. By Lemma 2.5, we have

$$
\lambda(H, G) = -\lambda(HN, G)\gamma(N, H), \quad \mu_A(H, G) = -\mu_A(HN, G)\gamma_A(N, H),
$$

where $\gamma(N, H)$ is the number of conjugacy classes of complements of N in G containing H and $\gamma_A(N, H)$ is the number of A-conjugacy classes of these complements. Suppose that K_1, K_2 are two conjugated complements of N in G containing H. Then $K_2 = K_1^n$ for some $n \in N_N(H)$. Since $N \leq G' \leq K$, it follows $\gamma(N, H) = \gamma_A(N, H)$. Moreover, by induction, $\lambda(HN, G) = \mu_A(HN, G)$, hence we conclude $\lambda(H, G) = \mu_A(H, G)$.

3 Generalizing a formula of Philip Hall

3 Generalizing a formula of Phillip Hall

We have solved any the functions $\Psi_{\mathcal{L}}(H,t)$, and $\phi(H,t)$ in the general case of any possible independent of $\mathcal{A}(H,t)$ and
 $\phi(H,t)$ in the general case of any possible indep We begin with introducing the functions $\Psi_A(H, t)$ and $\psi_A(H, t)$, analogue of $\Phi(H, t)$ and $\phi(H, t)$ in the general case of any possible subgroup A of Aut(G).

For any $H \in C_A(G)$ and any positive integer t, let

- 1. $\Omega_A(H,t) = \bigcup_{a \in A} (H^a)^t;$
- 2. $\omega_A(H, t) = |\Omega_A(H, t)|$;
- 3. $\Psi_A(H,t) = \{(g_1,\ldots,g_t) \in G^t \mid \langle g_1,\ldots,g_t \rangle = H^a \text{ for some } a \in A\};$
- 4. $\psi_A(H, t) = |\Psi_A(H, t)|$.

If $(x_1, \ldots, x_t) \in \Omega_A(H, t)$, then $\langle x_1, \ldots, x_t \rangle \leq H^a$ for some $a \in A$, hence $\langle x_1, \ldots, x_t \rangle =$ K for some $K \leq G$ with $[K]_A \leq [H]_A$. Thus

$$
\sum_{[K]\leq_A[H]} \psi_A(K,t)=\omega_A(H,t)
$$

and therefore, by the Möbius inversion formula,

$$
\sum_{[H]\in \mathcal{C}_A(G)} \mu_A(H,G)\omega_A(H,t)=\psi_A(G,t).
$$

On the other hand $\psi_A(G, t) = \phi(G, t)$ so we have proved the following formula.

Theorem 3.1. For any finite group G and any subgroup A of $Aut(G)$,

$$
\phi(G,t)=\!\!\!\!\!\sum_{[H]\in\mathcal{C}_A(G)}\!\!\!\!\!\!\!\mu_A(H,G)\omega_A(H,t).
$$

Notice that if $A = 1$, then $\omega_A(H, t) = |H^t|$, so that the result by Hall given in (1.1) is a particular case of the previous theorem.

Corollary 3.2. *If* G *is not cyclic, then*

$$
0 = phi(G, 1) = \sum_{[H] \in \mathcal{C}_A(G)} \mu_A(H, G) \omega_A(H, 1).
$$

Taking $A = \text{Inn}(G)$, we deduce in particular that if G is not cyclic, then

$$
\sum_{H \in \mathcal{C}(H)} \lambda(H, G) \omega_{\text{Inn}(G)}(H, 1) = \sum_{H \in \mathcal{C}(H)} \lambda(H, G) |\cup_g H^g| = 0.
$$

For example, if $G = S_4$, then the values of $\lambda(H, G)$ and $|\cup_g H^g|$ are as in the following table and $24 - 12 - 16 - 15 + 4 + 9 + 7 - 1 = 0$.

If $G = A_5$, then the values of $\lambda(H, G)$, $\omega_{\text{Inn}(G)}(H, 1) = |\cup_g H^g|$, $\omega_{\text{Inn}(G)}(H, 2) =$ $|\bigcup_{g} (H^{g})^2|$ (taking only the subgroups H with $\lambda(H, G) \neq 0$) are as in the following table and 60-36-36-40+21+32-1=0.

