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Phase transition for the volume of

high-dimensional random polytopes

Gilles Bonnet∗, Zakhar Kabluchko†, and Nicola Turchi‡

Abstract

The beta polytope P β
n,d is the convex hull of n i.i.d. random points distributed in

the unit ball of Rd according to a density proportional to (1 − ‖x‖2)β if β > −1 (in
particular, β = 0 corresponds to the uniform distribution in the ball), or uniformly on
the unit sphere if β = −1. We show that the expected normalized volumes of high-
dimensional beta polytopes exhibit a phase transition and we describe its shape. We
derive analogous results for the intrinsic volumes of beta polytopes and, when β = 0,
their number of vertices.

Keywords. Beta distribution, convex hull, expected volume, phase transition, ran-
dom polytopes.
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1 Introduction

In the last few years there has been an increasing interest in the study of high-dimensional
random convex hulls, see [5, 7, 9, 11, 14, 15, 26] for example. Older works include [3, 8, 24,
25]. A common way to construct such objects is described by the following general principle.
For every couple of natural numbers d and n with n > d, and any probability measure µ on
Rd whose support is compact and not contained in a hyperplane, we consider the convex
hull Pµ

n,d of n i.i.d. random points distributed according to µ. Clearly Pµ
n,d ⊆ conv(supp(µ))

a.s., where conv denotes the convex hull operator and supp(µ) the support of µ. Therefore,
if n = n(d) and µ = µ(d), then the sequence of expected normalized volumes

Evold(P
µ
n,d)

vold(conv(supp(µ)))
, d ∈ {2, 3, . . .}, (1)

takes values in the interval [0, 1].
It is clear that if n grows sufficiently fast, then the ratio above tends to 1. On the other

hand, in the slowest regime n = d + 1 it goes to zero (see the appendix for a short proof
of this claim). Thus, between these extreme regimes there is a family of regimes where a
transition happens. An interesting problem is to identify them. Namely, one would like to
answer the following questions :

(Q1) What are the regimes n = n(d) where the transition happens ?

(Q2) For such regimes, what is the shape of the transition ?
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The first question has been answered for a variety of families of distributions. Dyer, Füredi
and McDiarmid considered in [11] the setting where µ if the uniform discrete measure on
the 2d vertices of the unit cube [−1, 1]d and showed that such regimes satisfy n1/d → 2/

√
e,

meaning that if n1/d < 2/
√
e − ε (resp. > 2/

√
e + ε), for all d sufficiently large and for

a fixed ε > 0, then the sequence (1) tends to 0 (resp. 1). Gatzouras and Giannopoulos
extended this result in [15] to the general setting where µ is the product µ⊗d

1 of d copies
of a fixed symmetric measure µ1 with compact support in R. The criterion in this setting
has the same form, namely n1/d → c where c > 0 is a constant which can be expressed
in term of µ1. The picture changes when the convex hull of the support of the measure µ
is the Euclidean unit ball Bd. It was already known from the work of Bárány and Füredi
[2], in which they study the optimal approximation of the ball via deterministic polytopes,
that the regimes where the transition happens must satisfy n ≥ dd/2. In fact, Pivovarov
proved [26] that if µ is the uniform distribution on the Euclidean unit sphere S

d−1, then
the regimes answering (Q1) satisfy

log n

d log d
→ 1

2
,

i.e. the threshold is super-exponential.
The latter result has been extended in [5] to the class of so-called beta distributions

which have recently attracted a considerable attraction in stochastic geometry [1, 6, 10,
16, 17, 18, 20, 19, 21, 22, 23, 25, 27]. These distributions are described by their density,
which is proportional to (1−‖x‖2)β1(‖x‖ < 1), where ‖·‖ denotes the Euclidean norm and
where β > −1 is a parameter which might depend on d. For example, β = 0 generates
the uniform distribution on the Euclidean unit ball. We extend this family of distributions
by defining the beta distribution with β = −1 to be the uniform distribution on the unit
sphere. For such distributions, that we denote here by µβ, it was shown in [5] that

log n

(d+ 2β) log d
→ 1

2

is a criterion answering (Q1). In particular, for any ε > 0,

lim
d→∞

E vold(P
β
n,d)

vold(Bd)
=

{

0 if n ≤ exp
(

(1− ε)(d2 + β) log d
)

