The beta polytope (Formula presented.) is the convex hull of n i.i.d. random points distributed in the unit ball of (Formula presented.) according to a density proportional to (Formula presented.) if (Formula presented.) (in particular, (Formula presented.) corresponds to the uniform distribution in the ball), or uniformly on the unit sphere if (Formula presented.). We show that the expected normalized volumes of high-dimensional beta polytopes exhibit a phase transition and we describe its shape. We derive analogous results for the intrinsic volumes of beta polytopes and, when (Formula presented.), their number of vertices.

Bonnet, G., Kabluchko, Z., Turchi, N. (2021). Phase transition for the volume of high-dimensional random polytopes. RANDOM STRUCTURES & ALGORITHMS, 58(4), 648-663 [10.1002/rsa.20986].

Phase transition for the volume of high-dimensional random polytopes

Turchi N.
2021

Abstract

The beta polytope (Formula presented.) is the convex hull of n i.i.d. random points distributed in the unit ball of (Formula presented.) according to a density proportional to (Formula presented.) if (Formula presented.) (in particular, (Formula presented.) corresponds to the uniform distribution in the ball), or uniformly on the unit sphere if (Formula presented.). We show that the expected normalized volumes of high-dimensional beta polytopes exhibit a phase transition and we describe its shape. We derive analogous results for the intrinsic volumes of beta polytopes and, when (Formula presented.), their number of vertices.
Articolo in rivista - Articolo scientifico
Beta distribution; convex hull; expected volume; phase transition; random polytopes;
English
28-dic-2020
2021
58
4
648
663
partially_open
Bonnet, G., Kabluchko, Z., Turchi, N. (2021). Phase transition for the volume of high-dimensional random polytopes. RANDOM STRUCTURES & ALGORITHMS, 58(4), 648-663 [10.1002/rsa.20986].
File in questo prodotto:
File Dimensione Formato  
Bonnet-2021-Random Struct Algorithms-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 334.78 kB
Formato Adobe PDF
334.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bonnet-2021-Random Struct Algorithms-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Licenza open access specifica dell’editore
Dimensione 217.29 kB
Formato Adobe PDF
217.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/395177
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
Social impact