Moreover

$$
3600 - 636 - 306 - 550 + 81 + 2 \cdot 46 - 1 = 2280 = \frac{19}{30} \cdot 3600 = \phi(A_5, 2).
$$

If $G = D_p = \langle a, b \mid a^p = 1, b^2 = 1, a^b = a^{-1} \rangle$ and p is an odd prime, then the behaviour of the subgroups in $C(G)$ is described by the following table.

Accept $\frac{X_1H_1(G)}{X_2}$ and $\frac{1}{2}$

Accept $\frac{1}{2}$

Accept $\frac{1}{2}$

Accept $\frac{1}{2}$

Accept $\frac{1}{2}$
 $\frac{1}{2}$ Another interesting example is given by considering $G = C_p^n$ and $A = \text{Aut}(G)$. Let $H \cong C_p^{n-1}$ be a maximal subgroup of G. Then, for $K \leq G$, $\mu_A(K, G) \neq 0$ if and only if either $[K]_A = [G]_A$ or $[K]_A = [H]_A$. Clearly $\cup_{\alpha \in \text{Aut}(G)} H^{\alpha} = G$ so $\mu_A(G, G)\omega_A(G, 1) - \mu_A(H, G)\omega_A(H, 1) = |G| - |G| = 0$. More generally, $\Omega_A(H, t)$ is the set of t-tuples (x_1, \ldots, x_t) such that $(x_1, \ldots, x_t) \in K^t$ for some maximal subgroup K of G, so $\mu_A(G, G)\omega_A(G, t) - \mu_A(H, G)\omega_A(H, t) = |G|^t - \omega_A(H, t)$ is the number of generating t -tuples of G .

Another generalization of (1, it, essentially due to Gacchiaz, the beam described by

Brown in H. Section 2.21, Let N be a normal subgroup of C and suppose that G/N dues

for exact the section of G/N , α , β is $\$ Another generalization of (1.1) , essentially due to Gaschütz, has been described by Brown in [1, Section 2.2]. Let N be a normal subgroup of G and suppose that G/N admits t generators for some integer t. Let $y = (y_1, \ldots, y_t)$ be a generating t-tuple of G/N and denote by $P(G, N, t)$ the probability that a random lift of y to a t-tuple of G generates G. Then $P(G, N, t) = \phi(G, N, t) / |N|^t$, where $\phi(G, N, t)$ is the number of generating ttuples of G lying over y. As is showed in [1, Section 2.2], using again the Möbius inversion formula it can be proved:

$$
\phi(G, N, t) = \sum_{H \le G, HN = G} \mu(H, G) |H \cap N|^{t}.
$$
\n(3.1)

This formula can be generalized in our contest in the following way:

Theorem 3.3. Let N be an A-invariant normal subgroup of G and fix $g_1, \ldots, g_t \in G$ with *the property that* $G = \langle g_1, \ldots, g_t \rangle N$. *Define*

• $\Omega_A(H, N, t) = \{(n_1, \ldots, n_t) \mid \langle g_1 n_1, \ldots, g_t n_t \rangle \leq H^a$ for some $a \in A\};$

•
$$
\omega_A(H, N) = |\Omega_A(H, N, t)|
$$

and let $C_A(G, N) = \{ [H]_A \in C_A(G) \mid HN = G \}$. *Then*

$$
\phi(G, N, t) = \sum_{[H]_A \in \mathcal{C}_A(G, N)} \mu_A(H, G) \omega_A(H, N, t).
$$

Proof. Fix $g_1, \ldots, g_t \in G$ with the property that $G = \langle g_1, \ldots, g_t \rangle N$. Then $\phi(G, N, t)$ is the cardinality of the set

$$
\Phi(G, N, g_1, \dots, g_t) = \{(n_1, \dots, n_t) \in N^t \mid \langle g_1 n_1, \dots, g_t n_t \rangle = G\}.
$$