,

1 if n ≥ exp
(

(1 + ε)(d2 + β) log d
)

,
(2)

where we use P β
n,d as a shorthand for P

µβ

n,d. This threshold phenomenon was obtained
by generalizing Pivovarov’s arguments. In the present paper we use instead an integral
representation of the expected volume of beta polytopes obtained by Kabluchko, Temesvari
and Thäle in [22], see Theorem 2.1 below for a statement of this formula. By studying
carefully this integral we will be able to refine (2) by also answering (Q2) for the beta
polytopes model.

Namely, we will show that whenever x is a positive constant and the number n of
random points grows like exp

(

(d2 + β) log d
2x

)

, then

Evold(P
β
n,d)

vold(Bd)
→ e−x ∈ (0, 1),

as d tends to infinity.
The rest of the paper is structured as follows. In the next section we introduce the

required notation and present some preliminaries. In Section 3 we state the main theorem
and derive some simple but interesting corollaries. Finally, Section 4 is dedicated to the
proof of the theorem and its corollaries.
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2 Notation and preliminaries

For an integer d ≥ 2, we denote by B
d the Euclidean unit ball in R

d and by S
d−1 its

boundary. We denote by vold the Lebesgue measure on R
d and we write κd := vold(B

d) =
πd/2/Γ(1 + d/2). For two sequences a(d) and b(d) we use the notation a ∼ b, respectively
a = o(b), to mean that the ratio a(d)/b(d) tends to 1, respectively 0, as d → ∞.

Given a convex body K ⊂ R
d and a number k ∈ {0, . . . , d}, the k-th intrinsic volume of

K, denoted by Vk(K), is the geometric functional defined by means of the Steiner formula,
namely

vold(K + tBd) =

d
∑

k=0

td−kκd−kVk(K), (3)

for every t ≥ 0. In particular, it holds that Vd = vold and that Vd−1(K) is half the surface
area of K. Moreover, whenever K is a polytope, i.e. the convex hull of a finite number of
points, then we indicate with f0(K) the number of its vertices.

The beta distribution with parameter β > −1 is the continuous probability measure
on R

d with density

x 7→ Γ(d2 + β + 1)

π
d
2Γ(β + 1)

(1− ‖x‖2)β, ‖x‖ < 1,

and 0 everywhere else. In particular, the beta distribution with β = 0 is just the uniform
distribution in the Euclidean unit ball. We also say that the beta distribution with para-
meter β = −1 is the uniform distribution on the Euclidean sphere S

d−1; this is justified
by the fact that the beta distributions with parameters β > −1 converge weakly to the
uniform probability distribution on the sphere as β → −1 (a proof of this fact can be found
in [22]).

Let X1, . . . ,Xn be i.i.d. random points in R
d distributed according to the beta distri-

bution with parameter β. We construct the beta polytope P β
n,d as

P β
n,d := conv({X1, . . . ,Xn}) ⊂ B

d.

For z > 0, we introduce the non-negative quantities

cz :=
Γ(z + 1/2)

2
√
πΓ(z + 1)

,

Fz−1(h) := 2z cz

∫ h

−1
(1− s2)z−1 ds, h ∈ [−1, 1].

Note that Fz−1 takes values in [0, 1], because cz is chosen such that Fz−1(1) = 1.

An explicit representation of the expected volume of P β
n,d was proved in [22, Theorem

2.1 for the case β > −1 and Corollary 3.9 for β = −1] and can be stated as follows.

Theorem 2.1. Let

Kβ
n,d =

(d+ 1)κd

2dπ
d+1

2

(

n

d+ 1

)

(

β +
d+ 1

2

)

(

Γ
(

d+2
2 + β

)

Γ
(

d+3
2 + β

)

)d+1

and q = (d+ 1)(β − 1
2) +

d
2(d+ 3). Then,

E vold(P
β
n,d) = Kβ

n,d

∫ 1

−1

(

1− h2
)q

Fβ+ d−1

2

(h)n−d−1 dh. (4)
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3 The main result and related corollaries

We want to prove the following statement.