Set:

$$
\Psi_A(H, N, g_1, \dots, g_t) = \{ (n_1, \dots, n_t) \in N^t \mid \langle g_1 n_1, \dots, g_t n_t \rangle = H^a \text{ for some } a \in A \};
$$

$$
\psi_A(H, N, t) = |\Psi_A(H, N, g_1, \dots, g_t)|.
$$

Notice that $\omega_A(H, N, t) \neq 0$ if and only if $[H]_A \in \mathcal{C}_A(G, N)$. If $(n_1, \ldots, n_t) \in \Omega_A(H, N, t)$, then $\langle g_1 n_1, \ldots, g_t n_t \rangle \leq H^a$ for some $a \in A$, and $\langle g_1 n_1, \ldots, g_t n_t \rangle = K$ for some $K \leq G$ with $[K]_A \leq [H]_A$. Thus

$$
\sum_{[K]_A\leq [H]_A}\psi_A(K,N,t)=\omega_A(H,N,t)
$$

and therefore, by the Möbius inversion formula

$$
\sum_{[H]\in\mathcal{C}_A(G,N)}\mu_A(H,G)\omega_A(H,N,t)=\psi_A(G,N,t)=\phi(G,N,t)\quad \Box
$$

4 Another application of Möbius inversion formula

4 Another opplication of Möbius inversion formula

Denset by $\Phi^*(G, t)$ the set of Angles $(H_1, ..., H_1)$ of subgroups of G such that $G =$
 $\{H_1, ..., H_1\}$ and by $\phi^*(G, t)$ the contradity of this set. For any $H \in \mathcal{L}_A(G)$ a Denote by $\Phi^*(G, t)$ the set of t-tuples (H_1, \ldots, H_t) of subgroups of G such that $G =$ $\langle H_1, \ldots, H_t \rangle$ and by $\phi^*(G, t)$ the cardinality of this set. For any $H \in C_A(G)$ and any positive integer t , let

1. $\Sigma_A(H,t) = \{(H_1,\ldots,H_t) \mid \langle H_1,\ldots,H_t\rangle \leq H^a \text{ for some } a \in A\};$

2.
$$
\sigma_A(H,t) = |\Sigma_A(H,t)|;
$$

- 3. $\Gamma_A(H,t) = \{ (H_1,\ldots,H_t) \mid \langle H_1,\ldots,H_t \rangle = H^a \text{ for some } a \in A \};$
- 4. $\gamma_A(H, t) = |\Gamma_A(H, t)|$.

Theorem 4.1.

$$
\phi^*(G,t) = \sum_{[H] \in \mathcal{C}_A(G)} \mu_A(H,G) \sigma_A(H,t).
$$

Proof. If $(H_1, \ldots, H_t) \in \Sigma_A(H, t)$, then $\langle H_1, \ldots, H_t \rangle = K$ for some $K \leq G$ with $[K]_A \leq [H]_A$. Thus

$$
\sum_{[K]\leq_A[H]} \gamma_A(K,t) = \sigma_A(H,t)
$$

and therefore, by the Möbius inversion formula,

$$
\sum_{[H]\in\mathcal{C}_A(G)}\mu_A(H,G)\sigma_A(H,t)=\gamma_A(G,t)=\phi^*(G,t).\quad \Box
$$

In the particular case when $A = 1, \sigma_A(H, t) = \sigma(H)^t$, denoting with $\sigma(H)$ the number of subgroups of H . So we obtain the following corollary:

Corollary 4.2.

$$
\phi^*(G,t) = \sum_{H \leq G} \mu(H,G)\sigma(H)^t.
$$

Clearly $\Sigma^*(G,t) = \{G\}$, so $\phi^*(G,1) = 1$ and therefore it follows:

Corollary 4.3.

$$
1 = \sum_{H \in H_A} \mu_A(H, G) \sigma_A(H, 1).
$$

In particular:

Corollary 4.4.

$$
1 = \sum_{H \le G} \mu(H, G) \sigma(H).
$$

For example, if $G = A_5$ then the subgroups of G with $\mu(H, G) \neq 0$ are listed in the following table (where $\kappa(H, G)$ denote the numbers of conjugate of H in G).

According with Corollary 4.4 , $1 = 59 - 5 \cdot 10 - 10 \cdot 6 - 6 \cdot 8 + 2 \cdot 10 \cdot 2 + 4 \cdot 15 \cdot 2 - 60$.

For a finite group G, denote by $P(G, t)$ and $P^*(G, t)$ the probability of generating G with, respectively, t elements or t subgroups. It can be easily seen that $P(G, t)$ = $P(G/\text{Frat}(G), t)$, but in general $P^*(G, t) \neq P^*(G/\text{Frat}(G), t)$. For example, if $G \cong$ C_{p^a} , then G and $H \cong C_{p^a-1}$ are the unique subgroups of G with non trivial Möbius number and therefore

$$
P(G,t) = \frac{|G|^t - |H|^t}{|G|^t} = 1 - \frac{1}{p^t},
$$

$$
P^*(G,t) = \frac{\sigma(G)^t - \sigma(H)^t}{\sigma(G)^t} = 1 - \frac{a^t}{(a+1)^t}.
$$

So $P(G, t)$ is independent of a, while $P^*(G, t)$ tends to 0 when a tends to infinity.

5 The (μ, λ) -property

Proof of Thereom 1.5. Working by induction on the order of G, it suffices to prove the statement in the particular case when N is an abelian minimal normal subgroup of G . Let H be a subgroup of G. If $N \leq H$, then

$$
\mu(H, G) = \mu(H/N, G/N) = \lambda(H/N, G/N)|N_{G'N/N}(H/N): H/N \cap G'N/N|
$$

= $\lambda(H, G)|N_{G'N}(H): H \cap G'N| = \lambda(H, G)|NN_{G'}(H): N(H \cap G')|$
= $\lambda(H, G)\frac{|N_{G'}(H): H \cap G'|}{|N \cap N_{G'}(H): N \cap H \cap G'|} = \lambda(H, G)\frac{|N_{G'}(H): H \cap G'|}{|N \cap G': N \cap G'|}$
= $\lambda(H, G)|N_{G'}(H): H \cap G'|.$

According with Counter and B = 1.1 5 = 10

An 1 1 5 = 10

An 1 1 5 = 10
 $\frac{X_2}{(1,2,3,1)}$ = 10 = 10
 $\frac{(7,2,3)}{(1,2,3,4)}$ = 10 = 3
 $\frac{(7,2,3)}{(1,2,3,5)}$ = 2 = 10

According with Corollary 4.4, 1 = 30 = 5 -10 = 10 - 16 -So we may assume $N \nleq H$. If H is not an intersection of maximal subgroups of G, then $\mu(G, H) = \lambda(G, H) = 0$. So we may assume $H = M_1 \cap \cdots \cap M_t$ where M_1, \ldots, M_t are maximal subgroups of G . Since N is not contained in H , then N is not contained in M_i for some i, but then M_i is a complement of N in G containing H and $N \cap H = 1$. If $g \in N_G(HN)$, then $g = xn$ with $x \in M_i$ and $n \in N$. In particular $H^x \leq HN \cap M_i =$ $H(N \cap M_i) = H$, so $N_G(HN) = N_G(H)N$. By Lemma 2.5, we have

$$
\frac{\mu(H,G)}{\lambda(H,G)} = \frac{\mu(HN,G)}{\lambda(HN,G)} \frac{\kappa}{\delta} = |N_{G'N}(HN) : HN \cap G'N| \frac{\kappa}{\delta} = |NN_{G'}(H) : HN \cap G'N| \frac{\kappa}{\delta}
$$

where k is the number of complements of N in G containing H and δ is the number of conjugacy classes of these complements. First assume that $N \leq Z(G)$. Then $\kappa = \delta$,

 $G' = M'_i \leq M_i, N \cap G' = 1$ and

$$
\frac{\mu(H, G)}{\lambda(H, G)} = |NN_{G'}(H): HN \cap G'N| \frac{\kappa}{\delta} = |NN_{G'}(H): HN \cap G'N| \n= |NN_{G'}(H): N(H \cap G')| = |N_{G'}(H): H \cap G'|.
$$