Theorem 3.1. Fix x ∈ (0,+∞) and consider any sequence β = β(d) ≥ −1. Let n = n(d)
be a sequence of natural numbers of the form

n =
( d

2x+ o(1)

)d/2+β
, (5)

where o(1) is a sequence converging to 0 as d → ∞. Then,

lim
d→∞

E vold(P
β
n,d)

vold(Bd)
= e−x. (6)

Remark 1. Taking into account both Theorem 3.1 and the threshold established in [5],
we can state that, for any sequences of natural numbers n = n(d) and real numbers
β = β(d) ≥ −1,

lim
d→∞

E vold(P
β
n,d)

vold(Bd)
= lim

d→∞

exp
(

−d

2
exp
(

− 2 log n

d+ 2β

))

,

whenever the right-hand side exists.

The first consequence of Theorem 3.1 that we mention is about the ratio of expected
intrinsic volumes of P β

n,d.

Corollary 3.2. Under the same hypotheses of Theorem 3.1 on x and β, let k = k(d) ∈
{1, . . . , d} be a diverging sequence of natural numbers as d → ∞ and n = n(d) be a sequence

of natural numbers of the form

n =
( k

2x+ o(1)

)d/2+β
, (7)

where o(1) is a sequence converging to 0 as d → ∞. Then,

lim
d→∞

EVk(P
β
n,d)

Vk(Bd)
= e−x.

The second consequence is an asymptotics for the expected number of vertices of the
polytope that arises as the convex hull of points which are picked independently and
uniformly at random inside of the ball.

Corollary 3.3. Under the same assumptions as in Theorem 3.1, fix β = 0. Then the

asymptotic behavior of the expected number of vertices P 0
n,d is given by

E f0(P
0
n,d) ∼ (1− e−x)n,

as d → ∞.

4 Proofs

In view of formula (4), it is convenient for our purposes to change the variables d and n in
the following way:

D :=
d+ 1

2
∈ {3/2, 2, . . .},

N := n− d− 1 ∈ {0, 1, . . .}.

4



This makes the constant in front of the integral (4) become

K := Kβ
N+2D,2D−1 = 4D(D + β)

(

N + 2D

2D

)

c2DD+β κd, (8)

while the integral itself is given by
∫ 1

−1
(1− h2)2D(D+β)−1FD+β−1(h)

N dh.

We study the behavior of integrals of the form

I ba = I ba(N,D, β) :=

∫ b

a
(1− h2)2D(D+β)−1FD+β−1(h)

N dh, (9)

for a, b ∈ [−1, 1]. Indeed, Theorem 2.1 can be reformulated as

E vold(P
β
n,d) = K I+1

−1. (10)

In order to prove Theorem 3.1, we need to show that the limit (6) holds for any fixed
x ∈ (0,∞), any sequence β(d) ≥ −1 and any sequence n(d) satisfying condition (5). In a
first step we show that it is enough to consider sequences n(d) satisfying a more restrictive
condition than (5) which is stated in term of N = n− d− 1 and D = (d+ 1)/2.

Lemma 4.1. It is sufficient to prove Theorem 3.1 for all the integers N = N(D) such that

N ∼
(D

x

)D+β
√

1 +
β

D
,

as D → ∞, with x ∈ (0,+∞) and β = β(D) ∈ [−1,+∞).

Proof. Assume that if N ∼ DD+βx−D−β
√

1 + β/D then, for d = 2D−1 and n = N+d+1,
it holds

lim
d→∞

Evold(P
β
n,d)

vold(Bd)
= e−x.

Notice that if n is as in equation (5), then

N =

(

2D − 1

2x+ o(1)

)D+β−1/2

− 2D =

(

D

x+ o(1)

)D+β−1/2

,

where the equalities above follow, respectively, from the definition of N and D, and trivial
simplifications. Therefore

N =





D

x+ o(1)

(
√

x/D

1 + β/D

)1/(D+β)




D+β
√

1 +
β

D
=

(

D

x+ o(1)

)D+β
√

1 +
β

D
.