Finally assume $N \nleq Z(G)$. Then $N \leq G'$, $\kappa/\delta = |N_N(H)|$ and

$$
\frac{\mu(H, G)}{\lambda(H, G)} = |NN_{G'}(H): HN \cap G'N|\frac{\kappa}{\delta} = |NN_{G'}(H): N(H \cap G')||N_N(H)|
$$

=
$$
\frac{|N||N_{G'}(H)|}{|N_N(H)|} \frac{|N_N(H)|}{|N||H \cap G'|} = |N_{G'}(H): H \cap G'|.
$$

 $G = M_1 \le M_2, N \cap G' = 1$ an[d](#page-5-1)
 $\mu(H, G) = |N \Lambda_{\mathcal{O}}(H) : H \Lambda \cap G'N \frac{R}{N} = |N \Lambda_{\mathcal{O}}(H) : H \Lambda \cap G'N|$
 $\lambda(H, G) = |N \Lambda_{\mathcal{O}}(H) : N(H \cap G')| = |N \mu_{\mathcal{O}}(H) : H \cap G'|$.

Finally assume $N \not\subseteq \mathcal{U}(I)$, then $N \leq G, \kappa_0 \delta = |N \nu_{\mathcal{O}}(H) : N(H \cap G')$ *Proof of* Corollary 1.6*.* Suppose that G has minimal order with respect to the property that G does not satisfy the (μ, λ) property. By the previous proposition, G contains no abelian minimal normal subgroup and therefore $\operatorname{soc}(G) = S_1 \times \cdots \times S_t$ is a direct product of nonabelian finite simple groups. If $|G| \leq |PSU(3,3)| = 6048$, then either $t = 1$ or $G = \text{soc}(G) = A_5 \times A_5$. So it suffices to check that $A_5 \times A_5$ and any almost simple group of order at most 6048 satisfies the (μ, λ) property. Recall that the table of marks of a finite group G is a matrix whose rows and columns are labelled by the conjugacy classes of subgroups of G and where for two subgroups A and B the (A, B) -entry is the number of fixed points of B in the transitive action of G on the cosets of A in G . Since, for every $H \leq G$, $\lambda(H, G)$ and $\mu(H, G)$ can be computed from the table of marks of G (see [10, Proposition 1]), our proof can be easily completed using the library of table of marks available in GAP [5].

We may use Theorem 3.1 to deduce some consequences of the (μ, λ) -property.

Theorem 5.1. *Suppose that a finite group* G *satisfies the* (μ, λ) -property. Then

$$
\sum_{[H]\in\mathcal{C}(G)} \lambda(H,G) \left(\frac{|H|^{t-1}|G||G'H|}{|G'N_G(H)|} - \omega(H,t) \right) = 0.
$$
\n(5.1)

Proof. By Theorem 3.1,

$$
\sum_{H \in \mathcal{C}(G)} \lambda(H, G) \omega(H, t) = \phi(G, t) = \sum_{H \leq G} \mu(H, G)|H|^{t}
$$
\n
$$
= \sum_{H \in \mathcal{C}(G)} \mu(H, G)|G: N_G(H)||H^{t}|
$$
\n
$$
= \sum_{H \in \mathcal{C}(G)} \lambda(H, G)|N_{G'}(H): G' \cap H||G: N_G(H)||H^{t}|
$$
\n
$$
= \sum_{H \in \mathcal{C}(G)} \lambda(H, G) \frac{|H|^{t}|G||N_{G'}(H)|}{|G' \cap H||N_G(H)|}
$$
\n
$$
= \sum_{H \in \mathcal{C}(G)} \lambda(H, G) \frac{|H|^{t-1}|G||G'H|}{|G'N_G(H)|}. \quad \Box
$$

A natural question is whether (\mathcal{S}_n) is then as sufficient condition for the (y_i) , $\mathcal{A}(y_i)$, \math A natural question is whether (5.1) is also a sufficient condition for the (μ, λ) -property. For any $H \leq G$, set $\mu^*(H, G) = |N_{G'}(H) : G' \cap H|\lambda(H, G)$. The validity of (5.1) is equivalent to

$$
\sum_{H \in \mathcal{C}(G)} \lambda(H, G) \omega(H, t) - \sum_{H \in \mathcal{C}(G)} \mu^*(H, G)|H|^t |G : N_G(H)| = 0.
$$

In any case we must have

$$
\sum_{H \in \mathcal{C}(G)} \lambda(H, G) \omega(H, t) - \sum_{H \in \mathcal{C}(G)} \mu(H, G) |H|^t |G : N_G(H)| = 0.
$$

So (5.1) is equivalent to

$$
\sum_{H \in \mathcal{C}(G)} \frac{(\mu(H, G) - \mu^*(H, G))|H|^t}{|N_G(H)|} = 0.
$$

Let $\mathcal{T} = \{ [H] \in \mathcal{C}(G) \mid \mu(H, G) \neq \mu^*(H, G) \}$. Then (5.1) is true if and only if

$$
\sum_{[H]\in\mathcal{T}}\frac{(\mu(H,G) - \mu^*(H,G))|H|^t}{|N_G(H)|} = 0.
$$
\n(5.2)

For example, if $G = PSU(3, 3)$, then T consists of four conjugacy classes of subgroups and the corresponding values are given by the following table:

In this case (5.2) is equivalent to

$$
2^{t-1} - 6^{t-1} - 8^{t-1} + 24^{t-1} = 0
$$

which is true only if $t = 1$.

For any positive integer n let

$$
\tau(n) = \sum_{H \in \mathcal{T}, |H| = n} \frac{\mu(H, g) - \mu^*(H, G)}{|N_G(H)|}.
$$

Proposition 5.2. *A finite group* G *satisfies* (5.1) *for every positive integer* t *if and only if* $\tau(n) = 0$ *for any* $\in \mathbb{N}$.

Question 5.3. Does $\tau(n) = 0$ for all $n \in \mathbb{N}$ imply $\mu^*(H, G) = \mu(H, G)$ for all $H \leq G$?

For any $H \leq G$, consider

$$
\alpha(H,t) = \frac{|H|^{t-1}|G||G'H|}{|G'N_G(H)|}, \quad \beta(H,t) = \alpha(H,t) - \omega(H,t).
$$

Let $\mathcal{C}^*(G) = \{ [H] \in \mathcal{C}(H) \mid [H] < [G] \text{ and } \lambda(H, G) \neq 0 \}.$ If G satisfies the (λ, μ) property, then for any $t \in \mathbb{N}$, the vector

$$
\beta_t(G) = (\beta(H, t))_{[H] \in \mathcal{C}^*(G)}
$$

is an integer solution of the linear equation

$$
\sum_{[H]\in C^*(G)} \lambda(H, G)x_H = 0.
$$
\n(5.3)

One could investigate about the dimension of the vector space generated by the vectors $\beta_t(G)$, $t \in \mathbb{N}$. For example, if $G = A_5$, then we may order the elements of $\mathcal{C}^*(G)$ so that $H_1 = A_4, H_2 = S_3, H_3 = D_5, H_4 = \langle (1, 2, 3) \rangle, H_5 = \langle (1, 2)(3, 4) \rangle, H_6 = 1$. Then (5.3) can be written in the form

$$
\sum_{[H]\in\mathcal{C}^*(G)} \lambda(H,G)x_H = -x_{H_1} - x_{H_2} - x_{H_3} + x_{H_4} + 2x_{H_5} - x_{H_6}
$$

and

$$
\beta_1(G) = (24, 24, 20, 39, 44, 59),\n\beta_2(G) = (84, 54, 50, 99, 74, 59),\n\beta_3(G) = (264, 114, 110, 279, 134, 59),\n\beta_4(G) = (804, 234, 230, 819, 254, 59),\n\beta_5(G) = (2424, 474, 470, 2439, 494, 59),\n\beta_6(G) = (7284, 954, 950, 7299, 974, 59).
$$

The first three vectors $\beta_1(G)$, $\beta_2(G)$, $\beta_3(G)$ are linearly independent, while $\beta_4(G)$, $\beta_5(G)$ and $\beta_6(G)$ can be obtained as linear combinations of $\beta_1(G)$, $\beta_2(G)$, $\beta_3(G)$.