Now, fix an arbitrary small constant ε > 0. There exists D large enough such that:

N− :=

⌊

( D

x+ ε

)D+β
√

1 +
β

D

⌋

≤ N ≤
⌈

( D

x− ε

)D+β
√

1 +
β

D

⌉

=: N+.

By assumption, since x+ ε ∈ (0,+∞) is a fixed constant, if n− := N−+ d+ 1 then

lim
d→∞

E vold(P
β
n−,d

)

vold(Bd)
= e−x−ε.

Analogously, using N+ yields e−x+ε as the limit. This allows us to deduce the claimed
statement, because of the monotonicity of n 7→ E vold(P

β
n,d) for any d fixed (note that

P β
n,d ⊆ P β

n+1,d a.s.), the arbitrariness of ε and the continuity of the exponential map.

5



In view of (10) and Lemma 4.1, we want to show that

lim
d→∞

KI+1
−1

κd
= e−x, (11)

whenever

N ∼
(D

x

)D+β
√

1 +
β

D
. (12)

Our strategy is to find convenient a = a(d), b = b(d) ∈ (0, 1) in such a way that

lim
d→∞

KIa
−1

κd
= 0, lim

d→∞

KI ba
κd

= e−x lim
d→∞

KI1b
κd

= 0.

In order to do so, we first gather some useful facts in the next four Lemmas. We start
with an inequality on the ratio of Gamma functions due to Wendel [29].

Lemma 4.2. For z > 0 it holds that

1
√

z + 1/2
≤ Γ(z + 1/2)

Γ(z + 1)
≤ 1√

z
.

By the previous lemma, it holds

cD+β ≤ 1

2
√

π(D + β)
and cD+β ∼ 1

2
√

π(D + β)
,

as D → ∞. Notice that this implies that if N is chosen as in Lemma 4.1, then

2
√
πNcD+β ∼ DD+β− 1

2x−D−β. (13)

Lemma 4.3. For all m ≥ 1 and all y ∈ (−∞,m):

exp
(

− y2

m− y

)

≤ ey
(

1− y

m

)m
≤ 1. (14)

In particular, if y = y(m) is such that y2/m → 0 as m → ∞, then

(

1− y

m

)m
∼ e−y, (15)

as m → ∞.

Proof. It is well known that

z

1 + z
≤ log(1 + z) ≤ z, z ∈ (−1,∞).

We use it with z = −y/m > −1. Applying the increasing mapping exp(m·) on both sides
of the inequality we get:

exp
(

− my

m− y

)

≤
(

1− y

m

)m
≤ exp(−y).

The fact that my
m−y = y + y2

m−y yields the result.

Lemma 4.4. For D large enough and N as in Lemma 4.1, K
κd

≤ (D/x)2D(D+β).

6



Proof. Recall from (8) that

K

κd
= 4D(D + β)

(

N + 2D

2D

)

c2DD+β.

We start by bounding the binomial coefficient. Using the bounds
(k+ℓ

k

)

≤ (k + ℓ)k/k! and
k! ≥ (k/e)k , with k = 2D and ℓ = N , we note that

(

N + 2D

2D

)

≤
(e(N + 2D)

2D

)2D
=
(eN

2D

)2D
eo(1),

where the last equality is due to the RHS inequality of eq. (14). Indeed

1 ≤
(N + 2D

N

)2D
=
(

1 +
o(1)

2D

)2D
≤ eo(1).

Also by Lemma 4.2, we know that cD+β ≤ 1/(2
√

π(D + β)).
Thus for N = (D/x)D+βeo(1)

√

1 + β/D we get

K

κd
≤ 4D(D + β)

(e(D/x)D+βeo(1)

4D
√

π(D + β)

)2D
eo(1)

=
(e1+o(1)

4D
√
π

)2D 4D

(D + β)D−1

(D

x

)2D(D+β)
≤
(D

x

)2D(D+β)
,

where the last bound holds for D large enough. This gives the conclusion.