The situation is completely different when $G = S_3$. We may order the elements of $C^*(G)$ so that $H_1 = \langle (1,2,3) \rangle$, $H_2 = \langle (1,2) \rangle$, $H_3 = 1$. The equation (5.3) has in this case the form $x_{H_1} + x_{H_2} - x_{H_3} = 0$ and $\beta_t(G) = (0, 2, 2)$ independently on the choice of t.

Some properties of the vectors $\beta_t(G)$ are described in the following propositions.

Proposition 5.4. *If* $H \in C^*(G)$, *then* $\beta(H, t) \geq 0$ *with equality if and only if* $G' \leq H$ *. In particular* $\beta_t(G)$ *is a non-negative vector and* $\beta_t(G) = 0$ *if and only if* G *is nilpotent.*

Proof. Notice that $\omega(H, t) \leq |G : N_G(H)|(|H|^t - 1) + 1$. So

For any
$$
H \leq G
$$
, consider
\n
$$
\alpha(H, t) = \frac{|H|^{t-1}|G||G^tH|}{|G^tN_G(H)|}, \quad \beta(H, t) = \alpha(H, t) - \omega(H, t).
$$
\nLet $C^*(G) = \{[H] \in C(H)$ $[H] \in G | \text{ and } \lambda(H, G) \neq 0\}$. If G satisfies the (λ, μ) -
\nproperty, then for any $t \in \mathbb{N}$, the vector
\n $\beta_t(G) = (\beta(H, t))|\mu| \in C^*(G)$
\nis an integer solution of the linear equation
\n
$$
\sum_{[H] \in C^*(G)} \lambda(H, G) x_H = 0.
$$
\n(5.3)
\nOne could investigate about the dimension of the vector space generated by the vectors
\n $\beta_t(G), t \in \mathbb{N}$. For example, if $G = A_5$, then we may order the elements of $C^*(G)$ so that
\n $H_1 = A_4, H_2 = S_5, H_3 = (1, 2, 3)), H_0 = \langle (1, 2)(3, 4)), H_0 = 1$. Then (5.3)
\ncan be written in the form
\n
$$
\sum_{[H] \in C^*(G)} \lambda(H, G) x_H = -x_{H_1} - x_{H_2} - x_{H_3} + x_{H_1} + 2x_{H_5} - x_{H_6}
$$
\n
$$
\beta_2(G) = (84, 54, 50, 99, 74, 59),
$$
\n
$$
\beta_3(G) = (264, 114, 110, 279, 134, 59),
$$
\n
$$
\beta_4(G) = (264, 114, 110, 279, 134, 59),
$$
\n
$$
\beta_5(G) = (284, 474, 470, 2439, 494, 59),
$$
\n
$$
\beta_6(G) = (284, 144, 470, 2439, 494, 59),
$$
\n
$$
\beta_6(G) = (284, 134, 31, 20, 819, 254, 290, 819, 56),
$$
\n
$$
\beta_6
$$

with equality if and only if $H \geq G'$.

Proposition 5.5. *The vector* $\beta_t(G)$ *is independent on the choice of t if and only if* G *is a nilpotent group or a primitive Frobenius group, with cyclic Frobenius complement.*