The following inequality provides a useful approximation of the functions Fz−1.

Lemma 4.5. For any h ∈ (0, 1) and z > 0,

1− 1− h2

2h2(z + 1)
≤ h(1− Fz−1(h))

cz(1− h2)z
≤ 1.

Proof. Recall that for h ∈ (0, 1), the function Fz−1(h) is defined by

Fz−1(h) = 2z cz

∫ h

−1
(1− s2)z−1 ds

and in particular for h = 1 this simplifies as Fz−1(1) = 1. Thus

1− Fz−1(h)

cz
= 2z

∫ 1

h
(1− s2)z−1 ds.

We apply the substitution t = s2−h2

1−h2 to get

1− Fz−1(h)

cz
= 2z

∫ 1

0
[1− h2 − (1− h2)t]z−1 1− h2

2
√

h2 + (1− h2)t
dt.

Multiplying by h/(1 − h2)z gives

h(1 − Fz−1(h))

cz(1− h2)z
= z

∫ 1

0
(1− t)z−1 1

√

1 + 1−h2

h2 t
dt. (16)

The fraction in the last integrand makes the computation delicate and this is the step
where we introduce the approximation given by

1− 1− h2

2h2
t ≤ 1

√

1 + 1−h2

h2 t
≤ 1, h, t ∈ (0, 1). (17)

7



The lower bound follows from the fact that for any u ≥ 0, (1 + u)−1/2 ≥ 1− u/2.
We get the upper bound of Lemma 4.5 by plugging the upper bound of (17) in (16)

and using the fact that
∫ 1
0 (1− t)z−1 dt = 1/z.

It remains to show the lower bound of the lemma. Using the lower bound of (17) and
(16), we get

h(1− Fz−1(h))

cz(1− h2)z
≥ z

∫ 1

0
(1− t)z−1 dt− 1− h2

2h2
z

∫ 1

0
(1− t)z−1t dt.

The two last integrals evaluate nicely. As we have already mentioned, the first one equals
1/z. The second one is the beta function B(z, 2) = Γ(z)Γ(2)/Γ(z +2) = 1/[z(z +1)]. The
lower bound of lemma follows directly.

We are now ready to prove the main result.

Proof of Theorem 3.1. Choosing z = D+ β in Lemma 4.5, we get that for any a, b ∈ (0, 1)
with a < b, and any h ∈ [a, b], it holds that

1−AcD+β(1− h2)D+β ≤ FD+β−1(h) ≤ 1−BcD+β(1− h2)D+β,

where A := 1
a and B := 1

b (1− 1−a2

2a2(D+β)
). This inequality can be used to bound I ba on both

sides. On the left-hand side we perform the change of variable

t = NAcD+β(1− h2)D+β.

The Jacobian of this transformation is such that

(1− h2)2D(D+β)−1 dh = −(1− h2)(2D−1)(D+β)

2h(D + β)NAcD+β
dt =

t2D−1

−2h(D + β)(NAcD+β)2D
dt.

We perform an analogous change of variable on the right-hand side, this time replacing A
by B. We also use 1/b ≤ 1/h ≤ 1/a. Hence, we get

1

2b(D + β)(NAcD+β)2D

∫ NAcD+β(1−a2)D+β

NAcD+β(1−b2)D+β

t2D−1
(

1− t

N

)N
dt

≤ I ba ≤
1

2a(D + β)(NBcD+β)2D

∫ NBcD+β(1−a2)D+β

NBcD+β(1−b2)D+β

t2D−1
(

1− t

N

)N
dt,

therefore, multiplying all terms by K/κd, we get

1

bA2D

(

N + 2D

2D

)

2D

N2D

∫ NAcD+β(1−a2)D+β

NAcD+β(1−b2)D+β

t2D−1
(

1− t

N

)N
dt

≤ KI ba
κd

≤

1

aB2D

(

N + 2D

2D

)

2D

N2D

∫ NBcD+β(1−a2)D+β

NBcD+β(1−b2)D+β

t2D−1
(

1− t

N

)N
dt. (18)

By Lemma 4.3 and the fact that the mapping t 7→ e−
t2

N−t is decreasing for t ∈ (0, N), we
get that for t ∈ [NAcD+β(1− b2)D+β , NAcD+β(1− a2)D+β],

rN,D,a := exp
(

−N ·
A2c2D+β(1− a2)2(D+β)

1−AcD+β(1− a2)D+β

)

≤ et
(

1− t

N

)N
≤ 1,

8



provided that AcD+β(1− a2)D+β < 1, which will be justified later with a particular choice
of a and b.

Note that

1 ≤ (2D − 1)!

(

N + 2D

2D

)

2D

N2D
=

(N + 2D)!

N !N2D
≤
(

1 +
2D

N

)2D
=: sN,d .

Hence, we get from (18)

rN,D,a

bA2D

1

(2D − 1)!

∫ NAcD+β(1−a2)D+β

NAcD+β(1−b2)D+β

t2D−1e−t dt

≤ KI ba
κd

≤

sN,D

aB2D

1

(2D − 1)!

∫ NBcD+β(1−a2)D+β

NBcD+β(1−b2)D+β

t2D−1e−t dt. (19)

Now note that t2D−1e−t/(2D − 1)! is the probability density function of random variable
with a Γ(2D, 1) probability distribution, hence also of a sum of 2D independent copies
(Ei)

2D
i=1 of an exponentially distributed random variable with mean 1. Therefore, by the

weak law of large numbers,

lim
D→∞

1

(2D − 1)!

∫ NAcD+β(1−a2)D+β

NAcD+β(1−b2)D+β

t2D−1e−t dt

= lim
D→∞

P

(

NAcD+β(1− b2)D+β ≤
2D
∑

i=1

Ei ≤ NAcD+β(1− a2)D+β
)

= 1

granted that there exists an ε > 0 such that for D large enough

NAcD+β(1− a2)D+β > (1 + ε)2D,

NAcD+β(1− b2)D+β < (1− ε)2D.
(20)

Now assume without loss of generality that D > x and define the following quantities in
(0, 1):

a :=

√

1− x

D

(

1 +
log
(

D2(D + β)
)

D + β

)

,

b :=

√

1− x

D
.

(21)

Since a2D =
(

1− x
D

(

1 + log(D2(D+β))
D+β

))D
and x

(

1 + log(D2(D+β))
D+β

)

→ x as D → ∞ then, by
(15),

a2D ∼ e−x.

Analogously, b2D ∼ e−x, as D → ∞. Moreover

(1− a2)D+β =
( x

D

)D+β(

1 +
log
(

D2(D + β)
)

D + β

)D+β
.

Using m = D + β and y = − log
(

D2(D + β)
)

in Lemma 4.3, since y2/m → 0 as D → ∞,
we get

(

1 +
log
(

D2(D + β)
)

D + β

)D+β
∼ elog(D

2(D+β)) = D2(D + β),

9



as D → ∞.
Summing up what we just computed above, we get for D → ∞,

(1− a2)D+β ∼ xD+βD2−D−β(D + β),

(1− b2)D+β = xD+βD−D−β.
(22)

Recall that A = 1/a → 1 and NcD+β ∼ DD+β− 1

2 /(2
√
πxD+β), as noted in equation (13).

Thus,

NAcD+β(1− a2)D+β ∼ 1

2
√
π
D3/2(D + β),

NAcD+β(1− b2)D+β ∼ 1

2
√
π
D−1/2,

(23)

and, in particular, the assumptions (20) are verified. Note also that we see that we also
verified that AcD+β(1− h2)D+β < 1 as previously claimed.

Moreover, in such a case, as D → ∞,

rN,D,aA
−2D = rN,D,aa

2D ∼ 1 · e−x = e−x,

where the asymptotics rN,D,a ∼ 1 is a consequence of (22), indeed by definition − log rN,D,a=
NA2c2D+β(1− a2)2(D+β)/(1 −AcD+β(1− a2)D+β) → 0.