Proof. By the previous proposition, if G is nilpotent then $\beta_t(G)$ is the zero vector for any $t \in \mathbb{N}$, so we may assume that G is not nilpotent. Assume that $\beta_t(G)$ is independent on the choice of t. Let H be a maximal non-normal subgroup of G. Then $\alpha(H,t) = |H|^t \cdot u$ with $u = |G : H|$. Let H_1, \ldots, H_u be the conjugates of H in G. For any $J \subseteq \{1, \ldots, u\}$, let $\alpha_J = |\bigcap_{i \in J} H_i|$. Then

$$
\beta(H,t) = \sum_{J \neq \{1,\dots,u\}} (-1)^{|J|+1} |\alpha_J|^t.
$$

Prop[e](https://www.gap-system.org)[d](https://doi.org/10.1016/S0021-9800(66)80009-1)ition 55. The ver[te](https://doi.org/10.1007/bf01899388)x $f_1(G)$ is nede[p](https://doi.org/10.1080/00927872.2021.1924184)endent on the clubtic of $f_1(G)$ is ned by the G is ned by the specific matrix (G) is nedependent manuscript (G) is nedependent manuscript (G) is nedependent manuscript We must have $\alpha_J = 1$ for every choice of J, otherwise $\lim_{t\to\infty} \beta(H,t) = \infty$. Hence H is a Frobenius complement and, since H is a maximal subgroup, the Frobenius kernel V is an irreducible H-module. Since $\beta(V, t) = |V|^t(|H'| - 1)$ does not depends on t, H must be abelian, and consequently cyclic. So if $\beta_t(G)$ is independent of the choice of t, then G is a primitive Frobenius group with a cyclic Frobenius complement. Conversely assume $G = V \rtimes H$, where H is cyclic and V and irreducible H-module. If $X \in C^*(G)$, then $\lambda(X, G) \neq 0$, so X is an intersection of maximal subgroups of G and therefore either $V = G' \leq X$, or X is conjugate to a subgroup of H. In the first case $\beta(H, t) = 0$. Assume $X = K^v$ for some $K \leq H$ and $v \in V$. Then $\beta(H, t) = |K|^t |V| - \omega(K, t) =$ $|K|^t|V| - (|V|(|K|^t-1)+1) = |V|-1.$

References

- [1] K. S. Brown, The coset poset and probabilistic zeta function of a finite group, *J. Algebra* 225 (2000), 989–1012, doi:10.1006/jabr.1999.8221, https://doi.org/10.1006/ jabr.1999.8221.
- [2] H. H. Crapo, The Möbius function of a lattice, *J. Comb. Theory* 1 (1966), 126–131, doi: 10.1016/S0021-9800(66)80009-1, https://doi.org/10.1016/S0021-9800(66) 80009-1.
- [3] H. H. Crapo, Möbius inversion in lattices, *Arch. Math.* **19** (1969), 595–607, doi:10.1007/ bf01899388, https://doi.org/10.1007/bf01899388.
- [4] F. Dalla Volta and G. Zini, On two Möbius functions for a finite non-solvable group, *Commun. Algebra* 49 (2021), 4565–4576, doi:10.1080/00927872.2021.1924184, https://doi. org/10.1080/00927872.2021.1924184.
- [5] The GAP Group, *GAP – Groups, Algorithms, and Programming, Version 4.11.1*, 2021, https://www.gap-system.org.
- [6] W. Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr. 14 (1955), 249–252, doi:10.1002/mana.19550140406, https://doi.org/10.1002/ mana.19550140406.
- [7] P. Hall, The Eulerian functions of a group, *Quart. J. Math. Oxford Ser.* 7 (1936), 134–151, doi:10.1093/qmath/os-7.1.134, https://doi.org/10.1093/qmath/os-7.1.134.
- [8] T. Hawkes, I. M. Isaacs and M. Özaydin, On the Möbius function of a finite group, Rocky Mt. J. *Math.* 19 (1989), 1003–1034, doi:10.1216/rmj-1989-19-4-1003, https://doi.org/10. 1216/rmj-1989-19-4-1003.
- [9] A. Lucchini, On the subgroups with non-trivial Möbius number, *J. Group Theory* 13 (2010), 589–600, doi:10.1515/jgt.2010.009, <https://doi.org/10.1515/jgt.2010.009>.

(10) II: National United United Manuscript (11) and the set of the Accepted Manuscript (11 [10] H. Pahlings, On the Möbius function of a finite group, Arch. Math. (Basel) 60 (1993), 7-14, doi:10.1007/bf01194232, https://doi.org/10.1007/bf01194232.