We proved that if assumptions (12) and (21) are satisfied then the left-hand side of
(19) tends to e−x. It is a simple check to see that everything holds in the same way for
the right-hand side, since we only replace A by B. Indeed, as far as the prefactor of the
integral is concerned,

sN,DB
−2D =

(

1 +
2D

N

)2D
b2D
(

1− 1− a2

2a2(D + β)

)−2D
∼ 1 · e−x · 1 = e−x,

since 1−a2

2a2
= o(1). Hence, both the upper and the lower bound for KI ba/κd have the same

asymptotics, which allows to conclude that

KI ba
κd

∼ e−x,

as d → ∞.
With Lemmas 4.6 and 4.7 below we have that under the same conditions,

KIa
−1

κd
→ 0 and

KI1b
κd

→ 0,

as d → ∞, which yields equation (11).

Lemma 4.6. If a is chosen as in (21), then
KIa

−1

κd
→ 0 as d → ∞.

Proof. Since FD+β−1 is increasing, then

Ia−1 ≤
∫ 1

−1
(1− h2)2D(D+β)−1 dhFD+β−1(a)

N

=
√
π

Γ(2D(D + β))

Γ(2D(D + β) + 1/2)
FD+β−1(a)

N ≤ FD+β−1(a)
N ,

where the last equation holds for every D large enough, due to Lemma 4.2. By Lemma 4.5,

FD+β−1(a) ≤ 1− cD+β

a
(1− a2)D+β

(

1− 1− a2

2a2(D + β + 1)

)

10



so that

FD+β−1(a)
N ≤ exp

(

−N
cD+β

a
(1− a2)D+β

(

1− 1− a2

2a2(D + β + 1)

))

. (24)

Recall that a → 1, thus (23) gives us that

N
cD+β

a
(1− a2)D+β

(

1− 1− a2

2a2(D + β + 1)

)

∼ 1

2
√
π
D3/2(D + β).

Combining the above estimates with the bound of K/κd obtained in Lemma 4.4, we get
that, for an arbitrary positive constant c less than 1/(2

√
π) and D large enough,

KIa
−1

κd
≤ exp

(

−D(D + β)
(

cD1/2 − 2 log
(D

x

)))

,

which goes to zero. This concludes the proof.

Lemma 4.7. If b is chosen as in (21), then
KI1

b

κd
→ 0 as d → ∞.

Proof. We bound FD+β−1 ≤ 1 so that

I1b ≤
∫ 1

b
(1− h2)2D(D+β)−1 dh =

∫ 1−b2

0

s2D(D+β)−1

2
√
1− s

ds

≤ (1− b2)2D(D+β)

4bD(D + β)
=

1

4bD(D + β)

( x

D

)2D(D+β)
,

where we used the fact that 1− b2 = x/D. By Lemma 4.4 it follows that

K

κd
I1b ≤

1

4bD(D + β)
,

which tends to 0 as D tends to infinity.

Proof of Corollary 3.2. First of all, note that from the definition of intrinsic volume we get
that

Vk(B
d) =

(

d

k

)

κd
κd−k

,

which can be deduced by plugging K = Bd into (3). Moreover, Proposition 2.3 in [22]
states that

EVk(P
β
n,d) =

(

d

k

)

κd
κkκd−k

E volk(P
β′

n,k),

with β′ := d−k
2 + β. Together with the previous identity this implies that

EVk(P
β
n,d)

Vk(Bd)
=

E vold′(P
β′

n,d′)

vold′(Bd′)
,

with d′ := k. We can thus apply Theorem 3.1 to the RHS with

n =
( d′

2x+ o(1)

)d′/2+β′

=
( k

2x+ o(1)

)d/2+β
,

which proves the claim, since d′ also diverges by hypotheses.
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Proof of Corollary 3.3. The expected number of vertices of P 0
n,d is given by

E f0(P
0
n,d) = nP(Xn is a vertex of P 0

n,d).

Observe that the latter event is the complement of {Xn ∈ P 0
n−1,d}, whose probability is

Evold(P
0
n−1,d)/vold(B

d) because Xn is uniformly distributed, since β = 0. Collecting these
observations provides the so-called Efron’s identity, see [12],

E f0(P
0
n,d)

n
= 1−

E vold(P
0
n−1,d)

vold(Bd)
.

Combining this equation with the conclusion of Theorem 3.1 yields the proof.

Appendix: Random simplices have small volumes

In this section, we justify the claim made in the introduction that

lim
d→∞

Evold(P
µ
d+1,d)

vold(conv(supp(µ)))
= 0,

independently of the choice of probability measures µ = µ(d).

Lemma 4.8. For all natural numbers n > d,

Mn,d := sup

{

Evold(P
µ
n,d)

vold(conv(supp(µ)))

}

≤ 1

2n−1

n−1
∑

k=d

(

n− 1

k

)

, (25)

where the supremum is taken on the set of all probability measures µ in R
d whose support

is compact and not contained in a hyperplane. In particular, we see immediately that

Md+1,d ≤ 2−d,

Proof. Let µ be a probability measure whose support is compact and not contained in a
hyperplane. We need to bound the ratio appearing in the supremum in Equation (25).
Without loss of generality we can assume that conv(supp(µ)) is a convex body K of unit
volume. It is known (see e.g. [4, Example 8.1.6]) that the set of probability measures of
the form

ν =
m
∑

i=1

ciδxi
, m ∈ N, ci > 0,

m
∑

i=1

ci = 1, xi ∈ K,

where δxi
is the Dirac measure concentrated at xi, is dense in the set of probability measures

on K equipped with the weak topology. Moreover, each of these ν admits an approximation
via absolutely continuous probability measures with respect to the Lebesgue measure dx.
For example, for all ε > 0, the measure νε such that

dνε
dx

(x) =
m
∑

i=1

ci
vold((xi + εBd) ∩K)

1(x ∈ {(xi + εBd) ∩K})

is such an approximation. Since the expected volume of a random polytope Pµ
n,d is a

continuous function of µ with respect to the weak topology, we have that

Mn,d = sup
{

E vold(P
µ
n,d) : vold(conv(supp(µ))) = 1, µ ≪ dx

}

.

12



By switching the order of integration, the expected volume of the random polytope Pµ
n,d

can be written as follows,

E vold(P
µ
n,d) =

∫

K
P(x ∈ Pµ

n,d) dx. (26)

By shifting x and µ by the vector (−x) the last integrand is the probability that the origin
is contained in the random convex hull Pµ−x

n,d . Since µ is absolutely continuous we can
apply an inequality of Wagner and Welzl [28], which extends a famous identity due to
Wendel [30] valid in the symmetric setting, and tells us that

P(x ∈ Pµ
n,d) = P(0 ∈ Pµ−x

n,d ) ≤ 1

2n−1

n−1
∑

k=d

(

n− 1

k

)

. (27)

Hence, we can bound (26) as

E vold(P
µ
n,d) ≤

1

2n−1

n−1
∑

k=d

(

n− 1

k

)

,

which proves the claim.

Note that the RHS of (25) is the probability that the sum of n− 1 independent copies
of a Bernoulli random variable with parameter 1/2 is greater than or equal to d. Therefore,
it is a consequence of the weak law of large numbers that

lim
d→∞

Mn,d = 0,

whenever n ≤ (2− ε) d for any fixed ε ∈ (0, 1).
It is easy to show that, as soon as n = n(d) grows like d log d, Mn,d cannot vanish as

the dimension increases. To see this, consider µ̄ to be the discrete uniform distribution on
the d+ 1 vertices of a simplex ∆ = conv{v1, . . . , vd+1} ⊂ R

d, for which it holds that

Evold(P
µ̄
n,d)

vold(∆)
= P({X1, . . . ,Xn} = {v1, . . . , vd+1}).

It is well known from the coupon collector’s problem (e.g. [13]) that, as d diverges, such
quantity tends to 1/e if n = d log d + o(d), so in this regime Mn,d does not vanish. In
contrast, if n ≤ (1− ε)d log d for any fixed ε ∈ (0, 1), the above probability tends to 0 and
the question of whether or not limd→∞Mn,d = 0 remains open.
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